
This patch introduces a very simple inter-procedural analysis between blocks and enclosing functions. We always analyze blocks first (analysis is done as part of semantic analysis that goes side-by-side with the parsing process), and at the moment of reporting we don't know how that block will be actually used. This patch introduces new logic delaying reports of the "never called" warnings on blocks. If we are not sure that the block will be called exactly once, we shouldn't warn our users about that. Double calls, however, don't require such delays. While analyzing the enclosing function, we can actually decide what we should do with those warnings. Additionally, as a side effect, we can be more confident about blocks in such context and can treat them not as escapes, but as direct calls. rdar://74090107 Differential Revision: https://reviews.llvm.org/D98688
1686 lines
64 KiB
C++
1686 lines
64 KiB
C++
//===- CalledOnceCheck.cpp - Check 'called once' parameters ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Analysis/Analyses/CalledOnceCheck.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/OperationKinds.h"
|
|
#include "clang/AST/ParentMap.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/Analysis/AnalysisDeclContext.h"
|
|
#include "clang/Analysis/CFG.h"
|
|
#include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/IdentifierTable.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/BitmaskEnum.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Sequence.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <memory>
|
|
|
|
using namespace clang;
|
|
|
|
namespace {
|
|
static constexpr unsigned EXPECTED_MAX_NUMBER_OF_PARAMS = 2;
|
|
template <class T>
|
|
using ParamSizedVector = llvm::SmallVector<T, EXPECTED_MAX_NUMBER_OF_PARAMS>;
|
|
static constexpr unsigned EXPECTED_NUMBER_OF_BASIC_BLOCKS = 8;
|
|
template <class T>
|
|
using CFGSizedVector = llvm::SmallVector<T, EXPECTED_NUMBER_OF_BASIC_BLOCKS>;
|
|
constexpr llvm::StringLiteral CONVENTIONAL_NAMES[] = {
|
|
"completionHandler", "completion", "withCompletionHandler",
|
|
"withCompletion", "completionBlock", "withCompletionBlock",
|
|
"replyTo", "reply", "withReplyTo"};
|
|
constexpr llvm::StringLiteral CONVENTIONAL_SUFFIXES[] = {
|
|
"WithCompletionHandler", "WithCompletion", "WithCompletionBlock",
|
|
"WithReplyTo", "WithReply"};
|
|
constexpr llvm::StringLiteral CONVENTIONAL_CONDITIONS[] = {
|
|
"error", "cancel", "shouldCall", "done", "OK", "success"};
|
|
|
|
struct KnownCalledOnceParameter {
|
|
llvm::StringLiteral FunctionName;
|
|
unsigned ParamIndex;
|
|
};
|
|
constexpr KnownCalledOnceParameter KNOWN_CALLED_ONCE_PARAMETERS[] = {
|
|
{"dispatch_async", 1},
|
|
{"dispatch_async_and_wait", 1},
|
|
{"dispatch_after", 2},
|
|
{"dispatch_sync", 1},
|
|
{"dispatch_once", 1},
|
|
{"dispatch_barrier_async", 1},
|
|
{"dispatch_barrier_async_and_wait", 1},
|
|
{"dispatch_barrier_sync", 1}};
|
|
|
|
class ParameterStatus {
|
|
public:
|
|
// Status kind is basically the main part of parameter's status.
|
|
// The kind represents our knowledge (so far) about a tracked parameter
|
|
// in the context of this analysis.
|
|
//
|
|
// Since we want to report on missing and extraneous calls, we need to
|
|
// track the fact whether paramater was called or not. This automatically
|
|
// decides two kinds: `NotCalled` and `Called`.
|
|
//
|
|
// One of the erroneous situations is the case when parameter is called only
|
|
// on some of the paths. We could've considered it `NotCalled`, but we want
|
|
// to report double call warnings even if these two calls are not guaranteed
|
|
// to happen in every execution. We also don't want to have it as `Called`
|
|
// because not calling tracked parameter on all of the paths is an error
|
|
// on its own. For these reasons, we need to have a separate kind,
|
|
// `MaybeCalled`, and change `Called` to `DefinitelyCalled` to avoid
|
|
// confusion.
|
|
//
|
|
// Two violations of calling parameter more than once and not calling it on
|
|
// every path are not, however, mutually exclusive. In situations where both
|
|
// violations take place, we prefer to report ONLY double call. It's always
|
|
// harder to pinpoint a bug that has arisen when a user neglects to take the
|
|
// right action (and therefore, no action is taken), than when a user takes
|
|
// the wrong action. And, in order to remember that we already reported
|
|
// a double call, we need another kind: `Reported`.
|
|
//
|
|
// Our analysis is intra-procedural and, while in the perfect world,
|
|
// developers only use tracked parameters to call them, in the real world,
|
|
// the picture might be different. Parameters can be stored in global
|
|
// variables or leaked into other functions that we know nothing about.
|
|
// We try to be lenient and trust users. Another kind `Escaped` reflects
|
|
// such situations. We don't know if it gets called there or not, but we
|
|
// should always think of `Escaped` as the best possible option.
|
|
//
|
|
// Some of the paths in the analyzed functions might end with a call
|
|
// to noreturn functions. Such paths are not required to have parameter
|
|
// calls and we want to track that. For the purposes of better diagnostics,
|
|
// we don't want to reuse `Escaped` and, thus, have another kind `NoReturn`.
|
|
//
|
|
// Additionally, we have `NotVisited` kind that tells us nothing about
|
|
// a tracked parameter, but is used for tracking analyzed (aka visited)
|
|
// basic blocks.
|
|
//
|
|
// If we consider `|` to be a JOIN operation of two kinds coming from
|
|
// two different paths, the following properties must hold:
|
|
//
|
|
// 1. for any Kind K: K | K == K
|
|
// Joining two identical kinds should result in the same kind.
|
|
//
|
|
// 2. for any Kind K: Reported | K == Reported
|
|
// Doesn't matter on which path it was reported, it still is.
|
|
//
|
|
// 3. for any Kind K: NoReturn | K == K
|
|
// We can totally ignore noreturn paths during merges.
|
|
//
|
|
// 4. DefinitelyCalled | NotCalled == MaybeCalled
|
|
// Called on one path, not called on another - that's simply
|
|
// a definition for MaybeCalled.
|
|
//
|
|
// 5. for any Kind K in [DefinitelyCalled, NotCalled, MaybeCalled]:
|
|
// Escaped | K == K
|
|
// Escaped mirrors other statuses after joins.
|
|
// Every situation, when we join any of the listed kinds K,
|
|
// is a violation. For this reason, in order to assume the
|
|
// best outcome for this escape, we consider it to be the
|
|
// same as the other path.
|
|
//
|
|
// 6. for any Kind K in [DefinitelyCalled, NotCalled]:
|
|
// MaybeCalled | K == MaybeCalled
|
|
// MaybeCalled should basically stay after almost every join.
|
|
enum Kind {
|
|
// No-return paths should be absolutely transparent for the analysis.
|
|
// 0x0 is the identity element for selected join operation (binary or).
|
|
NoReturn = 0x0, /* 0000 */
|
|
// Escaped marks situations when marked parameter escaped into
|
|
// another function (so we can assume that it was possibly called there).
|
|
Escaped = 0x1, /* 0001 */
|
|
// Parameter was definitely called once at this point.
|
|
DefinitelyCalled = 0x3, /* 0011 */
|
|
// Kinds less or equal to NON_ERROR_STATUS are not considered errors.
|
|
NON_ERROR_STATUS = DefinitelyCalled,
|
|
// Parameter was not yet called.
|
|
NotCalled = 0x5, /* 0101 */
|
|
// Parameter was not called at least on one path leading to this point,
|
|
// while there is also at least one path that it gets called.
|
|
MaybeCalled = 0x7, /* 0111 */
|
|
// Parameter was not yet analyzed.
|
|
NotVisited = 0x8, /* 1000 */
|
|
// We already reported a violation and stopped tracking calls for this
|
|
// parameter.
|
|
Reported = 0x15, /* 1111 */
|
|
LLVM_MARK_AS_BITMASK_ENUM(/* LargestValue = */ Reported)
|
|
};
|
|
|
|
constexpr ParameterStatus() = default;
|
|
/* implicit */ ParameterStatus(Kind K) : StatusKind(K) {
|
|
assert(!seenAnyCalls(K) && "Can't initialize status without a call");
|
|
}
|
|
ParameterStatus(Kind K, const Expr *Call) : StatusKind(K), Call(Call) {
|
|
assert(seenAnyCalls(K) && "This kind is not supposed to have a call");
|
|
}
|
|
|
|
const Expr &getCall() const {
|
|
assert(seenAnyCalls(getKind()) && "ParameterStatus doesn't have a call");
|
|
return *Call;
|
|
}
|
|
static bool seenAnyCalls(Kind K) {
|
|
return (K & DefinitelyCalled) == DefinitelyCalled && K != Reported;
|
|
}
|
|
bool seenAnyCalls() const { return seenAnyCalls(getKind()); }
|
|
|
|
static bool isErrorStatus(Kind K) { return K > NON_ERROR_STATUS; }
|
|
bool isErrorStatus() const { return isErrorStatus(getKind()); }
|
|
|
|
Kind getKind() const { return StatusKind; }
|
|
|
|
void join(const ParameterStatus &Other) {
|
|
// If we have a pointer already, let's keep it.
