
This patch fixes a simple error where as part of loop unrolling we optimize conditional loop-exiting branches into unconditional branches when we know that they will or won't exit the loop, but does not propagate the source location of the original branch to the new one. Found using https://github.com/llvm/llvm-project/pull/107279.
1106 lines
42 KiB
C++
1106 lines
42 KiB
C++
//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements some loop unrolling utilities. It does not define any
|
|
// actual pass or policy, but provides a single function to perform loop
|
|
// unrolling.
|
|
//
|
|
// The process of unrolling can produce extraneous basic blocks linked with
|
|
// unconditional branches. This will be corrected in the future.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/ScopedHashTable.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopIterator.h"
|
|
#include "llvm/Analysis/MemorySSA.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/IR/ValueMap.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/GenericDomTree.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/LoopSimplify.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
|
|
#include "llvm/Transforms/Utils/UnrollLoop.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include <algorithm>
|
|
#include <assert.h>
|
|
#include <numeric>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
class DataLayout;
|
|
class Value;
|
|
} // namespace llvm
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-unroll"
|
|
|
|
// TODO: Should these be here or in LoopUnroll?
|
|
STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
|
|
STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
|
|
STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
|
|
"latch (completely or otherwise)");
|
|
|
|
static cl::opt<bool>
|
|
UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
|
|
cl::desc("Allow runtime unrolled loops to be unrolled "
|
|
"with epilog instead of prolog."));
|
|
|
|
static cl::opt<bool>
|
|
UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
|
|
cl::desc("Verify domtree after unrolling"),
|
|
#ifdef EXPENSIVE_CHECKS
|
|
cl::init(true)
|
|
#else
|
|
cl::init(false)
|
|
#endif
|
|
);
|
|
|
|
static cl::opt<bool>
|
|
UnrollVerifyLoopInfo("unroll-verify-loopinfo", cl::Hidden,
|
|
cl::desc("Verify loopinfo after unrolling"),
|
|
#ifdef EXPENSIVE_CHECKS
|
|
cl::init(true)
|
|
#else
|
|
cl::init(false)
|
|
#endif
|
|
);
|
|
|
|
|
|
/// Check if unrolling created a situation where we need to insert phi nodes to
|
|
/// preserve LCSSA form.
|
|
/// \param Blocks is a vector of basic blocks representing unrolled loop.
|
|
/// \param L is the outer loop.
|
|
/// It's possible that some of the blocks are in L, and some are not. In this
|
|
/// case, if there is a use is outside L, and definition is inside L, we need to
|
|
/// insert a phi-node, otherwise LCSSA will be broken.
|
|
/// The function is just a helper function for llvm::UnrollLoop that returns
|
|
/// true if this situation occurs, indicating that LCSSA needs to be fixed.
|
|
static bool needToInsertPhisForLCSSA(Loop *L,
|
|
const std::vector<BasicBlock *> &Blocks,
|
|
LoopInfo *LI) {
|
|
for (BasicBlock *BB : Blocks) {
|
|
if (LI->getLoopFor(BB) == L)
|
|
continue;
|
|
for (Instruction &I : *BB) {
|
|
for (Use &U : I.operands()) {
|
|
if (const auto *Def = dyn_cast<Instruction>(U)) {
|
|
Loop *DefLoop = LI->getLoopFor(Def->getParent());
|
|
if (!DefLoop)
|
|
continue;
|
|
if (DefLoop->contains(L))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
|
|
/// and adds a mapping from the original loop to the new loop to NewLoops.
|
|
/// Returns nullptr if no new loop was created and a pointer to the
|
|
/// original loop OriginalBB was part of otherwise.
|
|
const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
|
|
BasicBlock *ClonedBB, LoopInfo *LI,
|
|
NewLoopsMap &NewLoops) {
|
|
// Figure out which loop New is in.
|
|
const Loop *OldLoop = LI->getLoopFor(OriginalBB);
|
|
assert(OldLoop && "Should (at least) be in the loop being unrolled!");
|
|
|
|
Loop *&NewLoop = NewLoops[OldLoop];
|
|
if (!NewLoop) {
|
|
// Found a new sub-loop.
|
|
assert(OriginalBB == OldLoop->getHeader() &&
|
|
"Header should be first in RPO");
|
|
|
|
NewLoop = LI->AllocateLoop();
|
|
Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
|
|
|
|
if (NewLoopParent)
|
|
NewLoopParent->addChildLoop(NewLoop);
|
|
else
|
|
LI->addTopLevelLoop(NewLoop);
|
|
|
|
NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
|
|
return OldLoop;
|
|
} else {
|
|
NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
/// The function chooses which type of unroll (epilog or prolog) is more
|
|
/// profitabale.
|
|
/// Epilog unroll is more profitable when there is PHI that starts from
|
|
/// constant. In this case epilog will leave PHI start from constant,
|
|
/// but prolog will convert it to non-constant.
|
|
///
|
|
/// loop:
|
|
/// PN = PHI [I, Latch], [CI, PreHeader]
|
|
/// I = foo(PN)
|
|
/// ...
|
|
///
|
|
/// Epilog unroll case.
|
|
/// loop:
|
|
/// PN = PHI [I2, Latch], [CI, PreHeader]
|
|
/// I1 = foo(PN)
|
|
/// I2 = foo(I1)
|
|
/// ...
|
|
/// Prolog unroll case.
|
|
/// NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
|
|
/// loop:
|
|
/// PN = PHI [I2, Latch], [NewPN, PreHeader]
|
|
/// I1 = foo(PN)
|
|
/// I2 = foo(I1)
|
|
/// ...
