llvm-project/llvm/lib/MC/MCObjectStreamer.cpp
Fangrui Song f1aa6050bd MCFragment: Use trailing data for fixed-size part
Reapply after #151724 switched to `char *Data`, fixing a
-fsanitize=pointer-overflow issue in MCAssembler::layout.

---

The fixed-size content of the MCFragment object is now stored as
trailing data, replacing ContentStart/ContentEnd with ContentSize. The
available space for trailing data is tracked using `FragSpace`. If the
available space is insufficient, a new block is allocated within the
bump allocator `MCObjectStreamer::FragStorage`.

FragList::Tail cannot be reused when switching sections or subsections,
as it is not associated with the fragment space tracked by `FragSpace`.
Instead, allocate a new fragment, which becomes less expensive after #150574.

Data can only be appended to the tail fragment of a subsection, not to
fragments in the middle. Post-assembler-layout adjustments (such as
.llvm_addrsig and .llvm.call-graph-profile) have been updated to use the
variable-size part instead.

Pull Request: https://github.com/llvm/llvm-project/pull/150846
2025-08-02 10:29:33 -07:00

763 lines
27 KiB
C++

//===- lib/MC/MCObjectStreamer.cpp - Object File MCStreamer Interface -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCCodeView.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SourceMgr.h"
using namespace llvm;
MCObjectStreamer::MCObjectStreamer(MCContext &Context,
std::unique_ptr<MCAsmBackend> TAB,
std::unique_ptr<MCObjectWriter> OW,
std::unique_ptr<MCCodeEmitter> Emitter)
: MCStreamer(Context),
Assembler(std::make_unique<MCAssembler>(
Context, std::move(TAB), std::move(Emitter), std::move(OW))),
EmitEHFrame(true), EmitDebugFrame(false) {
assert(Assembler->getBackendPtr() && Assembler->getEmitterPtr());
IsObj = true;
setAllowAutoPadding(Assembler->getBackend().allowAutoPadding());
if (Context.getTargetOptions() && Context.getTargetOptions()->MCRelaxAll)
Assembler->setRelaxAll(true);
}
MCObjectStreamer::~MCObjectStreamer() = default;
MCAssembler *MCObjectStreamer::getAssemblerPtr() {
if (getUseAssemblerInfoForParsing())
return Assembler.get();
return nullptr;
}
constexpr size_t FragBlockSize = 16384;
// Ensure the new fragment can at least store a few bytes.
constexpr size_t NewFragHeadroom = 8;
static_assert(NewFragHeadroom >= alignof(MCFragment));
static_assert(FragBlockSize >= sizeof(MCFragment) + NewFragHeadroom);
MCFragment *MCObjectStreamer::allocFragSpace(size_t Headroom) {
auto Size = std::max(FragBlockSize, sizeof(MCFragment) + Headroom);
FragSpace = Size - sizeof(MCFragment);
auto Block = std::unique_ptr<uint8_t[]>(new uint8_t[Size]);
auto *F = reinterpret_cast<MCFragment *>(Block.get());
FragStorage.push_back(std::move(Block));
return F;
}
void MCObjectStreamer::newFragment() {
MCFragment *F;
if (LLVM_LIKELY(sizeof(MCFragment) + NewFragHeadroom <= FragSpace)) {
auto End = reinterpret_cast<size_t>(getCurFragEnd());
F = reinterpret_cast<MCFragment *>(
alignToPowerOf2(End, alignof(MCFragment)));
FragSpace -= size_t(F) - End + sizeof(MCFragment);
} else {
F = allocFragSpace(0);
}
new (F) MCFragment();
addFragment(F);
}
void MCObjectStreamer::ensureHeadroom(size_t Headroom) {
if (Headroom <= FragSpace)
return;
auto *F = allocFragSpace(Headroom);
new (F) MCFragment();
addFragment(F);
}
void MCObjectStreamer::insert(MCFragment *Frag) {
assert(Frag->getKind() != MCFragment::FT_Data &&
"F should have a variable-size tail");
// Frag is not connected to FragSpace. Before modifying CurFrag with
// addFragment(Frag), allocate an empty fragment to maintain FragSpace
// connectivity, potentially reusing CurFrag's associated space.