|
|
// For the purposes of the analysis, it doesn't really matter
|
|
// which call we report.
|
|
//
|
|
// If we don't have a pointer, let's take whatever gets joined.
|
|
if (!Call) {
|
|
Call = Other.Call;
|
|
}
|
|
// Join kinds.
|
|
StatusKind |= Other.getKind();
|
|
}
|
|
|
|
bool operator==(const ParameterStatus &Other) const {
|
|
// We compare only kinds, pointers on their own is only additional
|
|
// information.
|
|
return getKind() == Other.getKind();
|
|
}
|
|
|
|
private:
|
|
// It would've been a perfect place to use llvm::PointerIntPair, but
|
|
// unfortunately NumLowBitsAvailable for clang::Expr had been reduced to 2.
|
|
Kind StatusKind = NotVisited;
|
|
const Expr *Call = nullptr;
|
|
};
|
|
|
|
/// State aggregates statuses of all tracked parameters.
|
|
class State {
|
|
public:
|
|
State(unsigned Size, ParameterStatus::Kind K = ParameterStatus::NotVisited)
|
|
: ParamData(Size, K) {}
|
|
|
|
/// Return status of a parameter with the given index.
|
|
/// \{
|
|
ParameterStatus &getStatusFor(unsigned Index) { return ParamData[Index]; }
|
|
const ParameterStatus &getStatusFor(unsigned Index) const {
|
|
return ParamData[Index];
|
|
}
|
|
/// \}
|
|
|
|
/// Return true if parameter with the given index can be called.
|
|
bool seenAnyCalls(unsigned Index) const {
|
|
return getStatusFor(Index).seenAnyCalls();
|
|
}
|
|
/// Return a reference that we consider a call.
|
|
///
|
|
/// Should only be used for parameters that can be called.
|
|
const Expr &getCallFor(unsigned Index) const {
|
|
return getStatusFor(Index).getCall();
|
|
}
|
|
/// Return status kind of parameter with the given index.
|
|
ParameterStatus::Kind getKindFor(unsigned Index) const {
|
|
return getStatusFor(Index).getKind();
|
|
}
|
|
|
|
bool isVisited() const {
|
|
return llvm::all_of(ParamData, [](const ParameterStatus &S) {
|
|
return S.getKind() != ParameterStatus::NotVisited;
|
|
});
|
|
}
|
|
|
|
// Join other state into the current state.
|
|
void join(const State &Other) {
|
|
assert(ParamData.size() == Other.ParamData.size() &&
|
|
"Couldn't join statuses with different sizes");
|
|
for (auto Pair : llvm::zip(ParamData, Other.ParamData)) {
|
|
std::get<0>(Pair).join(std::get<1>(Pair));
|
|
}
|
|
}
|
|
|
|
using iterator = ParamSizedVector<ParameterStatus>::iterator;
|
|
using const_iterator = ParamSizedVector<ParameterStatus>::const_iterator;
|
|
|
|
iterator begin() { return ParamData.begin(); }
|
|
iterator end() { return ParamData.end(); }
|
|
|
|
const_iterator begin() const { return ParamData.begin(); }
|
|
const_iterator end() const { return ParamData.end(); }
|
|
|
|
bool operator==(const State &Other) const {
|
|
return ParamData == Other.ParamData;
|
|
}
|
|
|
|
private:
|
|
ParamSizedVector<ParameterStatus> ParamData;
|
|
};
|
|
|
|
/// A simple class that finds DeclRefExpr in the given expression.
|
|
///
|
|
/// However, we don't want to find ANY nested DeclRefExpr skipping whatever
|
|
/// expressions on our way. Only certain expressions considered "no-op"
|
|
/// for our task are indeed skipped.
|
|
class DeclRefFinder
|
|
: public ConstStmtVisitor<DeclRefFinder, const DeclRefExpr *> {
|
|
public:
|
|
/// Find a DeclRefExpr in the given expression.
|
|
///
|
|
/// In its most basic form (ShouldRetrieveFromComparisons == false),
|
|
/// this function can be simply reduced to the following question:
|
|
///
|
|
/// - If expression E is used as a function argument, could we say
|
|
/// that DeclRefExpr nested in E is used as an argument?
|
|
///
|
|
/// According to this rule, we can say that parens, casts and dereferencing
|
|
/// (dereferencing only applied to function pointers, but this is our case)
|
|
/// can be skipped.
|
|
///
|
|
/// When we should look into comparisons the question changes to:
|
|
///
|
|
/// - If expression E is used as a condition, could we say that
|
|
/// DeclRefExpr is being checked?
|
|
///
|
|
/// And even though, these are two different questions, they have quite a lot
|
|
/// in common. Actually, we can say that whatever expression answers
|
|
/// positively the first question also fits the second question as well.
|
|
///
|
|
/// In addition, we skip binary operators == and !=, and unary opeartor !.
|
|
static const DeclRefExpr *find(const Expr *E,
|
|
bool ShouldRetrieveFromComparisons = false) {
|
|
return DeclRefFinder(ShouldRetrieveFromComparisons).Visit(E);
|
|
}
|
|
|
|
const DeclRefExpr *VisitDeclRefExpr(const DeclRefExpr *DR) { return DR; }
|
|
|
|
const DeclRefExpr *VisitUnaryOperator(const UnaryOperator *UO) {
|
|
switch (UO->getOpcode()) {
|
|
case UO_LNot:
|
|
// We care about logical not only if we care about comparisons.
|
|
if (!ShouldRetrieveFromComparisons)
|
|
return nullptr;
|
|
LLVM_FALLTHROUGH;
|
|
// Function pointer/references can be dereferenced before a call.
|
|
// That doesn't make it, however, any different from a regular call.
|
|
// For this reason, dereference operation is a "no-op".
|
|
case UO_Deref:
|
|
return Visit(UO->getSubExpr());
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
const DeclRefExpr *VisitBinaryOperator(const BinaryOperator *BO) {
|
|
if (!ShouldRetrieveFromComparisons)
|
|
return nullptr;
|
|
|
|
switch (BO->getOpcode()) {
|
|
case BO_EQ:
|
|
case BO_NE: {
|
|
const DeclRefExpr *LHS = Visit(BO->getLHS());
|
|
return LHS ? LHS : Visit(BO->getRHS());
|
|
}
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
const DeclRefExpr *VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
|
|
return Visit(OVE->getSourceExpr());
|
|
}
|
|
|
|
const DeclRefExpr *VisitCallExpr(const CallExpr *CE) {
|
|
if (!ShouldRetrieveFromComparisons)
|
|
return nullptr;
|
|
|
|
// We want to see through some of the boolean builtin functions
|
|
// that we are likely to see in conditions.
|
|
switch (CE->getBuiltinCallee()) {
|
|
case Builtin::BI__builtin_expect:
|
|
case Builtin::BI__builtin_expect_with_probability: {
|
|
assert(CE->getNumArgs() >= 2);
|
|
|
|
const DeclRefExpr *Candidate = Visit(CE->getArg(0));
|
|
return Candidate != nullptr ? Candidate : Visit(CE->getArg(1));
|
|
}
|
|
|
|
case Builtin::BI__builtin_unpredictable:
|
|
return Visit(CE->getArg(0));
|
|
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
const DeclRefExpr *VisitExpr(const Expr *E) {
|
|
// It is a fallback method that gets called whenever the actual type
|
|
// of the given expression is not covered.
|
|
//
|
|
// We first check if we have anything to skip. And then repeat the whole
|
|
// procedure for a nested expression instead.
|
|
const Expr *DeclutteredExpr = E->IgnoreParenCasts();
|
|
return E != DeclutteredExpr ? Visit(DeclutteredExpr) : nullptr;
|
|
}
|
|
|
|
private:
|
|
DeclRefFinder(bool ShouldRetrieveFromComparisons)
|
|
: ShouldRetrieveFromComparisons(ShouldRetrieveFromComparisons) {}
|
|
|
|
bool ShouldRetrieveFromComparisons;
|
|
};
|
|
|
|
const DeclRefExpr *findDeclRefExpr(const Expr *In,
|
|
bool ShouldRetrieveFromComparisons = false) {
|
|
return DeclRefFinder::find(In, ShouldRetrieveFromComparisons);
|
|
}
|
|
|
|
const ParmVarDecl *
|
|
findReferencedParmVarDecl(const Expr *In,
|
|
bool ShouldRetrieveFromComparisons = false) {
|
|
if (const DeclRefExpr *DR =
|
|
findDeclRefExpr(In, ShouldRetrieveFromComparisons)) {
|
|
return dyn_cast<ParmVarDecl>(DR->getDecl());
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return conditions expression of a statement if it has one.
