Slava Zakharin f1ea831dbc
[flang][hlfir] Make alias analysis trace through box designators. (#67353)
The changes are needed to get leslie3d same performance with HLFIR
as with FIR lowering. The two module allocatable variables cannot
alias, so the optimized bufferization should be able to elide
the temporary and inline the assignment loop.
2023-09-25 11:27:28 -07:00

416 lines
15 KiB
C++

//===- AliasAnalysis.cpp - Alias Analysis for FIR ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Analysis/AliasAnalysis.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/FortranVariableInterface.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "mlir/Analysis/AliasAnalysis.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Value.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
using namespace mlir;
#define DEBUG_TYPE "fir-alias-analysis"
//===----------------------------------------------------------------------===//
// AliasAnalysis: alias
//===----------------------------------------------------------------------===//
static bool isDummyArgument(mlir::Value v) {
auto blockArg{v.dyn_cast<mlir::BlockArgument>()};
if (!blockArg)
return false;
return blockArg.getOwner()->isEntryBlock();
}
/// Temporary function to skip through all the no op operations
/// TODO: Generalize support of fir.load
static mlir::Value getOriginalDef(mlir::Value v) {
mlir::Operation *defOp;
bool breakFromLoop = false;
while (!breakFromLoop && (defOp = v.getDefiningOp())) {
llvm::TypeSwitch<Operation *>(defOp)
.Case<fir::ConvertOp>([&](fir::ConvertOp op) { v = op.getValue(); })
.Case<fir::DeclareOp, hlfir::DeclareOp>(
[&](auto op) { v = op.getMemref(); })
.Default([&](auto op) { breakFromLoop = true; });
}
return v;
}
namespace fir {
void AliasAnalysis::Source::print(llvm::raw_ostream &os) const {
if (auto v = llvm::dyn_cast<mlir::Value>(u))
os << v;
else if (auto gbl = llvm::dyn_cast<mlir::SymbolRefAttr>(u))
os << gbl;
os << " SourceKind: " << EnumToString(kind);
os << " Type: " << valueType << " ";
attributes.Dump(os, EnumToString);
}
bool AliasAnalysis::Source::isPointerReference(mlir::Type ty) {
auto eleTy = fir::dyn_cast_ptrEleTy(ty);
if (!eleTy)
return false;
return fir::isPointerType(eleTy) || eleTy.isa<fir::PointerType>();
}
bool AliasAnalysis::Source::isTargetOrPointer() const {
return attributes.test(Attribute::Pointer) ||
attributes.test(Attribute::Target);
}
bool AliasAnalysis::Source::isRecordWithPointerComponent() const {
auto eleTy = fir::dyn_cast_ptrEleTy(valueType);
if (!eleTy)
return false;
// TO DO: Look for pointer components
return eleTy.isa<fir::RecordType>();
}
AliasResult AliasAnalysis::alias(Value lhs, Value rhs) {
auto lhsSrc = getSource(lhs);
auto rhsSrc = getSource(rhs);
bool approximateSource = lhsSrc.approximateSource || rhsSrc.approximateSource;
LLVM_DEBUG(llvm::dbgs() << "AliasAnalysis::alias\n";
llvm::dbgs() << " lhs: " << lhs << "\n";
llvm::dbgs() << " lhsSrc: " << lhsSrc << "\n";
llvm::dbgs() << " rhs: " << rhs << "\n";
llvm::dbgs() << " rhsSrc: " << rhsSrc << "\n";
llvm::dbgs() << "\n";);
// Indirect case currently not handled. Conservatively assume
// it aliases with everything
if (lhsSrc.kind > SourceKind::Direct || rhsSrc.kind > SourceKind::Direct) {
return AliasResult::MayAlias;
}
// SourceKind::Direct is set for the addresses wrapped in a global boxes.
// ie: fir.global @_QMpointersEp : !fir.box<!fir.ptr<f32>>
// Though nothing is known about them, they would only alias with targets or
// pointers
bool directSourceToNonTargetOrPointer = false;
if (lhsSrc.u != rhsSrc.u) {
if ((lhsSrc.kind == SourceKind::Direct && !rhsSrc.isTargetOrPointer()) ||
(rhsSrc.kind == SourceKind::Direct && !lhsSrc.isTargetOrPointer()))
directSourceToNonTargetOrPointer = true;
}
if (lhsSrc.kind == SourceKind::Direct ||
rhsSrc.kind == SourceKind::Direct) {
if (!directSourceToNonTargetOrPointer)
return AliasResult::MayAlias;
}
if (lhsSrc.kind == rhsSrc.kind) {
if (lhsSrc.u == rhsSrc.u) {
if (approximateSource)
return AliasResult::MayAlias;
return AliasResult::MustAlias;
}
// Two host associated accesses may overlap due to an equivalence.
if (lhsSrc.kind == SourceKind::HostAssoc)
return AliasResult::MayAlias;
// Allocate and global memory address cannot physically alias
if (lhsSrc.kind == SourceKind::Allocate ||
lhsSrc.kind == SourceKind::Global)
return AliasResult::NoAlias;
// Dummy TARGET/POINTER arguments may alias.