|
|
///
|
|
static bool isEpilogProfitable(Loop *L) {
|
|
BasicBlock *PreHeader = L->getLoopPreheader();
|
|
BasicBlock *Header = L->getHeader();
|
|
assert(PreHeader && Header);
|
|
for (const PHINode &PN : Header->phis()) {
|
|
if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
struct LoadValue {
|
|
Instruction *DefI = nullptr;
|
|
unsigned Generation = 0;
|
|
LoadValue() = default;
|
|
LoadValue(Instruction *Inst, unsigned Generation)
|
|
: DefI(Inst), Generation(Generation) {}
|
|
};
|
|
|
|
class StackNode {
|
|
ScopedHashTable<const SCEV *, LoadValue>::ScopeTy LoadScope;
|
|
unsigned CurrentGeneration;
|
|
unsigned ChildGeneration;
|
|
DomTreeNode *Node;
|
|
DomTreeNode::const_iterator ChildIter;
|
|
DomTreeNode::const_iterator EndIter;
|
|
bool Processed = false;
|
|
|
|
public:
|
|
StackNode(ScopedHashTable<const SCEV *, LoadValue> &AvailableLoads,
|
|
unsigned cg, DomTreeNode *N, DomTreeNode::const_iterator Child,
|
|
DomTreeNode::const_iterator End)
|
|
: LoadScope(AvailableLoads), CurrentGeneration(cg), ChildGeneration(cg),
|
|
Node(N), ChildIter(Child), EndIter(End) {}
|
|
// Accessors.
|
|
unsigned currentGeneration() const { return CurrentGeneration; }
|
|
unsigned childGeneration() const { return ChildGeneration; }
|
|
void childGeneration(unsigned generation) { ChildGeneration = generation; }
|
|
DomTreeNode *node() { return Node; }
|
|
DomTreeNode::const_iterator childIter() const { return ChildIter; }
|
|
|
|
DomTreeNode *nextChild() {
|
|
DomTreeNode *Child = *ChildIter;
|
|
++ChildIter;
|
|
return Child;
|
|
}
|
|
|
|
DomTreeNode::const_iterator end() const { return EndIter; }
|
|
bool isProcessed() const { return Processed; }
|
|
void process() { Processed = true; }
|
|
};
|
|
|
|
Value *getMatchingValue(LoadValue LV, LoadInst *LI, unsigned CurrentGeneration,
|
|
BatchAAResults &BAA,
|
|
function_ref<MemorySSA *()> GetMSSA) {
|
|
if (!LV.DefI)
|
|
return nullptr;
|
|
if (LV.DefI->getType() != LI->getType())
|
|
return nullptr;
|
|
if (LV.Generation != CurrentGeneration) {
|
|
MemorySSA *MSSA = GetMSSA();
|
|
if (!MSSA)
|
|
return nullptr;
|
|
auto *EarlierMA = MSSA->getMemoryAccess(LV.DefI);
|
|
MemoryAccess *LaterDef =
|
|
MSSA->getWalker()->getClobberingMemoryAccess(LI, BAA);
|
|
if (!MSSA->dominates(LaterDef, EarlierMA))
|
|
return nullptr;
|
|
}
|
|
return LV.DefI;
|
|
}
|
|
|
|
void loadCSE(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI,
|
|
BatchAAResults &BAA, function_ref<MemorySSA *()> GetMSSA) {
|
|
ScopedHashTable<const SCEV *, LoadValue> AvailableLoads;
|
|
SmallVector<std::unique_ptr<StackNode>> NodesToProcess;
|
|
DomTreeNode *HeaderD = DT.getNode(L->getHeader());
|
|
NodesToProcess.emplace_back(new StackNode(AvailableLoads, 0, HeaderD,
|
|
HeaderD->begin(), HeaderD->end()));
|
|
|
|
unsigned CurrentGeneration = 0;
|
|
while (!NodesToProcess.empty()) {
|
|
StackNode *NodeToProcess = &*NodesToProcess.back();
|
|
|
|
CurrentGeneration = NodeToProcess->currentGeneration();
|
|
|
|
if (!NodeToProcess->isProcessed()) {
|
|
// Process the node.
|
|
|
|
// If this block has a single predecessor, then the predecessor is the
|
|
// parent
|
|
// of the domtree node and all of the live out memory values are still
|
|
// current in this block. If this block has multiple predecessors, then
|
|
// they could have invalidated the live-out memory values of our parent
|
|
// value. For now, just be conservative and invalidate memory if this
|
|
// block has multiple predecessors.
|
|
if (!NodeToProcess->node()->getBlock()->getSinglePredecessor())
|
|
++CurrentGeneration;
|
|
for (auto &I : make_early_inc_range(*NodeToProcess->node()->getBlock())) {
|
|
|
|
auto *Load = dyn_cast<LoadInst>(&I);
|
|
if (!Load || !Load->isSimple()) {
|
|
if (I.mayWriteToMemory())
|
|
CurrentGeneration++;
|
|
continue;
|
|
}
|
|
|
|
const SCEV *PtrSCEV = SE.getSCEV(Load->getPointerOperand());
|
|
LoadValue LV = AvailableLoads.lookup(PtrSCEV);
|
|
if (Value *M =
|
|
getMatchingValue(LV, Load, CurrentGeneration, BAA, GetMSSA)) {
|
|
if (LI.replacementPreservesLCSSAForm(Load, M)) {
|
|
Load->replaceAllUsesWith(M);
|
|
Load->eraseFromParent();
|
|
}
|
|
} else {
|
|
AvailableLoads.insert(PtrSCEV, LoadValue(Load, CurrentGeneration));
|
|
}
|
|
}
|
|
NodeToProcess->childGeneration(CurrentGeneration);
|
|
NodeToProcess->process();
|
|
} else if (NodeToProcess->childIter() != NodeToProcess->end()) {
|
|
// Push the next child onto the stack.