MCFragment *F;
if (LLVM_LIKELY(sizeof(MCFragment) + NewFragHeadroom <= FragSpace)) {
auto End = reinterpret_cast<size_t>(getCurFragEnd());
F = reinterpret_cast<MCFragment *>(
alignToPowerOf2(End, alignof(MCFragment)));
FragSpace -= size_t(F) - End + sizeof(MCFragment);
} else {
F = allocFragSpace(0);
}
new (F) MCFragment();
addFragment(Frag);
addFragment(F);
}
void MCObjectStreamer::appendContents(ArrayRef<char> Contents) {
ensureHeadroom(Contents.size());
assert(FragSpace >= Contents.size());
llvm::copy(Contents, getCurFragEnd());
CurFrag->FixedSize += Contents.size();
FragSpace -= Contents.size();
}
void MCObjectStreamer::appendContents(size_t Num, uint8_t Elt) {
ensureHeadroom(Num);
MutableArrayRef<uint8_t> Data(getCurFragEnd(), Num);
llvm::fill(Data, Elt);
CurFrag->FixedSize += Num;
FragSpace -= Num;
}
void MCObjectStreamer::addFixup(const MCExpr *Value, MCFixupKind Kind) {
CurFrag->addFixup(MCFixup::create(getCurFragSize(), Value, Kind));
}
// As a compile-time optimization, avoid allocating and evaluating an MCExpr
// tree for (Hi - Lo) when Hi and Lo are offsets into the same fragment's fixed
// part.
static std::optional<uint64_t> absoluteSymbolDiff(const MCSymbol *Hi,
const MCSymbol *Lo) {
assert(Hi && Lo);
if (Lo == Hi)
return 0;
if (Hi->isVariable() || Lo->isVariable())
return std::nullopt;
auto *LoF = Lo->getFragment();
if (!LoF || Hi->getFragment() != LoF || LoF->isLinkerRelaxable())
return std::nullopt;
// If either symbol resides in the variable part, bail out.
auto Fixed = LoF->getFixedSize();
if (Lo->getOffset() > Fixed || Hi->getOffset() > Fixed)
return std::nullopt;
return Hi->getOffset() - Lo->getOffset();
}
void MCObjectStreamer::emitAbsoluteSymbolDiff(const MCSymbol *Hi,
const MCSymbol *Lo,
unsigned Size) {
if (std::optional<uint64_t> Diff = absoluteSymbolDiff(Hi, Lo))
emitIntValue(*Diff, Size);
else
MCStreamer::emitAbsoluteSymbolDiff(Hi, Lo, Size);
}
void MCObjectStreamer::emitAbsoluteSymbolDiffAsULEB128(const MCSymbol *Hi,
const MCSymbol *Lo) {
if (std::optional<uint64_t> Diff = absoluteSymbolDiff(Hi, Lo))
emitULEB128IntValue(*Diff);
else
MCStreamer::emitAbsoluteSymbolDiffAsULEB128(Hi, Lo);
}
void MCObjectStreamer::reset() {
if (Assembler) {
Assembler->reset();
if (getContext().getTargetOptions())
Assembler->setRelaxAll(getContext().getTargetOptions()->MCRelaxAll);
}
EmitEHFrame = true;
EmitDebugFrame = false;
FragStorage.clear();
FragSpace = 0;
MCStreamer::reset();
}
void MCObjectStreamer::emitFrames(MCAsmBackend *MAB) {
if (!getNumFrameInfos())
return;
if (EmitEHFrame)
MCDwarfFrameEmitter::Emit(*this, MAB, true);
if (EmitDebugFrame)
MCDwarfFrameEmitter::Emit(*this, MAB, false);
}
void MCObjectStreamer::visitUsedSymbol(const MCSymbol &Sym) {
Assembler->registerSymbol(Sym);
}
void MCObjectStreamer::emitCFISections(bool EH, bool Debug, bool SFrame) {
MCStreamer::emitCFISections(EH, Debug, SFrame);
EmitEHFrame = EH;
EmitDebugFrame = Debug;
EmitSFrame = SFrame;
}
void MCObjectStreamer::emitValueImpl(const MCExpr *Value, unsigned Size,
SMLoc Loc) {
MCStreamer::emitValueImpl(Value, Size, Loc);
MCDwarfLineEntry::make(this, getCurrentSectionOnly());
// Avoid fixups when possible.