|
|
const Expr *getCondition(const Stmt *S) {
|
|
if (!S) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (const auto *If = dyn_cast<IfStmt>(S)) {
|
|
return If->getCond();
|
|
}
|
|
if (const auto *Ternary = dyn_cast<AbstractConditionalOperator>(S)) {
|
|
return Ternary->getCond();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// A small helper class that collects all named identifiers in the given
|
|
/// expression. It traverses it recursively, so names from deeper levels
|
|
/// of the AST will end up in the results.
|
|
/// Results might have duplicate names, if this is a problem, convert to
|
|
/// string sets afterwards.
|
|
class NamesCollector : public RecursiveASTVisitor<NamesCollector> {
|
|
public:
|
|
static constexpr unsigned EXPECTED_NUMBER_OF_NAMES = 5;
|
|
using NameCollection =
|
|
llvm::SmallVector<llvm::StringRef, EXPECTED_NUMBER_OF_NAMES>;
|
|
|
|
static NameCollection collect(const Expr *From) {
|
|
NamesCollector Impl;
|
|
Impl.TraverseStmt(const_cast<Expr *>(From));
|
|
return Impl.Result;
|
|
}
|
|
|
|
bool VisitDeclRefExpr(const DeclRefExpr *E) {
|
|
Result.push_back(E->getDecl()->getName());
|
|
return true;
|
|
}
|
|
|
|
bool VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
|
|
llvm::StringRef Name;
|
|
|
|
if (E->isImplicitProperty()) {
|
|
ObjCMethodDecl *PropertyMethodDecl = nullptr;
|
|
if (E->isMessagingGetter()) {
|
|
PropertyMethodDecl = E->getImplicitPropertyGetter();
|
|
} else {
|
|
PropertyMethodDecl = E->getImplicitPropertySetter();
|
|
}
|
|
assert(PropertyMethodDecl &&
|
|
"Implicit property must have associated declaration");
|
|
Name = PropertyMethodDecl->getSelector().getNameForSlot(0);
|
|
} else {
|
|
assert(E->isExplicitProperty());
|
|
Name = E->getExplicitProperty()->getName();
|
|
}
|
|
|
|
Result.push_back(Name);
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
NamesCollector() = default;
|
|
NameCollection Result;
|
|
};
|
|
|
|
/// Check whether the given expression mentions any of conventional names.
|
|
bool mentionsAnyOfConventionalNames(const Expr *E) {
|
|
NamesCollector::NameCollection MentionedNames = NamesCollector::collect(E);
|
|
|
|
return llvm::any_of(MentionedNames, [](llvm::StringRef ConditionName) {
|
|
return llvm::any_of(
|
|
CONVENTIONAL_CONDITIONS,
|
|
[ConditionName](const llvm::StringLiteral &Conventional) {
|
|
return ConditionName.contains_lower(Conventional);
|
|
});
|
|
});
|
|
}
|
|
|
|
/// Clarification is a simple pair of a reason why parameter is not called
|
|
/// on every path and a statement to blame.
|
|
struct Clarification {
|
|
NeverCalledReason Reason;
|
|
const Stmt *Location;
|
|
};
|
|
|
|
/// A helper class that can produce a clarification based on the given pair
|
|
/// of basic blocks.
|
|
class NotCalledClarifier
|
|
: public ConstStmtVisitor<NotCalledClarifier,
|
|
llvm::Optional<Clarification>> {
|
|
public:
|
|
/// The main entrypoint for the class, the function that tries to find the
|
|
/// clarification of how to explain which sub-path starts with a CFG edge
|
|
/// from Conditional to SuccWithoutCall.
|
|
///
|
|
/// This means that this function has one precondition:
|
|
/// SuccWithoutCall should be a successor block for Conditional.
|
|
///
|
|
/// Because clarification is not needed for non-trivial pairs of blocks
|
|
/// (i.e. SuccWithoutCall is not the only successor), it returns meaningful
|
|
/// results only for such cases. For this very reason, the parent basic
|
|
/// block, Conditional, is named that way, so it is clear what kind of
|
|
/// block is expected.
|
|
static llvm::Optional<Clarification>
|
|
clarify(const CFGBlock *Conditional, const CFGBlock *SuccWithoutCall) {
|
|
if (const Stmt *Terminator = Conditional->getTerminatorStmt()) {
|
|
return NotCalledClarifier{Conditional, SuccWithoutCall}.Visit(Terminator);
|
|
}
|
|
return llvm::None;
|
|
}
|
|
|
|
llvm::Optional<Clarification> VisitIfStmt(const IfStmt *If) {
|
|
return VisitBranchingBlock(If, NeverCalledReason::IfThen);
|
|
}
|
|
|
|
llvm::Optional<Clarification>
|
|
VisitAbstractConditionalOperator(const AbstractConditionalOperator *Ternary) {
|
|
return VisitBranchingBlock(Ternary, NeverCalledReason::IfThen);
|
|
}
|
|
|
|
llvm::Optional<Clarification> VisitSwitchStmt(const SwitchStmt *Switch) {
|
|
const Stmt *CaseToBlame = SuccInQuestion->getLabel();
|
|
if (!CaseToBlame) {
|
|
// If interesting basic block is not labeled, it means that this
|
|
// basic block does not represent any of the cases.
|
|
return Clarification{NeverCalledReason::SwitchSkipped, Switch};
|
|
}
|
|
|
|
for (const SwitchCase *Case = Switch->getSwitchCaseList(); Case;
|
|
Case = Case->getNextSwitchCase()) {
|
|
if (Case == CaseToBlame) {
|
|
return Clarification{NeverCalledReason::Switch, Case};
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Found unexpected switch structure");
|
|
}
|
|
|
|
llvm::Optional<Clarification> VisitForStmt(const ForStmt *For) {
|
|
return VisitBranchingBlock(For, NeverCalledReason::LoopEntered);
|
|
}
|
|
|
|
llvm::Optional<Clarification> VisitWhileStmt(const WhileStmt *While) {
|
|
return VisitBranchingBlock(While, NeverCalledReason::LoopEntered);
|
|
}
|
|
|
|
llvm::Optional<Clarification>
|
|
VisitBranchingBlock(const Stmt *Terminator, NeverCalledReason DefaultReason) {
|
|
assert(Parent->succ_size() == 2 &&
|
|
"Branching block should have exactly two successors");
|
|
unsigned SuccessorIndex = getSuccessorIndex(Parent, SuccInQuestion);
|
|
NeverCalledReason ActualReason =
|
|
updateForSuccessor(DefaultReason, SuccessorIndex);
|
|
return Clarification{ActualReason, Terminator};
|
|
}
|
|
|
|
llvm::Optional<Clarification> VisitBinaryOperator(const BinaryOperator *) {
|
|
// We don't want to report on short-curcuit logical operations.
|
|
return llvm::None;
|
|
}
|
|
|
|
llvm::Optional<Clarification> VisitStmt(const Stmt *Terminator) {
|
|
// If we got here, we didn't have a visit function for more derived
|
|
// classes of statement that this terminator actually belongs to.
|
|
//
|
|
// This is not a good scenario and should not happen in practice, but
|
|
// at least we'll warn the user.
|
|
return Clarification{NeverCalledReason::FallbackReason, Terminator};
|
|
}
|
|
|
|
static unsigned getSuccessorIndex(const CFGBlock *Parent,
|
|
const CFGBlock *Child) {
|
|
CFGBlock::const_succ_iterator It = llvm::find(Parent->succs(), Child);
|
|
assert(It != Parent->succ_end() &&
|
|
"Given blocks should be in parent-child relationship");
|
|
return It - Parent->succ_begin();
|
|
}
|
|
|
|
static NeverCalledReason
|
|
updateForSuccessor(NeverCalledReason ReasonForTrueBranch,
|
|
unsigned SuccessorIndex) {
|
|
assert(SuccessorIndex <= 1);
|
|
unsigned RawReason =
|
|
static_cast<unsigned>(ReasonForTrueBranch) + SuccessorIndex;
|
|
assert(RawReason <=
|
|
static_cast<unsigned>(NeverCalledReason::LARGEST_VALUE));
|
|
return static_cast<NeverCalledReason>(RawReason);
|
|
}
|
|
|
|
private:
|
|
NotCalledClarifier(const CFGBlock *Parent, const CFGBlock *SuccInQuestion)
|
|
: Parent(Parent), SuccInQuestion(SuccInQuestion) {}
|
|
|
|
const CFGBlock *Parent, *SuccInQuestion;
|
|
};
|
|
|
|
class CalledOnceChecker : public ConstStmtVisitor<CalledOnceChecker> {
|
|
public:
|
|
static void check(AnalysisDeclContext &AC, CalledOnceCheckHandler &Handler,
|
|
bool CheckConventionalParameters) {
|
|
CalledOnceChecker(AC, Handler, CheckConventionalParameters).check();
|
|
}
|
|
|
|
private:
|
|
CalledOnceChecker(AnalysisDeclContext &AC, CalledOnceCheckHandler &Handler,
|
|
bool CheckConventionalParameters)
|
|
: FunctionCFG(*AC.getCFG()), AC(AC), Handler(Handler),
|
|
CheckConventionalParameters(CheckConventionalParameters),
|
|
CurrentState(0) {
|
|
initDataStructures();
|
|
assert((size() == 0 || !States.empty()) &&
|
|
"Data structures are inconsistent");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Initializing functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void initDataStructures() {
|
|
const Decl *AnalyzedDecl = AC.getDecl();
|
|
|
|
if (const auto *Function = dyn_cast<FunctionDecl>(AnalyzedDecl)) {
|
|
findParamsToTrack(Function);
|
|
} else if (const auto *Method = dyn_cast<ObjCMethodDecl>(AnalyzedDecl)) {
|
|
findParamsToTrack(Method);
|
|
} else if (const auto *Block = dyn_cast<BlockDecl>(AnalyzedDecl)) {
|
|
findCapturesToTrack(Block);
|
|
findParamsToTrack(Block);
|
|
}
|
|
|
|
// Have something to track, let's init states for every block from the CFG.