|
|
DomTreeNode *Child = NodeToProcess->nextChild();
|
|
if (!L->contains(Child->getBlock()))
|
|
continue;
|
|
NodesToProcess.emplace_back(
|
|
new StackNode(AvailableLoads, NodeToProcess->childGeneration(), Child,
|
|
Child->begin(), Child->end()));
|
|
} else {
|
|
// It has been processed, and there are no more children to process,
|
|
// so delete it and pop it off the stack.
|
|
NodesToProcess.pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Perform some cleanup and simplifications on loops after unrolling. It is
|
|
/// useful to simplify the IV's in the new loop, as well as do a quick
|
|
/// simplify/dce pass of the instructions.
|
|
void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
|
|
ScalarEvolution *SE, DominatorTree *DT,
|
|
AssumptionCache *AC,
|
|
const TargetTransformInfo *TTI,
|
|
AAResults *AA) {
|
|
using namespace llvm::PatternMatch;
|
|
|
|
// Simplify any new induction variables in the partially unrolled loop.
|
|
if (SE && SimplifyIVs) {
|
|
SmallVector<WeakTrackingVH, 16> DeadInsts;
|
|
simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
|
|
|
|
// Aggressively clean up dead instructions that simplifyLoopIVs already
|
|
// identified. Any remaining should be cleaned up below.
|
|
while (!DeadInsts.empty()) {
|
|
Value *V = DeadInsts.pop_back_val();
|
|
if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
|
|
RecursivelyDeleteTriviallyDeadInstructions(Inst);
|
|
}
|
|
|
|
if (AA) {
|
|
std::unique_ptr<MemorySSA> MSSA = nullptr;
|
|
BatchAAResults BAA(*AA);
|
|
loadCSE(L, *DT, *SE, *LI, BAA, [L, AA, DT, &MSSA]() -> MemorySSA * {
|
|
if (!MSSA)
|
|
MSSA.reset(new MemorySSA(*L, AA, DT));
|
|
return &*MSSA;
|
|
});
|
|
}
|
|
}
|
|
|
|
// At this point, the code is well formed. Perform constprop, instsimplify,
|
|
// and dce.
|
|
const DataLayout &DL = L->getHeader()->getDataLayout();
|
|
SmallVector<WeakTrackingVH, 16> DeadInsts;
|
|
for (BasicBlock *BB : L->getBlocks()) {
|
|
// Remove repeated debug instructions after loop unrolling.
|
|
if (BB->getParent()->getSubprogram())
|
|
RemoveRedundantDbgInstrs(BB);
|
|
|
|
for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
|
|
if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
|
|
if (LI->replacementPreservesLCSSAForm(&Inst, V))
|
|
Inst.replaceAllUsesWith(V);
|
|
if (isInstructionTriviallyDead(&Inst))
|
|
DeadInsts.emplace_back(&Inst);
|
|
|
|
// Fold ((add X, C1), C2) to (add X, C1+C2). This is very common in
|
|
// unrolled loops, and handling this early allows following code to
|
|
// identify the IV as a "simple recurrence" without first folding away
|
|
// a long chain of adds.
|
|
{
|
|
Value *X;
|
|
const APInt *C1, *C2;
|
|
if (match(&Inst, m_Add(m_Add(m_Value(X), m_APInt(C1)), m_APInt(C2)))) {
|
|
auto *InnerI = dyn_cast<Instruction>(Inst.getOperand(0));
|
|
auto *InnerOBO = cast<OverflowingBinaryOperator>(Inst.getOperand(0));
|
|
bool SignedOverflow;
|
|
APInt NewC = C1->sadd_ov(*C2, SignedOverflow);
|
|
Inst.setOperand(0, X);
|
|
Inst.setOperand(1, ConstantInt::get(Inst.getType(), NewC));
|
|
Inst.setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap() &&
|
|
InnerOBO->hasNoUnsignedWrap());
|
|
Inst.setHasNoSignedWrap(Inst.hasNoSignedWrap() &&
|
|
InnerOBO->hasNoSignedWrap() &&
|
|
!SignedOverflow);
|
|
if (InnerI && isInstructionTriviallyDead(InnerI))
|
|
DeadInsts.emplace_back(InnerI);
|
|
}
|
|
}
|
|
}
|
|
// We can't do recursive deletion until we're done iterating, as we might
|
|
// have a phi which (potentially indirectly) uses instructions later in
|
|
// the block we're iterating through.
|
|
RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
|
|
}
|
|
}
|
|
|
|
// Loops containing convergent instructions that are uncontrolled or controlled
|
|
// from outside the loop must have a count that divides their TripMultiple.
|
|
LLVM_ATTRIBUTE_USED
|
|
static bool canHaveUnrollRemainder(const Loop *L) {
|
|
if (getLoopConvergenceHeart(L))
|
|
return false;
|
|
|
|
// Check for uncontrolled convergent operations.
|
|
for (auto &BB : L->blocks()) {
|
|
for (auto &I : *BB) {
|
|
if (isa<ConvergenceControlInst>(I))
|
|
return true;
|
|
if (auto *CB = dyn_cast<CallBase>(&I))
|
|
if (CB->isConvergent())
|
|
return CB->getConvergenceControlToken();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling
|
|
/// can only fail when the loop's latch block is not terminated by a conditional
|
|
/// branch instruction. However, if the trip count (and multiple) are not known,
|
|
/// loop unrolling will mostly produce more code that is no faster.