int64_t AbsValue;
if (Value->evaluateAsAbsolute(AbsValue, getAssemblerPtr())) {
if (!isUIntN(8 * Size, AbsValue) && !isIntN(8 * Size, AbsValue)) {
getContext().reportError(
Loc, "value evaluated as " + Twine(AbsValue) + " is out of range.");
return;
}
emitIntValue(AbsValue, Size);
return;
}
ensureHeadroom(Size);
addFixup(Value, MCFixup::getDataKindForSize(Size));
appendContents(Size, 0);
}
MCSymbol *MCObjectStreamer::emitCFILabel() {
MCSymbol *Label = getContext().createTempSymbol("cfi");
emitLabel(Label);
return Label;
}
void MCObjectStreamer::emitCFIStartProcImpl(MCDwarfFrameInfo &Frame) {
// We need to create a local symbol to avoid relocations.
Frame.Begin = getContext().createTempSymbol();
emitLabel(Frame.Begin);
}
void MCObjectStreamer::emitCFIEndProcImpl(MCDwarfFrameInfo &Frame) {
Frame.End = getContext().createTempSymbol();
emitLabel(Frame.End);
}
void MCObjectStreamer::emitLabel(MCSymbol *Symbol, SMLoc Loc) {
MCStreamer::emitLabel(Symbol, Loc);
// If Symbol is a non-redefiniable variable, emitLabel has reported an error.
// Bail out.
if (Symbol->isVariable())
return;
getAssembler().registerSymbol(*Symbol);
// Set the fragment and offset. This function might be called by
// changeSection, when the section stack top hasn't been changed to the new
// section.
MCFragment *F = CurFrag;
Symbol->setFragment(F);
Symbol->setOffset(F->getFixedSize());
emitPendingAssignments(Symbol);
}
void MCObjectStreamer::emitPendingAssignments(MCSymbol *Symbol) {
auto Assignments = pendingAssignments.find(Symbol);
if (Assignments != pendingAssignments.end()) {
for (const PendingAssignment &A : Assignments->second)
emitAssignment(A.Symbol, A.Value);
pendingAssignments.erase(Assignments);
}
}
// Emit a label at a previously emitted fragment/offset position. This must be
// within the currently-active section.
void MCObjectStreamer::emitLabelAtPos(MCSymbol *Symbol, SMLoc Loc,
MCFragment &F, uint64_t Offset) {
assert(F.getParent() == getCurrentSectionOnly());
MCStreamer::emitLabel(Symbol, Loc);
getAssembler().registerSymbol(*Symbol);
Symbol->setFragment(&F);
Symbol->setOffset(Offset);
}
void MCObjectStreamer::emitULEB128Value(const MCExpr *Value) {
int64_t IntValue;
if (Value->evaluateAsAbsolute(IntValue, getAssembler())) {
emitULEB128IntValue(IntValue);
return;
}
auto *F = getCurrentFragment();
F->makeLEB(false, Value);
newFragment();
}
void MCObjectStreamer::emitSLEB128Value(const MCExpr *Value) {
int64_t IntValue;
if (Value->evaluateAsAbsolute(IntValue, getAssembler())) {
emitSLEB128IntValue(IntValue);
return;
}
auto *F = getCurrentFragment();
F->makeLEB(true, Value);
newFragment();
}
void MCObjectStreamer::emitWeakReference(MCSymbol *Alias,
const MCSymbol *Target) {
reportFatalUsageError("this file format doesn't support weak aliases");
}
void MCObjectStreamer::changeSection(MCSection *Section, uint32_t Subsection) {
assert(Section && "Cannot switch to a null section!");
getContext().clearDwarfLocSeen();
// Register the section and create an initial fragment for subsection 0
// if `Subsection` is non-zero.
bool NewSec = getAssembler().registerSection(*Section);
MCFragment *F0 = nullptr;
if (NewSec && Subsection) {
changeSection(Section, 0);
F0 = CurFrag;
}
// To maintain connectivity between CurFrag and FragSpace when CurFrag is
// modified, allocate an empty fragment and append it to the fragment list.
// (Subsections[I].second.Tail is not connected to FragSpace.)