|
|
if (size() != 0) {
|
|
States =
|
|
CFGSizedVector<State>(FunctionCFG.getNumBlockIDs(), State(size()));
|
|
}
|
|
}
|
|
|
|
void findCapturesToTrack(const BlockDecl *Block) {
|
|
for (const auto &Capture : Block->captures()) {
|
|
if (const auto *P = dyn_cast<ParmVarDecl>(Capture.getVariable())) {
|
|
// Parameter DeclContext is its owning function or method.
|
|
const DeclContext *ParamContext = P->getDeclContext();
|
|
if (shouldBeCalledOnce(ParamContext, P)) {
|
|
TrackedParams.push_back(P);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class FunctionLikeDecl>
|
|
void findParamsToTrack(const FunctionLikeDecl *Function) {
|
|
for (unsigned Index : llvm::seq<unsigned>(0u, Function->param_size())) {
|
|
if (shouldBeCalledOnce(Function, Index)) {
|
|
TrackedParams.push_back(Function->getParamDecl(Index));
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Main logic 'check' functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void check() {
|
|
// Nothing to check here: we don't have marked parameters.
|
|
if (size() == 0 || isPossiblyEmptyImpl())
|
|
return;
|
|
|
|
assert(
|
|
llvm::none_of(States, [](const State &S) { return S.isVisited(); }) &&
|
|
"None of the blocks should be 'visited' before the analysis");
|
|
|
|
// For our task, both backward and forward approaches suite well.
|
|
// However, in order to report better diagnostics, we decided to go with
|
|
// backward analysis.
|
|
//
|
|
// Let's consider the following CFG and how forward and backward analyses
|
|
// will work for it.
|
|
//
|
|
// FORWARD: | BACKWARD:
|
|
// #1 | #1
|
|
// +---------+ | +-----------+
|
|
// | if | | |MaybeCalled|
|
|
// +---------+ | +-----------+
|
|
// |NotCalled| | | if |
|
|
// +---------+ | +-----------+
|
|
// / \ | / \
|
|
// #2 / \ #3 | #2 / \ #3
|
|
// +----------------+ +---------+ | +----------------+ +---------+
|
|
// | foo() | | ... | | |DefinitelyCalled| |NotCalled|
|
|
// +----------------+ +---------+ | +----------------+ +---------+
|
|
// |DefinitelyCalled| |NotCalled| | | foo() | | ... |
|
|
// +----------------+ +---------+ | +----------------+ +---------+
|
|
// \ / | \ /
|
|
// \ #4 / | \ #4 /
|
|
// +-----------+ | +---------+
|
|
// | ... | | |NotCalled|
|
|
// +-----------+ | +---------+
|
|
// |MaybeCalled| | | ... |
|
|
// +-----------+ | +---------+
|
|
//
|
|
// The most natural way to report lacking call in the block #3 would be to
|
|
// message that the false branch of the if statement in the block #1 doesn't
|
|
// have a call. And while with the forward approach we'll need to find a
|
|
// least common ancestor or something like that to find the 'if' to blame,
|
|
// backward analysis gives it to us out of the box.
|
|
BackwardDataflowWorklist Worklist(FunctionCFG, AC);
|
|
|
|
// Let's visit EXIT.
|
|
const CFGBlock *Exit = &FunctionCFG.getExit();
|
|
assignState(Exit, State(size(), ParameterStatus::NotCalled));
|
|
Worklist.enqueuePredecessors(Exit);
|
|
|
|
while (const CFGBlock *BB = Worklist.dequeue()) {
|
|
assert(BB && "Worklist should filter out null blocks");
|
|
check(BB);
|
|
assert(CurrentState.isVisited() &&
|
|
"After the check, basic block should be visited");
|
|
|
|
// Traverse successor basic blocks if the status of this block
|
|
// has changed.
|
|
if (assignState(BB, CurrentState)) {
|
|
Worklist.enqueuePredecessors(BB);
|
|
}
|
|
}
|
|
|
|
// Check that we have all tracked parameters at the last block.
|
|
// As we are performing a backward version of the analysis,
|
|
// it should be the ENTRY block.
|
|
checkEntry(&FunctionCFG.getEntry());
|
|
}
|
|
|
|
void check(const CFGBlock *BB) {
|
|
// We start with a state 'inherited' from all the successors.
|
|
CurrentState = joinSuccessors(BB);
|
|
assert(CurrentState.isVisited() &&
|
|
"Shouldn't start with a 'not visited' state");
|
|
|
|
// This is the 'exit' situation, broken promises are probably OK
|
|
// in such scenarios.
|
|
if (BB->hasNoReturnElement()) {
|
|
markNoReturn();
|
|
// This block still can have calls (even multiple calls) and
|
|
// for this reason there is no early return here.
|
|
}
|
|
|
|
// We use a backward dataflow propagation and for this reason we
|
|
// should traverse basic blocks bottom-up.
|
|
for (const CFGElement &Element : llvm::reverse(*BB)) {
|
|
if (Optional<CFGStmt> S = Element.getAs<CFGStmt>()) {
|
|
check(S->getStmt());
|
|
}
|
|
}
|
|
}
|
|
void check(const Stmt *S) { Visit(S); }
|
|
|
|
void checkEntry(const CFGBlock *Entry) {
|
|
// We finalize this algorithm with the ENTRY block because
|
|
// we use a backward version of the analysis. This is where
|
|
// we can judge that some of the tracked parameters are not called on
|
|
// every path from ENTRY to EXIT.
|
|
|
|
const State &EntryStatus = getState(Entry);
|
|
llvm::BitVector NotCalledOnEveryPath(size(), false);
|
|
llvm::BitVector NotUsedOnEveryPath(size(), false);
|
|
|
|
// Check if there are no calls of the marked parameter at all
|
|
for (const auto &IndexedStatus : llvm::enumerate(EntryStatus)) {
|
|
const ParmVarDecl *Parameter = getParameter(IndexedStatus.index());
|
|
|
|
switch (IndexedStatus.value().getKind()) {
|
|
case ParameterStatus::NotCalled:
|
|
// If there were places where this parameter escapes (aka being used),
|
|
// we can provide a more useful diagnostic by pointing at the exact
|
|
// branches where it is not even mentioned.
|
|
if (!hasEverEscaped(IndexedStatus.index())) {
|
|
// This parameter is was not used at all, so we should report the
|
|
// most generic version of the warning.
|
|
if (isCaptured(Parameter)) {
|
|
// We want to specify that it was captured by the block.
|
|
Handler.handleCapturedNeverCalled(Parameter, AC.getDecl(),
|
|
!isExplicitlyMarked(Parameter));
|
|
} else {
|
|
Handler.handleNeverCalled(Parameter,
|
|
!isExplicitlyMarked(Parameter));
|
|
}
|
|
} else {
|
|
// Mark it as 'interesting' to figure out which paths don't even
|
|
// have escapes.
|
|
NotUsedOnEveryPath[IndexedStatus.index()] = true;
|
|
}
|
|
|
|
break;
|
|
case ParameterStatus::MaybeCalled:
|
|
// If we have 'maybe called' at this point, we have an error
|
|
// that there is at least one path where this parameter
|
|
// is not called.
|
|
//
|
|
// However, reporting the warning with only that information can be
|
|
// too vague for the users. For this reason, we mark such parameters
|
|
// as "interesting" for further analysis.
|
|
NotCalledOnEveryPath[IndexedStatus.index()] = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Early exit if we don't have parameters for extra analysis.
|
|
if (NotCalledOnEveryPath.none() && NotUsedOnEveryPath.none())
|
|
return;
|
|
|
|
// We are looking for a pair of blocks A, B so that the following is true:
|
|
// * A is a predecessor of B
|
|
// * B is marked as NotCalled
|
|
// * A has at least one successor marked as either
|
|
// Escaped or DefinitelyCalled
|
|
//
|
|
// In that situation, it is guaranteed that B is the first block of the path
|
|
// where the user doesn't call or use parameter in question.
|
|
//
|
|
// For this reason, branch A -> B can be used for reporting.