|
|
///
|
|
/// If Runtime is true then UnrollLoop will try to insert a prologue or
|
|
/// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop
|
|
/// will not runtime-unroll the loop if computing the run-time trip count will
|
|
/// be expensive and AllowExpensiveTripCount is false.
|
|
///
|
|
/// The LoopInfo Analysis that is passed will be kept consistent.
|
|
///
|
|
/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
|
|
/// DominatorTree if they are non-null.
|
|
///
|
|
/// If RemainderLoop is non-null, it will receive the remainder loop (if
|
|
/// required and not fully unrolled).
|
|
LoopUnrollResult
|
|
llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
|
|
ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
|
|
const TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE,
|
|
bool PreserveLCSSA, Loop **RemainderLoop, AAResults *AA) {
|
|
assert(DT && "DomTree is required");
|
|
|
|
if (!L->getLoopPreheader()) {
|
|
LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
|
|
if (!L->getLoopLatch()) {
|
|
LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
|
|
// Loops with indirectbr cannot be cloned.
|
|
if (!L->isSafeToClone()) {
|
|
LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
|
|
if (L->getHeader()->hasAddressTaken()) {
|
|
// The loop-rotate pass can be helpful to avoid this in many cases.
|
|
LLVM_DEBUG(
|
|
dbgs() << " Won't unroll loop: address of header block is taken.\n");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
|
|
assert(ULO.Count > 0);
|
|
|
|
// All these values should be taken only after peeling because they might have
|
|
// changed.
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
BasicBlock *Header = L->getHeader();
|
|
BasicBlock *LatchBlock = L->getLoopLatch();
|
|
SmallVector<BasicBlock *, 4> ExitBlocks;
|
|
L->getExitBlocks(ExitBlocks);
|
|
std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
|
|
|
|
const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
|
|
const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
|
|
unsigned EstimatedLoopInvocationWeight = 0;
|
|
std::optional<unsigned> OriginalTripCount =
|
|
llvm::getLoopEstimatedTripCount(L, &EstimatedLoopInvocationWeight);
|
|
|
|
// Effectively "DCE" unrolled iterations that are beyond the max tripcount
|
|
// and will never be executed.
|
|
if (MaxTripCount && ULO.Count > MaxTripCount)
|
|
ULO.Count = MaxTripCount;
|
|
|
|
struct ExitInfo {
|
|
unsigned TripCount;
|
|
unsigned TripMultiple;
|
|
unsigned BreakoutTrip;
|
|
bool ExitOnTrue;
|
|
BasicBlock *FirstExitingBlock = nullptr;
|
|
SmallVector<BasicBlock *> ExitingBlocks;
|
|
};
|
|
DenseMap<BasicBlock *, ExitInfo> ExitInfos;
|
|
SmallVector<BasicBlock *, 4> ExitingBlocks;
|
|
L->getExitingBlocks(ExitingBlocks);
|
|
for (auto *ExitingBlock : ExitingBlocks) {
|
|
// The folding code is not prepared to deal with non-branch instructions
|
|
// right now.
|
|
auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
|
|
if (!BI)
|
|
continue;
|
|
|
|
ExitInfo &Info = ExitInfos[ExitingBlock];
|
|
Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
|
|
Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
|
|
if (Info.TripCount != 0) {
|
|
Info.BreakoutTrip = Info.TripCount % ULO.Count;
|
|
Info.TripMultiple = 0;
|
|
} else {
|
|
Info.BreakoutTrip = Info.TripMultiple =
|
|
(unsigned)std::gcd(ULO.Count, Info.TripMultiple);
|
|
}
|
|
Info.ExitOnTrue = !L->contains(BI->getSuccessor(0));
|
|
Info.ExitingBlocks.push_back(ExitingBlock);
|
|
LLVM_DEBUG(dbgs() << " Exiting block %" << ExitingBlock->getName()
|
|
<< ": TripCount=" << Info.TripCount
|
|
<< ", TripMultiple=" << Info.TripMultiple
|
|
<< ", BreakoutTrip=" << Info.BreakoutTrip << "\n");
|
|
}
|
|
|
|
// Are we eliminating the loop control altogether? Note that we can know
|
|
// we're eliminating the backedge without knowing exactly which iteration
|
|
// of the unrolled body exits.
|
|
const bool CompletelyUnroll = ULO.Count == MaxTripCount;
|
|
|
|
const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero;
|
|
|
|
// There's no point in performing runtime unrolling if this unroll count
|
|
// results in a full unroll.
|
|
if (CompletelyUnroll)
|
|
ULO.Runtime = false;
|
|
|
|
// Go through all exits of L and see if there are any phi-nodes there. We just
|
|
// conservatively assume that they're inserted to preserve LCSSA form, which
|
|
// means that complete unrolling might break this form. We need to either fix
|
|
// it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
|
|
// now we just recompute LCSSA for the outer loop, but it should be possible
|
|
// to fix it in-place.
|
|
bool NeedToFixLCSSA =
|
|
PreserveLCSSA && CompletelyUnroll &&
|
|
any_of(ExitBlocks,
|
|
[](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
|
|
|
|
// The current loop unroll pass can unroll loops that have
|
|
// (1) single latch; and
|
|
// (2a) latch is unconditional; or
|
|
// (2b) latch is conditional and is an exiting block
|
|
// FIXME: The implementation can be extended to work with more complicated
|
|
// cases, e.g. loops with multiple latches.