MCFragment *F;
if (LLVM_LIKELY(sizeof(MCFragment) + NewFragHeadroom <= FragSpace)) {
auto End = reinterpret_cast<size_t>(getCurFragEnd());
F = reinterpret_cast<MCFragment *>(
alignToPowerOf2(End, alignof(MCFragment)));
FragSpace -= size_t(F) - End + sizeof(MCFragment);
} else {
F = allocFragSpace(0);
}
new (F) MCFragment();
F->setParent(Section);
auto &Subsections = Section->Subsections;
size_t I = 0, E = Subsections.size();
while (I != E && Subsections[I].first < Subsection)
++I;
// If the subsection number is not in the sorted Subsections list, create a
// new fragment list.
if (I == E || Subsections[I].first != Subsection) {
Subsections.insert(Subsections.begin() + I,
{Subsection, MCSection::FragList{F, F}});
Section->CurFragList = &Subsections[I].second;
CurFrag = F;
} else {
Section->CurFragList = &Subsections[I].second;
CurFrag = Subsections[I].second.Tail;
// Ensure CurFrag is associated with FragSpace.
addFragment(F);
}
// Define the section symbol at subsection 0's initial fragment if required.
if (!NewSec)
return;
if (auto *Sym = Section->getBeginSymbol()) {
Sym->setFragment(Subsection ? F0 : CurFrag);
getAssembler().registerSymbol(*Sym);
}
}
void MCObjectStreamer::emitAssignment(MCSymbol *Symbol, const MCExpr *Value) {
getAssembler().registerSymbol(*Symbol);
MCStreamer::emitAssignment(Symbol, Value);
emitPendingAssignments(Symbol);
}
void MCObjectStreamer::emitConditionalAssignment(MCSymbol *Symbol,
const MCExpr *Value) {
const MCSymbol *Target = &cast<MCSymbolRefExpr>(*Value).getSymbol();
// If the symbol already exists, emit the assignment. Otherwise, emit it
// later only if the symbol is also emitted.
if (Target->isRegistered())
emitAssignment(Symbol, Value);
else
pendingAssignments[Target].push_back({Symbol, Value});
}
bool MCObjectStreamer::mayHaveInstructions(MCSection &Sec) const {
return Sec.hasInstructions();
}
void MCObjectStreamer::emitInstruction(const MCInst &Inst,
const MCSubtargetInfo &STI) {
MCStreamer::emitInstruction(Inst, STI);
MCSection *Sec = getCurrentSectionOnly();
Sec->setHasInstructions(true);
// Now that a machine instruction has been assembled into this section, make
// a line entry for any .loc directive that has been seen.
MCDwarfLineEntry::make(this, getCurrentSectionOnly());
// If this instruction doesn't need relaxation, just emit it as data.
MCAssembler &Assembler = getAssembler();
MCAsmBackend &Backend = Assembler.getBackend();
if (!(Backend.mayNeedRelaxation(Inst.getOpcode(), Inst.getOperands(), STI) ||
Backend.allowEnhancedRelaxation())) {
emitInstToData(Inst, STI);
return;
}
// Otherwise, relax and emit it as data if RelaxAll is specified.
if (Assembler.getRelaxAll()) {
MCInst Relaxed = Inst;
while (Backend.mayNeedRelaxation(Relaxed.getOpcode(), Relaxed.getOperands(),
STI))
Backend.relaxInstruction(Relaxed, STI);
emitInstToData(Relaxed, STI);
return;
}
emitInstToFragment(Inst, STI);
}
void MCObjectStreamer::emitInstToData(const MCInst &Inst,
const MCSubtargetInfo &STI) {
MCFragment *F = getCurrentFragment();
// Append the instruction to the data fragment.
size_t CodeOffset = getCurFragSize();
SmallString<16> Content;
SmallVector<MCFixup, 1> Fixups;
getAssembler().getEmitter().encodeInstruction(Inst, Content, Fixups, STI);
appendContents(Content);
if (CurFrag != F) {
F = CurFrag;
CodeOffset = 0;
}
F->setHasInstructions(STI);
if (Fixups.empty())
return;
bool MarkedLinkerRelaxable = false;
for (auto &Fixup : Fixups) {
Fixup.setOffset(Fixup.getOffset() + CodeOffset);
if (!Fixup.isLinkerRelaxable() || MarkedLinkerRelaxable)
continue;
MarkedLinkerRelaxable = true;
// Set the fragment's order within the subsection for use by
// MCAssembler::relaxAlign.
auto *Sec = F->getParent();
if (!Sec->isLinkerRelaxable())
Sec->setLinkerRelaxable();
// Do not add data after a linker-relaxable instruction. The difference
// between a new label and a label at or before the linker-relaxable
// instruction cannot be resolved at assemble-time.