|
|
//
|
|
// This part of the algorithm is guarded by a condition that the function
|
|
// does indeed have a violation of contract. For this reason, we can
|
|
// spend more time to find a good spot to place the warning.
|
|
//
|
|
// The following algorithm has the worst case complexity of O(V + E),
|
|
// where V is the number of basic blocks in FunctionCFG,
|
|
// E is the number of edges between blocks in FunctionCFG.
|
|
for (const CFGBlock *BB : FunctionCFG) {
|
|
if (!BB)
|
|
continue;
|
|
|
|
const State &BlockState = getState(BB);
|
|
|
|
for (unsigned Index : llvm::seq(0u, size())) {
|
|
// We don't want to use 'isLosingCall' here because we want to report
|
|
// the following situation as well:
|
|
//
|
|
// MaybeCalled
|
|
// | ... |
|
|
// MaybeCalled NotCalled
|
|
//
|
|
// Even though successor is not 'DefinitelyCalled', it is still useful
|
|
// to report it, it is still a path without a call.
|
|
if (NotCalledOnEveryPath[Index] &&
|
|
BlockState.getKindFor(Index) == ParameterStatus::MaybeCalled) {
|
|
|
|
findAndReportNotCalledBranches(BB, Index);
|
|
} else if (NotUsedOnEveryPath[Index] &&
|
|
isLosingEscape(BlockState, BB, Index)) {
|
|
|
|
findAndReportNotCalledBranches(BB, Index, /* IsEscape = */ true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Check potential call of a tracked parameter.
|
|
void checkDirectCall(const CallExpr *Call) {
|
|
if (auto Index = getIndexOfCallee(Call)) {
|
|
processCallFor(*Index, Call);
|
|
}
|
|
}
|
|
|
|
/// Check the call expression for being an indirect call of one of the tracked
|
|
/// parameters. It is indirect in the sense that this particular call is not
|
|
/// calling the parameter itself, but rather uses it as the argument.
|
|
template <class CallLikeExpr>
|
|
void checkIndirectCall(const CallLikeExpr *CallOrMessage) {
|
|
// CallExpr::arguments does not interact nicely with llvm::enumerate.
|
|
llvm::ArrayRef<const Expr *> Arguments = llvm::makeArrayRef(
|
|
CallOrMessage->getArgs(), CallOrMessage->getNumArgs());
|
|
|
|
// Let's check if any of the call arguments is a point of interest.
|
|
for (const auto &Argument : llvm::enumerate(Arguments)) {
|
|
if (auto Index = getIndexOfExpression(Argument.value())) {
|
|
if (shouldBeCalledOnce(CallOrMessage, Argument.index())) {
|
|
// If the corresponding parameter is marked as 'called_once' we should
|
|
// consider it as a call.
|
|
processCallFor(*Index, CallOrMessage);
|
|
} else {
|
|
// Otherwise, we mark this parameter as escaped, which can be
|
|
// interpreted both as called or not called depending on the context.
|
|
processEscapeFor(*Index);
|
|
}
|
|
// Otherwise, let's keep the state as it is.
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Process call of the parameter with the given index
|
|
void processCallFor(unsigned Index, const Expr *Call) {
|
|
ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(Index);
|
|
|
|
if (CurrentParamStatus.seenAnyCalls()) {
|
|
|
|
// At this point, this parameter was called, so this is a second call.
|
|
const ParmVarDecl *Parameter = getParameter(Index);
|
|
Handler.handleDoubleCall(
|
|
Parameter, &CurrentState.getCallFor(Index), Call,
|
|
!isExplicitlyMarked(Parameter),
|
|
// We are sure that the second call is definitely
|
|
// going to happen if the status is 'DefinitelyCalled'.
|
|
CurrentParamStatus.getKind() == ParameterStatus::DefinitelyCalled);
|
|
|
|
// Mark this parameter as already reported on, so we don't repeat
|
|
// warnings.
|
|
CurrentParamStatus = ParameterStatus::Reported;
|
|
|
|
} else if (CurrentParamStatus.getKind() != ParameterStatus::Reported) {
|
|
// If we didn't report anything yet, let's mark this parameter
|
|
// as called.
|
|
ParameterStatus Called(ParameterStatus::DefinitelyCalled, Call);
|
|
CurrentParamStatus = Called;
|
|
}
|
|
}
|
|
|
|
/// Process escape of the parameter with the given index
|
|
void processEscapeFor(unsigned Index) {
|
|
ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(Index);
|
|
|
|
// Escape overrides whatever error we think happened.
|
|
if (CurrentParamStatus.isErrorStatus()) {
|
|
CurrentParamStatus = ParameterStatus::Escaped;
|
|
}
|
|
}
|
|
|
|
void findAndReportNotCalledBranches(const CFGBlock *Parent, unsigned Index,
|
|
bool IsEscape = false) {
|
|
for (const CFGBlock *Succ : Parent->succs()) {
|
|
if (!Succ)
|
|
continue;
|
|
|
|
if (getState(Succ).getKindFor(Index) == ParameterStatus::NotCalled) {
|
|
assert(Parent->succ_size() >= 2 &&
|
|
"Block should have at least two successors at this point");
|
|
if (auto Clarification = NotCalledClarifier::clarify(Parent, Succ)) {
|
|
const ParmVarDecl *Parameter = getParameter(Index);
|
|
Handler.handleNeverCalled(
|
|
Parameter, AC.getDecl(), Clarification->Location,
|
|
Clarification->Reason, !IsEscape, !isExplicitlyMarked(Parameter));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Predicate functions to check parameters
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return true if parameter is explicitly marked as 'called_once'.
|
|
static bool isExplicitlyMarked(const ParmVarDecl *Parameter) {
|
|
return Parameter->hasAttr<CalledOnceAttr>();
|
|
}
|
|
|
|
/// Return true if the given name matches conventional pattens.
|
|
static bool isConventional(llvm::StringRef Name) {
|
|
return llvm::count(CONVENTIONAL_NAMES, Name) != 0;
|
|
}
|
|
|
|
/// Return true if the given name has conventional suffixes.
|
|
static bool hasConventionalSuffix(llvm::StringRef Name) {
|
|
return llvm::any_of(CONVENTIONAL_SUFFIXES, [Name](llvm::StringRef Suffix) {
|
|
return Name.endswith(Suffix);
|
|
});
|
|
}
|
|
|
|
/// Return true if the given type can be used for conventional parameters.
|
|
static bool isConventional(QualType Ty) {
|
|
if (!Ty->isBlockPointerType()) {
|
|
return false;
|
|
}
|
|
|
|
QualType BlockType = Ty->getAs<BlockPointerType>()->getPointeeType();
|
|
// Completion handlers should have a block type with void return type.
|
|
return BlockType->getAs<FunctionType>()->getReturnType()->isVoidType();
|
|
}
|
|
|
|
/// Return true if the only parameter of the function is conventional.
|
|
static bool isOnlyParameterConventional(const FunctionDecl *Function) {
|
|
IdentifierInfo *II = Function->getIdentifier();
|
|
return Function->getNumParams() == 1 && II &&
|
|
hasConventionalSuffix(II->getName());
|
|
}
|
|
|
|
/// Return true/false if 'swift_async' attribute states that the given
|
|
/// parameter is conventionally called once.
|
|
/// Return llvm::None if the given declaration doesn't have 'swift_async'
|
|
/// attribute.
|
|
static llvm::Optional<bool> isConventionalSwiftAsync(const Decl *D,
|
|
unsigned ParamIndex) {
|
|
if (const SwiftAsyncAttr *A = D->getAttr<SwiftAsyncAttr>()) {
|
|
if (A->getKind() == SwiftAsyncAttr::None) {
|
|
return false;
|
|
}
|
|
|
|
return A->getCompletionHandlerIndex().getASTIndex() == ParamIndex;
|
|
}
|
|
return llvm::None;
|
|
}
|
|
|
|
/// Return true if the specified selector piece matches conventions.
|
|
static bool isConventionalSelectorPiece(Selector MethodSelector,
|
|
unsigned PieceIndex,
|
|
QualType PieceType) {
|
|
if (!isConventional(PieceType)) {
|
|
return false;
|
|
}
|
|
|
|
if (MethodSelector.getNumArgs() == 1) {
|
|
assert(PieceIndex == 0);
|
|
return hasConventionalSuffix(MethodSelector.getNameForSlot(0));
|
|
}
|
|
|
|
llvm::StringRef PieceName = MethodSelector.getNameForSlot(PieceIndex);
|
|
return isConventional(PieceName) || hasConventionalSuffix(PieceName);
|
|
}
|
|
|
|
bool shouldBeCalledOnce(const ParmVarDecl *Parameter) const {
|
|
return isExplicitlyMarked(Parameter) ||
|
|
(CheckConventionalParameters &&
|
|
(isConventional(Parameter->getName()) ||
|
|
hasConventionalSuffix(Parameter->getName())) &&
|
|
isConventional(Parameter->getType()));
|
|
}
|
|
|
|
bool shouldBeCalledOnce(const DeclContext *ParamContext,
|
|
const ParmVarDecl *Param) {
|
|
unsigned ParamIndex = Param->getFunctionScopeIndex();
|
|
if (const auto *Function = dyn_cast<FunctionDecl>(ParamContext)) {
|
|
return shouldBeCalledOnce(Function, ParamIndex);
|
|
}
|
|
if (const auto *Method = dyn_cast<ObjCMethodDecl>(ParamContext)) {
|
|
return shouldBeCalledOnce(Method, ParamIndex);
|
|
}
|
|
return shouldBeCalledOnce(Param);
|
|
}
|
|
|
|
bool shouldBeCalledOnce(const BlockDecl *Block, unsigned ParamIndex) const {
|
|
return shouldBeCalledOnce(Block->getParamDecl(ParamIndex));
|
|
}
|
|
|
|
bool shouldBeCalledOnce(const FunctionDecl *Function,
|
|
unsigned ParamIndex) const {
|
|
if (ParamIndex >= Function->getNumParams()) {
|
|
return false;
|
|
}
|
|
// 'swift_async' goes first and overrides anything else.