|
|
BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
|
|
|
|
// A conditional branch which exits the loop, which can be optimized to an
|
|
// unconditional branch in the unrolled loop in some cases.
|
|
bool LatchIsExiting = L->isLoopExiting(LatchBlock);
|
|
if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Can't unroll; a conditional latch must exit the loop");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
|
|
assert((!ULO.Runtime || canHaveUnrollRemainder(L)) &&
|
|
"Can't runtime unroll if loop contains a convergent operation.");
|
|
|
|
bool EpilogProfitability =
|
|
UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
|
|
: isEpilogProfitable(L);
|
|
|
|
if (ULO.Runtime &&
|
|
!UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
|
|
EpilogProfitability, ULO.UnrollRemainder,
|
|
ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
|
|
PreserveLCSSA, RemainderLoop)) {
|
|
if (ULO.Force)
|
|
ULO.Runtime = false;
|
|
else {
|
|
LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
|
|
"generated when assuming runtime trip count\n");
|
|
return LoopUnrollResult::Unmodified;
|
|
}
|
|
}
|
|
|
|
using namespace ore;
|
|
// Report the unrolling decision.
|
|
if (CompletelyUnroll) {
|
|
LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
|
|
<< " with trip count " << ULO.Count << "!\n");
|
|
if (ORE)
|
|
ORE->emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
|
|
L->getHeader())
|
|
<< "completely unrolled loop with "
|
|
<< NV("UnrollCount", ULO.Count) << " iterations";
|
|
});
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
|
|
<< ULO.Count);
|
|
if (ULO.Runtime)
|
|
LLVM_DEBUG(dbgs() << " with run-time trip count");
|
|
LLVM_DEBUG(dbgs() << "!\n");
|
|
|
|
if (ORE)
|
|
ORE->emit([&]() {
|
|
OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
|
|
L->getHeader());
|
|
Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count);
|
|
if (ULO.Runtime)
|
|
Diag << " with run-time trip count";
|
|
return Diag;
|
|
});
|
|
}
|
|
|
|
// We are going to make changes to this loop. SCEV may be keeping cached info
|
|
// about it, in particular about backedge taken count. The changes we make
|
|
// are guaranteed to invalidate this information for our loop. It is tempting
|
|
// to only invalidate the loop being unrolled, but it is incorrect as long as
|
|
// all exiting branches from all inner loops have impact on the outer loops,
|
|
// and if something changes inside them then any of outer loops may also
|
|
// change. When we forget outermost loop, we also forget all contained loops
|
|
// and this is what we need here.
|
|
if (SE) {
|
|
if (ULO.ForgetAllSCEV)
|
|
SE->forgetAllLoops();
|
|
else {
|
|
SE->forgetTopmostLoop(L);
|
|
SE->forgetBlockAndLoopDispositions();
|
|
}
|
|
}
|
|
|
|
if (!LatchIsExiting)
|
|
++NumUnrolledNotLatch;
|
|
|
|
// For the first iteration of the loop, we should use the precloned values for
|
|
// PHI nodes. Insert associations now.
|
|
ValueToValueMapTy LastValueMap;
|
|
std::vector<PHINode*> OrigPHINode;
|
|
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
|
|
OrigPHINode.push_back(cast<PHINode>(I));
|
|
}
|
|
|
|
std::vector<BasicBlock *> Headers;
|
|
std::vector<BasicBlock *> Latches;
|
|
Headers.push_back(Header);
|
|
Latches.push_back(LatchBlock);
|
|
|
|
// The current on-the-fly SSA update requires blocks to be processed in
|
|
// reverse postorder so that LastValueMap contains the correct value at each
|
|
// exit.
|
|
LoopBlocksDFS DFS(L);
|
|
DFS.perform(LI);
|
|
|
|
// Stash the DFS iterators before adding blocks to the loop.
|
|
LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
|
|
LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
|
|
|
|
std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
|
|
|
|
// Loop Unrolling might create new loops. While we do preserve LoopInfo, we
|
|
// might break loop-simplified form for these loops (as they, e.g., would
|
|
// share the same exit blocks). We'll keep track of loops for which we can
|
|
// break this so that later we can re-simplify them.
|
|
SmallSetVector<Loop *, 4> LoopsToSimplify;
|
|
for (Loop *SubLoop : *L)
|
|
LoopsToSimplify.insert(SubLoop);
|
|
|
|
// When a FSDiscriminator is enabled, we don't need to add the multiply
|
|
// factors to the discriminators.
|
|
if (Header->getParent()->shouldEmitDebugInfoForProfiling() &&
|
|
!EnableFSDiscriminator)
|
|
for (BasicBlock *BB : L->getBlocks())
|
|
for (Instruction &I : *BB)
|
|
if (!I.isDebugOrPseudoInst())
|
|
if (const DILocation *DIL = I.getDebugLoc()) {
|
|
auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
|
|
if (NewDIL)
|
|
I.setDebugLoc(*NewDIL);
|
|
else
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Failed to create new discriminator: "
|
|
<< DIL->getFilename() << " Line: " << DIL->getLine());
|
|
}
|
|
|
|
// Identify what noalias metadata is inside the loop: if it is inside the
|
|
// loop, the associated metadata must be cloned for each iteration.
|
|
SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
|
|
identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
|
|
|
|
// We place the unrolled iterations immediately after the original loop
|
|
// latch. This is a reasonable default placement if we don't have block
|
|
// frequencies, and if we do, well the layout will be adjusted later.