if (lhsSrc.isTargetOrPointer() && rhsSrc.isTargetOrPointer())
return AliasResult::MayAlias;
// Box for POINTER component inside an object of a derived type
// may alias box of a POINTER object, as well as boxes for POINTER
// components inside two objects of derived types may alias.
if ((lhsSrc.isRecordWithPointerComponent() && rhsSrc.isTargetOrPointer()) ||
(rhsSrc.isRecordWithPointerComponent() && lhsSrc.isTargetOrPointer()) ||
(lhsSrc.isRecordWithPointerComponent() &&
rhsSrc.isRecordWithPointerComponent()))
return AliasResult::MayAlias;
return AliasResult::NoAlias;
}
assert(lhsSrc.kind != rhsSrc.kind && "memory source kinds must be different");
Source *src1, *src2;
if (lhsSrc.kind < rhsSrc.kind) {
src1 = &lhsSrc;
src2 = &rhsSrc;
} else {
src1 = &rhsSrc;
src2 = &lhsSrc;
}
if (src1->kind == SourceKind::Argument &&
src2->kind == SourceKind::HostAssoc) {
// Treat the host entity as TARGET for the purpose of disambiguating
// it with a dummy access. It is required for this particular case:
// subroutine test
// integer :: x(10)
// call inner(x)
// contains
// subroutine inner(y)
// integer, target :: y(:)
// x(1) = y(1)
// end subroutine inner
// end subroutine test
//
// F18 15.5.2.13 (4) (b) allows 'x' and 'y' to address the same object.
// 'y' has an explicit TARGET attribute, but 'x' has neither TARGET
// nor POINTER.
src2->attributes.set(Attribute::Target);
}
// Dummy TARGET/POINTER argument may alias with a global TARGET/POINTER.
if (src1->isTargetOrPointer() && src2->isTargetOrPointer())
return AliasResult::MayAlias;
// Box for POINTER component inside an object of a derived type
// may alias box of a POINTER object, as well as boxes for POINTER
// components inside two objects of derived types may alias.
if ((src1->isRecordWithPointerComponent() && src2->isTargetOrPointer()) ||
(src2->isRecordWithPointerComponent() && src1->isTargetOrPointer()) ||
(src1->isRecordWithPointerComponent() &&
src2->isRecordWithPointerComponent()))
return AliasResult::MayAlias;
return AliasResult::NoAlias;
}
//===----------------------------------------------------------------------===//
// AliasAnalysis: getModRef
//===----------------------------------------------------------------------===//
/// This is mostly inspired by MLIR::LocalAliasAnalysis with 2 notable
/// differences 1) Regions are not handled here but will be handled by a data
/// flow analysis to come 2) Allocate and Free effects are considered
/// modifying
ModRefResult AliasAnalysis::getModRef(Operation *op, Value location) {
MemoryEffectOpInterface interface = dyn_cast<MemoryEffectOpInterface>(op);
if (!interface)
return ModRefResult::getModAndRef();
// Build a ModRefResult by merging the behavior of the effects of this
// operation.
SmallVector<MemoryEffects::EffectInstance> effects;
interface.getEffects(effects);
ModRefResult result = ModRefResult::getNoModRef();
for (const MemoryEffects::EffectInstance &effect : effects) {
// Check for an alias between the effect and our memory location.
AliasResult aliasResult = AliasResult::MayAlias;
if (Value effectValue = effect.getValue())
aliasResult = alias(effectValue, location);
// If we don't alias, ignore this effect.
if (aliasResult.isNo())
continue;
// Merge in the corresponding mod or ref for this effect.
if (isa<MemoryEffects::Read>(effect.getEffect()))
result = result.merge(ModRefResult::getRef());
else
result = result.merge(ModRefResult::getMod());
if (result.isModAndRef())
break;
}
return result;
}
AliasAnalysis::Source::Attributes
getAttrsFromVariable(fir::FortranVariableOpInterface var) {
AliasAnalysis::Source::Attributes attrs;
if (var.isTarget())
attrs.set(AliasAnalysis::Attribute::Target);
if (var.isPointer())
attrs.set(AliasAnalysis::Attribute::Pointer);
if (var.isIntentIn())
attrs.set(AliasAnalysis::Attribute::IntentIn);
return attrs;
}
AliasAnalysis::Source AliasAnalysis::getSource(mlir::Value v) {
auto *defOp = v.getDefiningOp();
SourceKind type{SourceKind::Unknown};
mlir::Type ty;
bool breakFromLoop{false};
bool approximateSource{false};
bool followBoxAddr{mlir::isa<fir::BaseBoxType>(v.getType())};
mlir::SymbolRefAttr global;
Source::Attributes attributes;
while (defOp && !breakFromLoop) {
ty = defOp->getResultTypes()[0];
llvm::TypeSwitch<Operation *>(defOp)
.Case<fir::AllocaOp, fir::AllocMemOp>([&](auto op) {
// Unique memory allocation.