|
|
if (auto ConventionalAsync =
|
|
isConventionalSwiftAsync(Function, ParamIndex)) {
|
|
return ConventionalAsync.getValue();
|
|
}
|
|
|
|
return shouldBeCalledOnce(Function->getParamDecl(ParamIndex)) ||
|
|
(CheckConventionalParameters &&
|
|
isOnlyParameterConventional(Function));
|
|
}
|
|
|
|
bool shouldBeCalledOnce(const ObjCMethodDecl *Method,
|
|
unsigned ParamIndex) const {
|
|
Selector MethodSelector = Method->getSelector();
|
|
if (ParamIndex >= MethodSelector.getNumArgs()) {
|
|
return false;
|
|
}
|
|
|
|
// 'swift_async' goes first and overrides anything else.
|
|
if (auto ConventionalAsync = isConventionalSwiftAsync(Method, ParamIndex)) {
|
|
return ConventionalAsync.getValue();
|
|
}
|
|
|
|
const ParmVarDecl *Parameter = Method->getParamDecl(ParamIndex);
|
|
return shouldBeCalledOnce(Parameter) ||
|
|
(CheckConventionalParameters &&
|
|
isConventionalSelectorPiece(MethodSelector, ParamIndex,
|
|
Parameter->getType()));
|
|
}
|
|
|
|
bool shouldBeCalledOnce(const CallExpr *Call, unsigned ParamIndex) const {
|
|
const FunctionDecl *Function = Call->getDirectCallee();
|
|
return Function && shouldBeCalledOnce(Function, ParamIndex);
|
|
}
|
|
|
|
bool shouldBeCalledOnce(const ObjCMessageExpr *Message,
|
|
unsigned ParamIndex) const {
|
|
const ObjCMethodDecl *Method = Message->getMethodDecl();
|
|
return Method && ParamIndex < Method->param_size() &&
|
|
shouldBeCalledOnce(Method, ParamIndex);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool isCaptured(const ParmVarDecl *Parameter) const {
|
|
if (const BlockDecl *Block = dyn_cast<BlockDecl>(AC.getDecl())) {
|
|
return Block->capturesVariable(Parameter);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Return a call site where the block is called exactly once or null otherwise
|
|
const Expr *getBlockGuaraneedCallSite(const BlockExpr *Block) const {
|
|
ParentMap &PM = AC.getParentMap();
|
|
|
|
// We don't want to track the block through assignments and so on, instead
|
|
// we simply see how the block used and if it's used directly in a call,
|
|
// we decide based on call to what it is.
|
|
//
|
|
// In order to do this, we go up the parents of the block looking for
|
|
// a call or a message expressions. These might not be immediate parents
|
|
// of the actual block expression due to casts and parens, so we skip them.
|
|
for (const Stmt *Prev = Block, *Current = PM.getParent(Block);
|
|
Current != nullptr; Prev = Current, Current = PM.getParent(Current)) {
|
|
// Skip no-op (for our case) operations.
|
|
if (isa<CastExpr>(Current) || isa<ParenExpr>(Current))
|
|
continue;
|
|
|
|
// At this point, Prev represents our block as an immediate child of the
|
|
// call.
|
|
if (const auto *Call = dyn_cast<CallExpr>(Current)) {
|
|
// It might be the call of the Block itself...
|
|
if (Call->getCallee() == Prev)
|
|
return Call;
|
|
|
|
// ...or it can be an indirect call of the block.
|
|
return shouldBlockArgumentBeCalledOnce(Call, Prev) ? Call : nullptr;
|
|
}
|
|
if (const auto *Message = dyn_cast<ObjCMessageExpr>(Current)) {
|
|
return shouldBlockArgumentBeCalledOnce(Message, Prev) ? Message
|
|
: nullptr;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
template <class CallLikeExpr>
|
|
bool shouldBlockArgumentBeCalledOnce(const CallLikeExpr *CallOrMessage,
|
|
const Stmt *BlockArgument) const {
|
|
// CallExpr::arguments does not interact nicely with llvm::enumerate.
|
|
llvm::ArrayRef<const Expr *> Arguments = llvm::makeArrayRef(
|
|
CallOrMessage->getArgs(), CallOrMessage->getNumArgs());
|
|
|
|
for (const auto &Argument : llvm::enumerate(Arguments)) {
|
|
if (Argument.value() == BlockArgument) {
|
|
return shouldBlockArgumentBeCalledOnce(CallOrMessage, Argument.index());
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool shouldBlockArgumentBeCalledOnce(const CallExpr *Call,
|
|
unsigned ParamIndex) const {
|
|
const FunctionDecl *Function = Call->getDirectCallee();
|
|
return shouldBlockArgumentBeCalledOnce(Function, ParamIndex) ||
|
|
shouldBeCalledOnce(Call, ParamIndex);
|
|
}
|
|
|
|
bool shouldBlockArgumentBeCalledOnce(const ObjCMessageExpr *Message,
|
|
unsigned ParamIndex) const {
|
|
// At the moment, we don't have any Obj-C methods we want to specifically
|
|
// check in here.
|
|
return shouldBeCalledOnce(Message, ParamIndex);
|
|
}
|
|
|
|
static bool shouldBlockArgumentBeCalledOnce(const FunctionDecl *Function,
|
|
unsigned ParamIndex) {
|
|
// There is a list of important API functions that while not following
|
|
// conventions nor being directly annotated, still guarantee that the
|
|
// callback parameter will be called exactly once.
|
|
//
|
|
// Here we check if this is the case.
|
|
return Function &&
|
|
llvm::any_of(KNOWN_CALLED_ONCE_PARAMETERS,
|
|
[Function, ParamIndex](
|
|
const KnownCalledOnceParameter &Reference) {
|
|
return Reference.FunctionName ==
|
|
Function->getName() &&
|
|
Reference.ParamIndex == ParamIndex;
|
|
});
|
|
}
|
|
|
|
/// Return true if the analyzed function is actually a default implementation
|
|
/// of the method that has to be overriden.
|
|
///
|
|
/// These functions can have tracked parameters, but wouldn't call them
|
|
/// because they are not designed to perform any meaningful actions.
|
|
///
|
|
/// There are a couple of flavors of such default implementations:
|
|
/// 1. Empty methods or methods with a single return statement
|
|
/// 2. Methods that have one block with a call to no return function
|
|
/// 3. Methods with only assertion-like operations
|
|
bool isPossiblyEmptyImpl() const {
|
|
if (!isa<ObjCMethodDecl>(AC.getDecl())) {
|
|
// We care only about functions that are not supposed to be called.
|
|
// Only methods can be overriden.
|
|
return false;
|
|
}
|
|
|
|
// Case #1 (without return statements)
|
|
if (FunctionCFG.size() == 2) {
|
|
// Method has only two blocks: ENTRY and EXIT.
|
|
// This is equivalent to empty function.
|
|
return true;
|
|
}
|
|
|
|
// Case #2
|
|
if (FunctionCFG.size() == 3) {
|
|
const CFGBlock &Entry = FunctionCFG.getEntry();
|
|
if (Entry.succ_empty()) {
|
|
return false;
|
|
}
|
|
|
|
const CFGBlock *OnlyBlock = *Entry.succ_begin();
|
|
// Method has only one block, let's see if it has a no-return
|
|
// element.
|
|
if (OnlyBlock && OnlyBlock->hasNoReturnElement()) {
|
|
return true;
|
|
}
|
|
// Fallthrough, CFGs with only one block can fall into #1 and #3 as well.
|
|
}
|
|
|
|
// Cases #1 (return statements) and #3.
|
|
//
|
|
// It is hard to detect that something is an assertion or came
|
|
// from assertion. Here we use a simple heuristic:
|
|
//
|
|
// - If it came from a macro, it can be an assertion.
|
|
//
|
|
// Additionally, we can't assume a number of basic blocks or the CFG's
|
|
// structure because assertions might include loops and conditions.
|
|
return llvm::all_of(FunctionCFG, [](const CFGBlock *BB) {
|
|
if (!BB) {
|
|
// Unreachable blocks are totally fine.