|
|
auto BlockInsertPt = std::next(LatchBlock->getIterator());
|
|
for (unsigned It = 1; It != ULO.Count; ++It) {
|
|
SmallVector<BasicBlock *, 8> NewBlocks;
|
|
SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
|
|
NewLoops[L] = L;
|
|
|
|
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
|
|
ValueToValueMapTy VMap;
|
|
BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
|
|
Header->getParent()->insert(BlockInsertPt, New);
|
|
|
|
assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
|
|
"Header should not be in a sub-loop");
|
|
// Tell LI about New.
|
|
const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
|
|
if (OldLoop)
|
|
LoopsToSimplify.insert(NewLoops[OldLoop]);
|
|
|
|
if (*BB == Header) {
|
|
// Loop over all of the PHI nodes in the block, changing them to use
|
|
// the incoming values from the previous block.
|
|
for (PHINode *OrigPHI : OrigPHINode) {
|
|
PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
|
|
Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
|
|
if (Instruction *InValI = dyn_cast<Instruction>(InVal))
|
|
if (It > 1 && L->contains(InValI))
|
|
InVal = LastValueMap[InValI];
|
|
VMap[OrigPHI] = InVal;
|
|
NewPHI->eraseFromParent();
|
|
}
|
|
|
|
// Eliminate copies of the loop heart intrinsic, if any.
|
|
if (ULO.Heart) {
|
|
auto it = VMap.find(ULO.Heart);
|
|
assert(it != VMap.end());
|
|
Instruction *heartCopy = cast<Instruction>(it->second);
|
|
heartCopy->eraseFromParent();
|
|
VMap.erase(it);
|
|
}
|
|
}
|
|
|
|
// Update our running map of newest clones
|
|
LastValueMap[*BB] = New;
|
|
for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
|
|
VI != VE; ++VI)
|
|
LastValueMap[VI->first] = VI->second;
|
|
|
|
// Add phi entries for newly created values to all exit blocks.
|
|
for (BasicBlock *Succ : successors(*BB)) {
|
|
if (L->contains(Succ))
|
|
continue;
|
|
for (PHINode &PHI : Succ->phis()) {
|
|
Value *Incoming = PHI.getIncomingValueForBlock(*BB);
|
|
ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
|
|
if (It != LastValueMap.end())
|
|
Incoming = It->second;
|
|
PHI.addIncoming(Incoming, New);
|
|
SE->forgetLcssaPhiWithNewPredecessor(L, &PHI);
|
|
}
|
|
}
|
|
// Keep track of new headers and latches as we create them, so that
|
|
// we can insert the proper branches later.
|
|
if (*BB == Header)
|
|
Headers.push_back(New);
|
|
if (*BB == LatchBlock)
|
|
Latches.push_back(New);
|
|
|
|
// Keep track of the exiting block and its successor block contained in
|
|
// the loop for the current iteration.
|
|
auto ExitInfoIt = ExitInfos.find(*BB);
|
|
if (ExitInfoIt != ExitInfos.end())
|
|
ExitInfoIt->second.ExitingBlocks.push_back(New);
|
|
|
|
NewBlocks.push_back(New);
|
|
UnrolledLoopBlocks.push_back(New);
|
|
|
|
// Update DomTree: since we just copy the loop body, and each copy has a
|
|
// dedicated entry block (copy of the header block), this header's copy
|
|
// dominates all copied blocks. That means, dominance relations in the
|
|
// copied body are the same as in the original body.
|
|
if (*BB == Header)
|
|
DT->addNewBlock(New, Latches[It - 1]);
|
|
else {
|
|
auto BBDomNode = DT->getNode(*BB);
|
|
auto BBIDom = BBDomNode->getIDom();
|
|
BasicBlock *OriginalBBIDom = BBIDom->getBlock();
|
|
DT->addNewBlock(
|
|
New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
|
|
}
|
|
}
|
|
|
|
// Remap all instructions in the most recent iteration
|
|
remapInstructionsInBlocks(NewBlocks, LastValueMap);
|
|
for (BasicBlock *NewBlock : NewBlocks)
|
|
for (Instruction &I : *NewBlock)
|
|
if (auto *II = dyn_cast<AssumeInst>(&I))
|
|
AC->registerAssumption(II);
|
|
|
|
{
|
|
// Identify what other metadata depends on the cloned version. After
|
|
// cloning, replace the metadata with the corrected version for both
|
|
// memory instructions and noalias intrinsics.
|
|
std::string ext = (Twine("It") + Twine(It)).str();
|
|
cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
|
|
Header->getContext(), ext);
|
|
}
|
|
}
|
|
|
|
// Loop over the PHI nodes in the original block, setting incoming values.
|
|
for (PHINode *PN : OrigPHINode) {
|
|
if (CompletelyUnroll) {
|
|
PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
|
|
PN->eraseFromParent();
|
|
} else if (ULO.Count > 1) {
|
|
Value *InVal = PN->removeIncomingValue(LatchBlock, false);
|
|
// If this value was defined in the loop, take the value defined by the
|
|
// last iteration of the loop.
|
|
if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
|
|
if (L->contains(InValI))
|
|
InVal = LastValueMap[InVal];
|
|
}
|
|
assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
|
|
PN->addIncoming(InVal, Latches.back());
|
|
}
|
|
}
|
|
|
|
// Connect latches of the unrolled iterations to the headers of the next
|
|
// iteration. Currently they point to the header of the same iteration.
|
|
for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
|
|
unsigned j = (i + 1) % e;
|
|
Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
|
|
}
|
|
|
|
// Update dominators of blocks we might reach through exits.
|
|
// Immediate dominator of such block might change, because we add more
|
|
// routes which can lead to the exit: we can now reach it from the copied
|
|
// iterations too.