type = SourceKind::Allocate;
breakFromLoop = true;
})
.Case<fir::ConvertOp>([&](auto op) {
// Skip ConvertOp's and track further through the operand.
v = op->getOperand(0);
defOp = v.getDefiningOp();
})
.Case<fir::BoxAddrOp>([&](auto op) {
v = op->getOperand(0);
defOp = v.getDefiningOp();
if (mlir::isa<fir::BaseBoxType>(v.getType()))
followBoxAddr = true;
})
.Case<fir::ArrayCoorOp, fir::CoordinateOp>([&](auto op) {
v = op->getOperand(0);
defOp = v.getDefiningOp();
if (mlir::isa<fir::BaseBoxType>(v.getType()))
followBoxAddr = true;
approximateSource = true;
})
.Case<fir::EmboxOp, fir::ReboxOp>([&](auto op) {
if (followBoxAddr) {
v = op->getOperand(0);
defOp = v.getDefiningOp();
} else
breakFromLoop = true;
})
.Case<fir::LoadOp>([&](auto op) {
if (followBoxAddr && mlir::isa<fir::BaseBoxType>(op.getType())) {
// For now, support the load of an argument or fir.address_of
// TODO: generalize to all operations (in particular fir.alloca and
// fir.allocmem)
auto def = getOriginalDef(op.getMemref());
if (isDummyArgument(def) ||
def.template getDefiningOp<fir::AddrOfOp>()) {
v = def;
defOp = v.getDefiningOp();
return;
}
}
// No further tracking for addresses loaded from memory for now.
type = SourceKind::Indirect;
breakFromLoop = true;
})
.Case<fir::AddrOfOp>([&](auto op) {
// Address of a global scope object.
ty = v.getType();
// When the global is a
// fir.global @_QMpointersEp : !fir.box<!fir.ptr<f32>>
// or
// fir.global @_QMpointersEp : !fir.box<!fir.heap<f32>>
//
// and when following through the wrapped address, capture
// the fact that there is nothing known about it. Therefore setting
// the source to Direct.
//
// When not following the wrapped address, then consider the address
// of the box, which has nothing to do with the wrapped address and
// lies in the global memory space.
if (followBoxAddr &&
mlir::isa<fir::BaseBoxType>(fir::unwrapRefType(ty)))
type = SourceKind::Direct;
else
type = SourceKind::Global;
if (fir::valueHasFirAttribute(v,
fir::GlobalOp::getTargetAttrNameStr()))
attributes.set(Attribute::Target);
// TODO: Take followBoxAddr into account when setting the pointer
// attribute
if (Source::isPointerReference(ty))
attributes.set(Attribute::Pointer);
global = llvm::cast<fir::AddrOfOp>(op).getSymbol();
breakFromLoop = true;
})
.Case<hlfir::DeclareOp, fir::DeclareOp>([&](auto op) {
auto varIf = llvm::cast<fir::FortranVariableOpInterface>(defOp);
// While going through a declare operation collect
// the variable attributes from it. Right now, some
// of the attributes are duplicated, e.g. a TARGET dummy
// argument has the target attribute both on its declare
// operation and on the entry block argument.
// In case of host associated use, the declare operation
// is the only carrier of the variable attributes,
// so we have to collect them here.
attributes |= getAttrsFromVariable(varIf);
if (varIf.isHostAssoc()) {
// Do not track past such DeclareOp, because it does not
// currently provide any useful information. The host associated
// access will end up dereferencing the host association tuple,
// so we may as well stop right now.
v = defOp->getResult(0);
// TODO: if the host associated variable is a dummy argument
// of the host, I think, we can treat it as SourceKind::Argument
// for the purpose of alias analysis inside the internal procedure.
type = SourceKind::HostAssoc;
breakFromLoop = true;
return;
}
// TODO: Look for the fortran attributes present on the operation
// Track further through the operand
v = op.getMemref();
defOp = v.getDefiningOp();
})
.Case<hlfir::DesignateOp>([&](auto op) {
// Track further through the memory indexed into
// => if the source arrays/structures don't alias then nor do the
// results of hlfir.designate
v = op.getMemref();
defOp = v.getDefiningOp();
// TODO: there will be some cases which provably don't alias if one
// takes into account the component or indices, which are currently
// ignored here - leading to false positives
// because of this limitation, we need to make sure we never return
// MustAlias after going through a designate operation
approximateSource = true;
if (mlir::isa<fir::BaseBoxType>(v.getType()))
followBoxAddr = true;
})
.Default([&](auto op) {
defOp = nullptr;
breakFromLoop = true;
});
}
if (!defOp && type == SourceKind::Unknown)
// Check if the memory source is coming through a dummy argument.
if (isDummyArgument(v)) {
type = SourceKind::Argument;
ty = v.getType();
if (fir::valueHasFirAttribute(v, fir::getTargetAttrName()))
attributes.set(Attribute::Target);
if (Source::isPointerReference(ty))
attributes.set(Attribute::Pointer);
}
if (type == SourceKind::Global)
return {global, type, ty, attributes, approximateSource};
return {v, type, ty, attributes, approximateSource};
}
} // namespace fir