|
|
return true;
|
|
}
|
|
|
|
// Return statements can have sub-expressions that are represented as
|
|
// separate statements of a basic block. We should allow this.
|
|
// This parent map will be initialized with a parent tree for all
|
|
// subexpressions of the block's return statement (if it has one).
|
|
std::unique_ptr<ParentMap> ReturnChildren;
|
|
|
|
return llvm::all_of(
|
|
llvm::reverse(*BB), // we should start with return statements, if we
|
|
// have any, i.e. from the bottom of the block
|
|
[&ReturnChildren](const CFGElement &Element) {
|
|
if (Optional<CFGStmt> S = Element.getAs<CFGStmt>()) {
|
|
const Stmt *SuspiciousStmt = S->getStmt();
|
|
|
|
if (isa<ReturnStmt>(SuspiciousStmt)) {
|
|
// Let's initialize this structure to test whether
|
|
// some further statement is a part of this return.
|
|
ReturnChildren = std::make_unique<ParentMap>(
|
|
const_cast<Stmt *>(SuspiciousStmt));
|
|
// Return statements are allowed as part of #1.
|
|
return true;
|
|
}
|
|
|
|
return SuspiciousStmt->getBeginLoc().isMacroID() ||
|
|
(ReturnChildren &&
|
|
ReturnChildren->hasParent(SuspiciousStmt));
|
|
}
|
|
return true;
|
|
});
|
|
});
|
|
}
|
|
|
|
/// Check if parameter with the given index has ever escaped.
|
|
bool hasEverEscaped(unsigned Index) const {
|
|
return llvm::any_of(States, [Index](const State &StateForOneBB) {
|
|
return StateForOneBB.getKindFor(Index) == ParameterStatus::Escaped;
|
|
});
|
|
}
|
|
|
|
/// Return status stored for the given basic block.
|
|
/// \{
|
|
State &getState(const CFGBlock *BB) {
|
|
assert(BB);
|
|
return States[BB->getBlockID()];
|
|
}
|
|
const State &getState(const CFGBlock *BB) const {
|
|
assert(BB);
|
|
return States[BB->getBlockID()];
|
|
}
|
|
/// \}
|
|
|
|
/// Assign status to the given basic block.
|
|
///
|
|
/// Returns true when the stored status changed.
|
|
bool assignState(const CFGBlock *BB, const State &ToAssign) {
|
|
State &Current = getState(BB);
|
|
if (Current == ToAssign) {
|
|
return false;
|
|
}
|
|
|
|
Current = ToAssign;
|
|
return true;
|
|
}
|
|
|
|
/// Join all incoming statuses for the given basic block.
|
|
State joinSuccessors(const CFGBlock *BB) const {
|
|
auto Succs =
|
|
llvm::make_filter_range(BB->succs(), [this](const CFGBlock *Succ) {
|
|
return Succ && this->getState(Succ).isVisited();
|
|
});
|
|
// We came to this block from somewhere after all.
|
|
assert(!Succs.empty() &&
|
|
"Basic block should have at least one visited successor");
|
|
|
|
State Result = getState(*Succs.begin());
|
|
|
|
for (const CFGBlock *Succ : llvm::drop_begin(Succs, 1)) {
|
|
Result.join(getState(Succ));
|
|
}
|
|
|
|
if (const Expr *Condition = getCondition(BB->getTerminatorStmt())) {
|
|
handleConditional(BB, Condition, Result);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
void handleConditional(const CFGBlock *BB, const Expr *Condition,
|
|
State &ToAlter) const {
|
|
handleParameterCheck(BB, Condition, ToAlter);
|
|
if (SuppressOnConventionalErrorPaths) {
|
|
handleConventionalCheck(BB, Condition, ToAlter);
|
|
}
|
|
}
|
|
|
|
void handleParameterCheck(const CFGBlock *BB, const Expr *Condition,
|
|
State &ToAlter) const {
|
|
// In this function, we try to deal with the following pattern:
|
|
//
|
|
// if (parameter)
|
|
// parameter(...);
|
|
//
|
|
// It's not good to show a warning here because clearly 'parameter'
|
|
// couldn't and shouldn't be called on the 'else' path.
|
|
//
|
|
// Let's check if this if statement has a check involving one of
|
|
// the tracked parameters.
|
|
if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(
|
|
Condition,
|
|
/* ShouldRetrieveFromComparisons = */ true)) {
|
|
if (const auto Index = getIndex(*Parameter)) {
|
|
ParameterStatus &CurrentStatus = ToAlter.getStatusFor(*Index);
|
|
|
|
// We don't want to deep dive into semantics of the check and
|
|
// figure out if that check was for null or something else.
|
|
// We simply trust the user that they know what they are doing.
|
|
//
|
|
// For this reason, in the following loop we look for the
|
|
// best-looking option.
|
|
for (const CFGBlock *Succ : BB->succs()) {
|
|
if (!Succ)
|
|
continue;
|
|
|
|
const ParameterStatus &StatusInSucc =
|
|
getState(Succ).getStatusFor(*Index);
|
|
|
|
if (StatusInSucc.isErrorStatus()) {
|
|
continue;
|
|
}
|
|
|
|
// Let's use this status instead.
|
|
CurrentStatus = StatusInSucc;
|
|
|
|
if (StatusInSucc.getKind() == ParameterStatus::DefinitelyCalled) {
|
|
// This is the best option to have and we already found it.
|
|
break;
|
|
}
|
|
|
|
// If we found 'Escaped' first, we still might find 'DefinitelyCalled'
|
|
// on the other branch. And we prefer the latter.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void handleConventionalCheck(const CFGBlock *BB, const Expr *Condition,
|
|
State &ToAlter) const {
|
|
// Even when the analysis is technically correct, it is a widespread pattern
|
|
// not to call completion handlers in some scenarios. These usually have
|
|
// typical conditional names, such as 'error' or 'cancel'.
|
|
if (!mentionsAnyOfConventionalNames(Condition)) {
|
|
return;
|
|
}
|
|
|
|
for (const auto &IndexedStatus : llvm::enumerate(ToAlter)) {
|
|
const ParmVarDecl *Parameter = getParameter(IndexedStatus.index());
|
|
// Conventions do not apply to explicitly marked parameters.
|
|
if (isExplicitlyMarked(Parameter)) {
|
|
continue;
|
|
}
|
|
|
|
ParameterStatus &CurrentStatus = IndexedStatus.value();
|
|
// If we did find that on one of the branches the user uses the callback
|
|
// and doesn't on the other path, we believe that they know what they are
|
|
// doing and trust them.
|
|
//
|
|
// There are two possible scenarios for that:
|
|
// 1. Current status is 'MaybeCalled' and one of the branches is
|
|
// 'DefinitelyCalled'
|
|
// 2. Current status is 'NotCalled' and one of the branches is 'Escaped'
|
|
if (isLosingCall(ToAlter, BB, IndexedStatus.index()) ||
|
|
isLosingEscape(ToAlter, BB, IndexedStatus.index())) {
|
|
CurrentStatus = ParameterStatus::Escaped;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool isLosingCall(const State &StateAfterJoin, const CFGBlock *JoinBlock,
|
|
unsigned ParameterIndex) const {
|
|
// Let's check if the block represents DefinitelyCalled -> MaybeCalled
|
|
// transition.
|
|
return isLosingJoin(StateAfterJoin, JoinBlock, ParameterIndex,
|
|
ParameterStatus::MaybeCalled,
|
|
ParameterStatus::DefinitelyCalled);
|
|
}
|
|
|
|
bool isLosingEscape(const State &StateAfterJoin, const CFGBlock *JoinBlock,
|
|
unsigned ParameterIndex) const {
|
|
// Let's check if the block represents Escaped -> NotCalled transition.
|
|
return isLosingJoin(StateAfterJoin, JoinBlock, ParameterIndex,
|
|
ParameterStatus::NotCalled, ParameterStatus::Escaped);
|
|
}
|
|
|
|
bool isLosingJoin(const State &StateAfterJoin, const CFGBlock *JoinBlock,
|
|
unsigned ParameterIndex, ParameterStatus::Kind AfterJoin,
|
|
ParameterStatus::Kind BeforeJoin) const {
|
|
assert(!ParameterStatus::isErrorStatus(BeforeJoin) &&
|
|
ParameterStatus::isErrorStatus(AfterJoin) &&
|
|
"It's not a losing join if statuses do not represent "
|
|
"correct-to-error transition");
|
|
|
|
const ParameterStatus &CurrentStatus =
|
|
StateAfterJoin.getStatusFor(ParameterIndex);
|
|
|
|
return CurrentStatus.getKind() == AfterJoin &&
|
|
anySuccessorHasStatus(JoinBlock, ParameterIndex, BeforeJoin);
|
|
}
|
|
|
|
/// Return true if any of the successors of the given basic block has
|
|
/// a specified status for the given parameter.