|
|
if (ULO.Count > 1) {
|
|
for (auto *BB : OriginalLoopBlocks) {
|
|
auto *BBDomNode = DT->getNode(BB);
|
|
SmallVector<BasicBlock *, 16> ChildrenToUpdate;
|
|
for (auto *ChildDomNode : BBDomNode->children()) {
|
|
auto *ChildBB = ChildDomNode->getBlock();
|
|
if (!L->contains(ChildBB))
|
|
ChildrenToUpdate.push_back(ChildBB);
|
|
}
|
|
// The new idom of the block will be the nearest common dominator
|
|
// of all copies of the previous idom. This is equivalent to the
|
|
// nearest common dominator of the previous idom and the first latch,
|
|
// which dominates all copies of the previous idom.
|
|
BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
|
|
for (auto *ChildBB : ChildrenToUpdate)
|
|
DT->changeImmediateDominator(ChildBB, NewIDom);
|
|
}
|
|
}
|
|
|
|
assert(!UnrollVerifyDomtree ||
|
|
DT->verify(DominatorTree::VerificationLevel::Fast));
|
|
|
|
SmallVector<DominatorTree::UpdateType> DTUpdates;
|
|
auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
|
|
auto *Term = cast<BranchInst>(Src->getTerminator());
|
|
const unsigned Idx = ExitOnTrue ^ WillExit;
|
|
BasicBlock *Dest = Term->getSuccessor(Idx);
|
|
BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
|
|
|
|
// Remove predecessors from all non-Dest successors.
|
|
DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
|
|
|
|
// Replace the conditional branch with an unconditional one.
|
|
auto *BI = BranchInst::Create(Dest, Term->getIterator());
|
|
BI->setDebugLoc(Term->getDebugLoc());
|
|
Term->eraseFromParent();
|
|
|
|
DTUpdates.emplace_back(DominatorTree::Delete, Src, DeadSucc);
|
|
};
|
|
|
|
auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j,
|
|
bool IsLatch) -> std::optional<bool> {
|
|
if (CompletelyUnroll) {
|
|
if (PreserveOnlyFirst) {
|
|
if (i == 0)
|
|
return std::nullopt;
|
|
return j == 0;
|
|
}
|
|
// Complete (but possibly inexact) unrolling
|
|
if (j == 0)
|
|
return true;
|
|
if (Info.TripCount && j != Info.TripCount)
|
|
return false;
|
|
return std::nullopt;
|
|
}
|
|
|
|
if (ULO.Runtime) {
|
|
// If runtime unrolling inserts a prologue, information about non-latch
|
|
// exits may be stale.
|
|
if (IsLatch && j != 0)
|
|
return false;
|
|
return std::nullopt;
|
|
}
|
|
|
|
if (j != Info.BreakoutTrip &&
|
|
(Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) {
|
|
// If we know the trip count or a multiple of it, we can safely use an
|
|
// unconditional branch for some iterations.
|
|
return false;
|
|
}
|
|
return std::nullopt;
|
|
};
|
|
|
|
// Fold branches for iterations where we know that they will exit or not
|
|
// exit.
|
|
for (auto &Pair : ExitInfos) {
|
|
ExitInfo &Info = Pair.second;
|
|
for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) {
|
|
// The branch destination.
|
|
unsigned j = (i + 1) % e;
|
|
bool IsLatch = Pair.first == LatchBlock;
|
|
std::optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch);
|
|
if (!KnownWillExit) {
|
|
if (!Info.FirstExitingBlock)
|
|
Info.FirstExitingBlock = Info.ExitingBlocks[i];
|
|
continue;
|
|
}
|
|
|
|
// We don't fold known-exiting branches for non-latch exits here,
|
|
// because this ensures that both all loop blocks and all exit blocks
|
|
// remain reachable in the CFG.
|
|
// TODO: We could fold these branches, but it would require much more
|
|
// sophisticated updates to LoopInfo.
|
|
if (*KnownWillExit && !IsLatch) {
|
|
if (!Info.FirstExitingBlock)
|
|
Info.FirstExitingBlock = Info.ExitingBlocks[i];
|
|
continue;
|
|
}
|
|
|
|
SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue);
|
|
}
|
|
}
|
|
|
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
|
|
DomTreeUpdater *DTUToUse = &DTU;
|
|
if (ExitingBlocks.size() == 1 && ExitInfos.size() == 1) {
|
|
// Manually update the DT if there's a single exiting node. In that case
|
|
// there's a single exit node and it is sufficient to update the nodes
|
|
// immediately dominated by the original exiting block. They will become
|
|
// dominated by the first exiting block that leaves the loop after
|
|
// unrolling. Note that the CFG inside the loop does not change, so there's
|
|
// no need to update the DT inside the unrolled loop.
|
|
DTUToUse = nullptr;
|
|
auto &[OriginalExit, Info] = *ExitInfos.begin();
|
|
if (!Info.FirstExitingBlock)
|
|
Info.FirstExitingBlock = Info.ExitingBlocks.back();
|
|
for (auto *C : to_vector(DT->getNode(OriginalExit)->children())) {
|
|
if (L->contains(C->getBlock()))
|
|
continue;
|
|
C->setIDom(DT->getNode(Info.FirstExitingBlock));
|
|
}
|
|
} else {
|
|
DTU.applyUpdates(DTUpdates);
|
|
}
|
|
|
|
// When completely unrolling, the last latch becomes unreachable.
|
|
if (!LatchIsExiting && CompletelyUnroll) {
|
|
// There is no need to update the DT here, because there must be a unique
|
|
// latch. Hence if the latch is not exiting it must directly branch back to
|
|
// the original loop header and does not dominate any nodes.