F->setLinkerRelaxable();
newFragment();
}
F->appendFixups(Fixups);
}
void MCObjectStreamer::emitInstToFragment(const MCInst &Inst,
const MCSubtargetInfo &STI) {
auto *F = getCurrentFragment();
SmallVector<char, 16> Data;
SmallVector<MCFixup, 1> Fixups;
getAssembler().getEmitter().encodeInstruction(Inst, Data, Fixups, STI);
F->Kind = MCFragment::FT_Relaxable;
F->STI = &STI;
F->HasInstructions = true;
F->setVarContents(Data);
F->setVarFixups(Fixups);
F->setInst(Inst);
newFragment();
}
void MCObjectStreamer::emitDwarfLocDirective(unsigned FileNo, unsigned Line,
unsigned Column, unsigned Flags,
unsigned Isa,
unsigned Discriminator,
StringRef FileName,
StringRef Comment) {
// In case we see two .loc directives in a row, make sure the
// first one gets a line entry.
MCDwarfLineEntry::make(this, getCurrentSectionOnly());
this->MCStreamer::emitDwarfLocDirective(FileNo, Line, Column, Flags, Isa,
Discriminator, FileName, Comment);
}
static const MCExpr *buildSymbolDiff(MCObjectStreamer &OS, const MCSymbol *A,
const MCSymbol *B, SMLoc Loc) {
MCContext &Context = OS.getContext();
const MCExpr *ARef = MCSymbolRefExpr::create(A, Context);
const MCExpr *BRef = MCSymbolRefExpr::create(B, Context);
const MCExpr *AddrDelta =
MCBinaryExpr::create(MCBinaryExpr::Sub, ARef, BRef, Context, Loc);
return AddrDelta;
}
static void emitDwarfSetLineAddr(MCObjectStreamer &OS,
MCDwarfLineTableParams Params,
int64_t LineDelta, const MCSymbol *Label,
int PointerSize) {
// emit the sequence to set the address
OS.emitIntValue(dwarf::DW_LNS_extended_op, 1);
OS.emitULEB128IntValue(PointerSize + 1);
OS.emitIntValue(dwarf::DW_LNE_set_address, 1);
OS.emitSymbolValue(Label, PointerSize);
// emit the sequence for the LineDelta (from 1) and a zero address delta.
MCDwarfLineAddr::Emit(&OS, Params, LineDelta, 0);
}
void MCObjectStreamer::emitDwarfAdvanceLineAddr(int64_t LineDelta,
const MCSymbol *LastLabel,
const MCSymbol *Label,
unsigned PointerSize) {
if (!LastLabel) {
emitDwarfSetLineAddr(*this, Assembler->getDWARFLinetableParams(), LineDelta,
Label, PointerSize);
return;
}
// If the two labels are within the same fragment, then the address-offset is
// already a fixed constant and is not relaxable. Emit the advance-line-addr
// data immediately to save time and memory.
if (auto OptAddrDelta = absoluteSymbolDiff(Label, LastLabel)) {
SmallString<16> Tmp;
MCDwarfLineAddr::encode(getContext(), Assembler->getDWARFLinetableParams(),
LineDelta, *OptAddrDelta, Tmp);
emitBytes(Tmp);
return;
}
auto *F = getCurrentFragment();
F->Kind = MCFragment::FT_Dwarf;
F->setDwarfAddrDelta(buildSymbolDiff(*this, Label, LastLabel, SMLoc()));
F->setDwarfLineDelta(LineDelta);
newFragment();
}
void MCObjectStreamer::emitDwarfLineEndEntry(MCSection *Section,
MCSymbol *LastLabel,
MCSymbol *EndLabel) {
// Emit a DW_LNE_end_sequence into the line table. When EndLabel is null, it
// means we should emit the entry for the end of the section and therefore we
// use the section end label for the reference label. After having the
// appropriate reference label, we emit the address delta and use INT64_MAX as
// the line delta which is the signal that this is actually a
// DW_LNE_end_sequence.
if (!EndLabel)
EndLabel = endSection(Section);
// Switch back the dwarf line section, in case endSection had to switch the
// section.