|
|
bool anySuccessorHasStatus(const CFGBlock *Parent, unsigned ParameterIndex,
|
|
ParameterStatus::Kind ToFind) const {
|
|
return llvm::any_of(
|
|
Parent->succs(), [this, ParameterIndex, ToFind](const CFGBlock *Succ) {
|
|
return Succ && getState(Succ).getKindFor(ParameterIndex) == ToFind;
|
|
});
|
|
}
|
|
|
|
/// Check given expression that was discovered to escape.
|
|
void checkEscapee(const Expr *E) {
|
|
if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(E)) {
|
|
checkEscapee(*Parameter);
|
|
}
|
|
}
|
|
|
|
/// Check given parameter that was discovered to escape.
|
|
void checkEscapee(const ParmVarDecl &Parameter) {
|
|
if (auto Index = getIndex(Parameter)) {
|
|
processEscapeFor(*Index);
|
|
}
|
|
}
|
|
|
|
/// Mark all parameters in the current state as 'no-return'.
|
|
void markNoReturn() {
|
|
for (ParameterStatus &PS : CurrentState) {
|
|
PS = ParameterStatus::NoReturn;
|
|
}
|
|
}
|
|
|
|
/// Check if the given assignment represents suppression and act on it.
|
|
void checkSuppression(const BinaryOperator *Assignment) {
|
|
// Suppression has the following form:
|
|
// parameter = 0;
|
|
// 0 can be of any form (NULL, nil, etc.)
|
|
if (auto Index = getIndexOfExpression(Assignment->getLHS())) {
|
|
|
|
// We don't care what is written in the RHS, it could be whatever
|
|
// we can interpret as 0.
|
|
if (auto Constant =
|
|
Assignment->getRHS()->IgnoreParenCasts()->getIntegerConstantExpr(
|
|
AC.getASTContext())) {
|
|
|
|
ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(*Index);
|
|
|
|
if (0 == *Constant && CurrentParamStatus.seenAnyCalls()) {
|
|
// Even though this suppression mechanism is introduced to tackle
|
|
// false positives for multiple calls, the fact that the user has
|
|
// to use suppression can also tell us that we couldn't figure out
|
|
// how different paths cancel each other out. And if that is true,
|
|
// we will most certainly have false positives about parameters not
|
|
// being called on certain paths.
|
|
//
|
|
// For this reason, we abandon tracking this parameter altogether.
|
|
CurrentParamStatus = ParameterStatus::Reported;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
//===----------------------------------------------------------------------===//
|
|
// Tree traversal methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void VisitCallExpr(const CallExpr *Call) {
|
|
// This call might be a direct call, i.e. a parameter call...
|
|
checkDirectCall(Call);
|
|
// ... or an indirect call, i.e. when parameter is an argument.
|
|
checkIndirectCall(Call);
|
|
}
|
|
|
|
void VisitObjCMessageExpr(const ObjCMessageExpr *Message) {
|
|
// The most common situation that we are defending against here is
|
|
// copying a tracked parameter.
|
|
if (const Expr *Receiver = Message->getInstanceReceiver()) {
|
|
checkEscapee(Receiver);
|
|
}
|
|
// Message expressions unlike calls, could not be direct.
|
|
checkIndirectCall(Message);
|
|
}
|
|
|
|
void VisitBlockExpr(const BlockExpr *Block) {
|
|
// Block expressions are tricky. It is a very common practice to capture
|
|
// completion handlers by blocks and use them there.
|
|
// For this reason, it is important to analyze blocks and report warnings
|
|
// for completion handler misuse in blocks.
|
|
//
|
|
// However, it can be quite difficult to track how the block itself is being
|
|
// used. The full precise anlysis of that will be similar to alias analysis
|
|
// for completion handlers and can be too heavyweight for a compile-time
|
|
// diagnostic. Instead, we judge about the immediate use of the block.
|
|
//
|
|
// Here, we try to find a call expression where we know due to conventions,
|
|
// annotations, or other reasons that the block is called once and only
|
|
// once.
|
|
const Expr *CalledOnceCallSite = getBlockGuaraneedCallSite(Block);
|
|
|
|
// We need to report this information to the handler because in the
|
|
// situation when we know that the block is called exactly once, we can be
|
|
// stricter in terms of reported diagnostics.
|
|
if (CalledOnceCallSite) {
|
|
Handler.handleBlockThatIsGuaranteedToBeCalledOnce(Block->getBlockDecl());
|
|
} else {
|
|
Handler.handleBlockWithNoGuarantees(Block->getBlockDecl());
|
|
}
|
|
|
|
for (const auto &Capture : Block->getBlockDecl()->captures()) {
|
|
if (const auto *Param = dyn_cast<ParmVarDecl>(Capture.getVariable())) {
|
|
if (auto Index = getIndex(*Param)) {
|
|
if (CalledOnceCallSite) {
|
|
// The call site of a block can be considered a call site of the
|
|
// captured parameter we track.
|
|
processCallFor(*Index, CalledOnceCallSite);
|
|
} else {
|
|
// We still should consider this block as an escape for parameter,
|
|
// if we don't know about its call site or the number of time it
|
|
// can be invoked.
|
|
processEscapeFor(*Index);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VisitBinaryOperator(const BinaryOperator *Op) {
|
|
if (Op->getOpcode() == clang::BO_Assign) {
|
|
// Let's check if one of the tracked parameters is assigned into
|
|
// something, and if it is we don't want to track extra variables, so we
|
|
// consider it as an escapee.
|
|
checkEscapee(Op->getRHS());
|
|
|
|
// Let's check whether this assignment is a suppression.
|
|
checkSuppression(Op);
|
|
}
|
|
}
|
|
|
|
void VisitDeclStmt(const DeclStmt *DS) {
|
|
// Variable initialization is not assignment and should be handled
|
|
// separately.
|
|
//
|
|
// Multiple declarations can be a part of declaration statement.
|
|
for (const auto *Declaration : DS->getDeclGroup()) {
|
|
if (const auto *Var = dyn_cast<VarDecl>(Declaration)) {
|
|
if (Var->getInit()) {
|
|
checkEscapee(Var->getInit());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VisitCStyleCastExpr(const CStyleCastExpr *Cast) {
|
|
// We consider '(void)parameter' as a manual no-op escape.
|
|
// It should be used to explicitly tell the analysis that this parameter
|
|
// is intentionally not called on this path.
|
|
if (Cast->getType().getCanonicalType()->isVoidType()) {
|
|
checkEscapee(Cast->getSubExpr());
|
|
}
|
|
}
|
|
|
|
void VisitObjCAtThrowStmt(const ObjCAtThrowStmt *) {
|
|
// It is OK not to call marked parameters on exceptional paths.
|
|
markNoReturn();
|
|
}
|
|
|
|
private:
|
|
unsigned size() const { return TrackedParams.size(); }
|
|
|
|
llvm::Optional<unsigned> getIndexOfCallee(const CallExpr *Call) const {
|
|
return getIndexOfExpression(Call->getCallee());
|
|
}
|
|
|
|
llvm::Optional<unsigned> getIndexOfExpression(const Expr *E) const {
|
|
if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(E)) {
|
|
return getIndex(*Parameter);
|
|
}
|
|
|
|
return llvm::None;
|
|
}
|
|
|
|
llvm::Optional<unsigned> getIndex(const ParmVarDecl &Parameter) const {
|
|
// Expected number of parameters that we actually track is 1.
|
|
//
|
|
// Also, the maximum number of declared parameters could not be on a scale
|
|
// of hundreds of thousands.
|
|
//
|
|
// In this setting, linear search seems reasonable and even performs better
|
|
// than bisection.
|
|
ParamSizedVector<const ParmVarDecl *>::const_iterator It =
|
|
llvm::find(TrackedParams, &Parameter);
|
|
|
|
if (It != TrackedParams.end()) {
|
|
return It - TrackedParams.begin();
|
|
}
|
|
|
|
return llvm::None;
|
|
}
|
|
|
|
const ParmVarDecl *getParameter(unsigned Index) const {
|
|
assert(Index < TrackedParams.size());
|
|
return TrackedParams[Index];
|
|
}
|
|
|
|
const CFG &FunctionCFG;
|
|
AnalysisDeclContext &AC;
|
|
CalledOnceCheckHandler &Handler;
|
|
bool CheckConventionalParameters;
|
|
// As of now, we turn this behavior off. So, we still are going to report
|
|
// missing calls on paths that look like it was intentional.
|
|
// Technically such reports are true positives, but they can make some users
|
|
// grumpy because of the sheer number of warnings.
|
|
// It can be turned back on if we decide that we want to have the other way
|
|
// around.
|
|
bool SuppressOnConventionalErrorPaths = false;
|
|
|
|
State CurrentState;
|
|
ParamSizedVector<const ParmVarDecl *> TrackedParams;
|
|
CFGSizedVector<State> States;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
namespace clang {
|
|
void checkCalledOnceParameters(AnalysisDeclContext &AC,
|
|
CalledOnceCheckHandler &Handler,
|
|
bool CheckConventionalParameters) {
|
|
CalledOnceChecker::check(AC, Handler, CheckConventionalParameters);
|
|
}
|
|
} // end namespace clang
|