|
|
assert(LatchBlock->getSingleSuccessor() && "Loop with multiple latches?");
|
|
changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA);
|
|
}
|
|
|
|
// Merge adjacent basic blocks, if possible.
|
|
for (BasicBlock *Latch : Latches) {
|
|
BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
|
|
assert((Term ||
|
|
(CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
|
|
"Need a branch as terminator, except when fully unrolling with "
|
|
"unconditional latch");
|
|
if (Term && Term->isUnconditional()) {
|
|
BasicBlock *Dest = Term->getSuccessor(0);
|
|
BasicBlock *Fold = Dest->getUniquePredecessor();
|
|
if (MergeBlockIntoPredecessor(Dest, /*DTU=*/DTUToUse, LI,
|
|
/*MSSAU=*/nullptr, /*MemDep=*/nullptr,
|
|
/*PredecessorWithTwoSuccessors=*/false,
|
|
DTUToUse ? nullptr : DT)) {
|
|
// Dest has been folded into Fold. Update our worklists accordingly.
|
|
std::replace(Latches.begin(), Latches.end(), Dest, Fold);
|
|
llvm::erase(UnrolledLoopBlocks, Dest);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (DTUToUse) {
|
|
// Apply updates to the DomTree.
|
|
DT = &DTU.getDomTree();
|
|
}
|
|
assert(!UnrollVerifyDomtree ||
|
|
DT->verify(DominatorTree::VerificationLevel::Fast));
|
|
|
|
// At this point, the code is well formed. We now simplify the unrolled loop,
|
|
// doing constant propagation and dead code elimination as we go.
|
|
simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
|
|
TTI, AA);
|
|
|
|
NumCompletelyUnrolled += CompletelyUnroll;
|
|
++NumUnrolled;
|
|
|
|
Loop *OuterL = L->getParentLoop();
|
|
// Update LoopInfo if the loop is completely removed.
|
|
if (CompletelyUnroll) {
|
|
LI->erase(L);
|
|
// We shouldn't try to use `L` anymore.
|
|
L = nullptr;
|
|
} else if (OriginalTripCount) {
|
|
// Update the trip count. Note that the remainder has already logic
|
|
// computing it in `UnrollRuntimeLoopRemainder`.
|
|
setLoopEstimatedTripCount(L, *OriginalTripCount / ULO.Count,
|
|
EstimatedLoopInvocationWeight);
|
|
}
|
|
|
|
// LoopInfo should not be valid, confirm that.
|
|
if (UnrollVerifyLoopInfo)
|
|
LI->verify(*DT);
|
|
|
|
// After complete unrolling most of the blocks should be contained in OuterL.
|
|
// However, some of them might happen to be out of OuterL (e.g. if they
|
|
// precede a loop exit). In this case we might need to insert PHI nodes in
|
|
// order to preserve LCSSA form.
|
|
// We don't need to check this if we already know that we need to fix LCSSA
|
|
// form.
|
|
// TODO: For now we just recompute LCSSA for the outer loop in this case, but
|
|
// it should be possible to fix it in-place.
|
|
if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
|
|
NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
|
|
|
|
// Make sure that loop-simplify form is preserved. We want to simplify
|
|
// at least one layer outside of the loop that was unrolled so that any
|
|
// changes to the parent loop exposed by the unrolling are considered.
|
|
if (OuterL) {
|
|
// OuterL includes all loops for which we can break loop-simplify, so
|
|
// it's sufficient to simplify only it (it'll recursively simplify inner
|
|
// loops too).
|
|
if (NeedToFixLCSSA) {
|
|
// LCSSA must be performed on the outermost affected loop. The unrolled
|
|
// loop's last loop latch is guaranteed to be in the outermost loop
|
|
// after LoopInfo's been updated by LoopInfo::erase.
|
|
Loop *LatchLoop = LI->getLoopFor(Latches.back());
|
|
Loop *FixLCSSALoop = OuterL;
|
|
if (!FixLCSSALoop->contains(LatchLoop))
|
|
while (FixLCSSALoop->getParentLoop() != LatchLoop)
|
|
FixLCSSALoop = FixLCSSALoop->getParentLoop();
|
|
|
|
formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
|
|
} else if (PreserveLCSSA) {
|
|
assert(OuterL->isLCSSAForm(*DT) &&
|
|
"Loops should be in LCSSA form after loop-unroll.");
|
|
}
|
|
|
|
// TODO: That potentially might be compile-time expensive. We should try
|
|
// to fix the loop-simplified form incrementally.
|
|
simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
|
|
} else {
|
|
// Simplify loops for which we might've broken loop-simplify form.
|
|
for (Loop *SubLoop : LoopsToSimplify)
|
|
simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
|
|
}
|
|
|
|
return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
|
|
: LoopUnrollResult::PartiallyUnrolled;
|
|
}
|
|
|
|
/// Given an llvm.loop loop id metadata node, returns the loop hint metadata
|
|
/// node with the given name (for example, "llvm.loop.unroll.count"). If no
|
|
/// such metadata node exists, then nullptr is returned.
|
|
MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
|
|
// First operand should refer to the loop id itself.
|
|
assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
|
|
assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
|
|
|
|
for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) {
|
|
MDNode *MD = dyn_cast<MDNode>(MDO);
|
|
if (!MD)
|
|
continue;
|
|
|
|
MDString *S = dyn_cast<MDString>(MD->getOperand(0));
|
|
if (!S)
|
|
continue;
|
|
|
|
if (Name == S->getString())
|
|
return MD;
|
|
}
|
|
return nullptr;
|
|
}
|