MCContext &Ctx = getContext();
switchSection(Ctx.getObjectFileInfo()->getDwarfLineSection());
const MCAsmInfo *AsmInfo = Ctx.getAsmInfo();
emitDwarfAdvanceLineAddr(INT64_MAX, LastLabel, EndLabel,
AsmInfo->getCodePointerSize());
}
void MCObjectStreamer::emitDwarfAdvanceFrameAddr(const MCSymbol *LastLabel,
const MCSymbol *Label,
SMLoc Loc) {
auto *F = getCurrentFragment();
F->Kind = MCFragment::FT_DwarfFrame;
F->setDwarfAddrDelta(buildSymbolDiff(*this, Label, LastLabel, Loc));
newFragment();
}
void MCObjectStreamer::emitCVLocDirective(unsigned FunctionId, unsigned FileNo,
unsigned Line, unsigned Column,
bool PrologueEnd, bool IsStmt,
StringRef FileName, SMLoc Loc) {
// Validate the directive.
if (!checkCVLocSection(FunctionId, FileNo, Loc))
return;
// Emit a label at the current position and record it in the CodeViewContext.
MCSymbol *LineSym = getContext().createTempSymbol();
emitLabel(LineSym);
getContext().getCVContext().recordCVLoc(getContext(), LineSym, FunctionId,
FileNo, Line, Column, PrologueEnd,
IsStmt);
}
void MCObjectStreamer::emitCVLinetableDirective(unsigned FunctionId,
const MCSymbol *Begin,
const MCSymbol *End) {
getContext().getCVContext().emitLineTableForFunction(*this, FunctionId, Begin,
End);
this->MCStreamer::emitCVLinetableDirective(FunctionId, Begin, End);
}
void MCObjectStreamer::emitCVInlineLinetableDirective(
unsigned PrimaryFunctionId, unsigned SourceFileId, unsigned SourceLineNum,
const MCSymbol *FnStartSym, const MCSymbol *FnEndSym) {
getContext().getCVContext().emitInlineLineTableForFunction(
*this, PrimaryFunctionId, SourceFileId, SourceLineNum, FnStartSym,
FnEndSym);
this->MCStreamer::emitCVInlineLinetableDirective(
PrimaryFunctionId, SourceFileId, SourceLineNum, FnStartSym, FnEndSym);
}
void MCObjectStreamer::emitCVDefRangeDirective(
ArrayRef<std::pair<const MCSymbol *, const MCSymbol *>> Ranges,
StringRef FixedSizePortion) {
getContext().getCVContext().emitDefRange(*this, Ranges, FixedSizePortion);
// Attach labels that were pending before we created the defrange fragment to
// the beginning of the new fragment.
this->MCStreamer::emitCVDefRangeDirective(Ranges, FixedSizePortion);
}
void MCObjectStreamer::emitCVStringTableDirective() {
getContext().getCVContext().emitStringTable(*this);
}
void MCObjectStreamer::emitCVFileChecksumsDirective() {
getContext().getCVContext().emitFileChecksums(*this);
}
void MCObjectStreamer::emitCVFileChecksumOffsetDirective(unsigned FileNo) {
getContext().getCVContext().emitFileChecksumOffset(*this, FileNo);
}
void MCObjectStreamer::emitBytes(StringRef Data) {
MCDwarfLineEntry::make(this, getCurrentSectionOnly());
appendContents(ArrayRef(Data.data(), Data.size()));
}
void MCObjectStreamer::emitValueToAlignment(Align Alignment, int64_t Fill,
uint8_t FillLen,
unsigned MaxBytesToEmit) {
if (MaxBytesToEmit == 0)
MaxBytesToEmit = Alignment.value();
MCFragment *F = getCurrentFragment();
F->makeAlign(Alignment, Fill, FillLen, MaxBytesToEmit);
newFragment();
// Update the maximum alignment on the current section if necessary.
F->getParent()->ensureMinAlignment(Alignment);
}
void MCObjectStreamer::emitCodeAlignment(Align Alignment,
const MCSubtargetInfo *STI,
unsigned MaxBytesToEmit) {
auto *F = getCurrentFragment();
emitValueToAlignment(Alignment, 0, 1, MaxBytesToEmit);
F->u.align.EmitNops = true;
F->STI = STI;
}
void MCObjectStreamer::emitValueToOffset(const MCExpr *Offset,
unsigned char Value,
SMLoc Loc) {
insert(getContext().allocFragment<MCOrgFragment>(*Offset, Value, Loc));
}
void MCObjectStreamer::emitRelocDirective(const MCExpr &Offset, StringRef Name,
const MCExpr *Expr, SMLoc Loc) {
std::optional<MCFixupKind> MaybeKind =
Assembler->getBackend().getFixupKind(Name);
if (!MaybeKind) {
getContext().reportError(Loc, "unknown relocation name");
return;
}
MCFixupKind Kind = *MaybeKind;
if (Expr)
visitUsedExpr(*Expr);
else
Expr =
MCSymbolRefExpr::create(getContext().createTempSymbol(), getContext());
auto *O = &Offset;
int64_t Val;
if (Offset.evaluateAsAbsolute(Val, nullptr)) {
auto *SecSym = getCurrentSectionOnly()->getBeginSymbol();
O = MCBinaryExpr::createAdd(MCSymbolRefExpr::create(SecSym, getContext()),
O, getContext(), Loc);
}
getAssembler().addRelocDirective({*O, Expr, Kind});
}
void MCObjectStreamer::emitFill(const MCExpr &NumBytes, uint64_t FillValue,
SMLoc Loc) {
assert(getCurrentSectionOnly() && "need a section");
insert(
getContext().allocFragment<MCFillFragment>(FillValue, 1, NumBytes, Loc));
}
void MCObjectStreamer::emitFill(const MCExpr &NumValues, int64_t Size,
int64_t Expr, SMLoc Loc) {
int64_t IntNumValues;
// Do additional checking now if we can resolve the value.
if (NumValues.evaluateAsAbsolute(IntNumValues, getAssembler())) {
if (IntNumValues < 0) {
getContext().getSourceManager()->PrintMessage(
Loc, SourceMgr::DK_Warning,
"'.fill' directive with negative repeat count has no effect");
return;
}
// Emit now if we can for better errors.
int64_t NonZeroSize = Size > 4 ? 4 : Size;
Expr &= ~0ULL >> (64 - NonZeroSize * 8);
for (uint64_t i = 0, e = IntNumValues; i != e; ++i) {
emitIntValue(Expr, NonZeroSize);
if (NonZeroSize < Size)
emitIntValue(0, Size - NonZeroSize);
}
return;
}
// Otherwise emit as fragment.
assert(getCurrentSectionOnly() && "need a section");
insert(
getContext().allocFragment<MCFillFragment>(Expr, Size, NumValues, Loc));
}
void MCObjectStreamer::emitNops(int64_t NumBytes, int64_t ControlledNopLength,
SMLoc Loc, const MCSubtargetInfo &STI) {
assert(getCurrentSectionOnly() && "need a section");
insert(getContext().allocFragment<MCNopsFragment>(
NumBytes, ControlledNopLength, Loc, STI));
}
void MCObjectStreamer::emitFileDirective(StringRef Filename) {
MCAssembler &Asm = getAssembler();
Asm.getWriter().addFileName(Filename);
}
void MCObjectStreamer::emitFileDirective(StringRef Filename,
StringRef CompilerVersion,
StringRef TimeStamp,
StringRef Description) {
MCObjectWriter &W = getAssembler().getWriter();
W.addFileName(Filename);
if (CompilerVersion.size())
W.setCompilerVersion(CompilerVersion);
// TODO: add TimeStamp and Description to .file symbol table entry
// with the integrated assembler.
}
void MCObjectStreamer::emitAddrsig() {
getAssembler().getWriter().emitAddrsigSection();
}
void MCObjectStreamer::emitAddrsigSym(const MCSymbol *Sym) {
getAssembler().getWriter().addAddrsigSymbol(Sym);
}
void MCObjectStreamer::finishImpl() {
getContext().RemapDebugPaths();
// If we are generating dwarf for assembly source files dump out the sections.
if (getContext().getGenDwarfForAssembly())
MCGenDwarfInfo::Emit(this);
// Dump out the dwarf file & directory tables and line tables.
MCDwarfLineTable::emit(this, getAssembler().getDWARFLinetableParams());
// Emit pseudo probes for the current module.
MCPseudoProbeTable::emit(this);
getAssembler().Finish();
}