Joshua Cao 0bc98349c8
[LICM] Use DomTreeUpdater version of SplitBlockPredecessors, nfc (#107190)
The DominatorTree version is marked for deprecation, so we use the
DomTreeUpdater version. We also update sinkRegion() to iterate over
basic blocks instead of DomTreeNodes. The loop body calls
SplitBlockPredecessors. The DTU version calls
DomTreeUpdater::apply_updates(), which may call DominatorTree::reset().
This invalidates the worklist of DomTreeNodes to iterate over.
2024-09-29 21:28:45 -07:00

2212 lines
84 KiB
C++

//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines common loop utility functions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PriorityWorklist.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstSimplifyFolder.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "loop-utils"
static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
MemorySSAUpdater *MSSAU,
bool PreserveLCSSA) {
bool Changed = false;
// We re-use a vector for the in-loop predecesosrs.
SmallVector<BasicBlock *, 4> InLoopPredecessors;
auto RewriteExit = [&](BasicBlock *BB) {
assert(InLoopPredecessors.empty() &&
"Must start with an empty predecessors list!");
auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
// See if there are any non-loop predecessors of this exit block and
// keep track of the in-loop predecessors.
bool IsDedicatedExit = true;
for (auto *PredBB : predecessors(BB))
if (L->contains(PredBB)) {
if (isa<IndirectBrInst>(PredBB->getTerminator()))
// We cannot rewrite exiting edges from an indirectbr.
return false;
InLoopPredecessors.push_back(PredBB);
} else {
IsDedicatedExit = false;
}
assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
// Nothing to do if this is already a dedicated exit.
if (IsDedicatedExit)
return false;
auto *NewExitBB = SplitBlockPredecessors(
BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
if (!NewExitBB)
LLVM_DEBUG(
dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
<< *L << "\n");
else
LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
<< NewExitBB->getName() << "\n");
return true;
};
// Walk the exit blocks directly rather than building up a data structure for
// them, but only visit each one once.
SmallPtrSet<BasicBlock *, 4> Visited;
for (auto *BB : L->blocks())
for (auto *SuccBB : successors(BB)) {
// We're looking for exit blocks so skip in-loop successors.
if (L->contains(SuccBB))
continue;
// Visit each exit block exactly once.
if (!Visited.insert(SuccBB).second)
continue;
Changed |= RewriteExit(SuccBB);
}
return Changed;
}
/// Returns the instructions that use values defined in the loop.
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
SmallVector<Instruction *, 8> UsedOutside;
for (auto *Block : L->getBlocks())
// FIXME: I believe that this could use copy_if if the Inst reference could
// be adapted into a pointer.
for (auto &Inst : *Block) {
auto Users = Inst.users();
if (any_of(Users, [&](User *U) {
auto *Use = cast<Instruction>(U);
return !L->contains(Use->getParent());
}))
UsedOutside.push_back(&Inst);
}
return UsedOutside;
}
void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
// By definition, all loop passes need the LoopInfo analysis and the
// Dominator tree it depends on. Because they all participate in the loop
// pass manager, they must also preserve these.
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
// We must also preserve LoopSimplify and LCSSA. We locally access their IDs
// here because users shouldn't directly get them from this header.
extern char &LoopSimplifyID;
extern char &LCSSAID;
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
// This is used in the LPPassManager to perform LCSSA verification on passes
// which preserve lcssa form
AU.addRequired<LCSSAVerificationPass>();
AU.addPreserved<LCSSAVerificationPass>();
// Loop passes are designed to run inside of a loop pass manager which means
// that any function analyses they require must be required by the first loop
// pass in the manager (so that it is computed before the loop pass manager
// runs) and preserved by all loop pasess in the manager. To make this
// reasonably robust, the set needed for most loop passes is maintained here.
// If your loop pass requires an analysis not listed here, you will need to
// carefully audit the loop pass manager nesting structure that results.
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addPreserved<BasicAAWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addPreserved<SCEVAAWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addPreserved<ScalarEvolutionWrapperPass>();
// FIXME: When all loop passes preserve MemorySSA, it can be required and
// preserved here instead of the individual handling in each pass.
}
/// Manually defined generic "LoopPass" dependency initialization. This is used
/// to initialize the exact set of passes from above in \c
/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
/// with:
///
/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
///
/// As-if "LoopPass" were a pass.
void llvm::initializeLoopPassPass(PassRegistry &Registry) {
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
}
/// Create MDNode for input string.
static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
LLVMContext &Context = TheLoop->getHeader()->getContext();
Metadata *MDs[] = {
MDString::get(Context, Name),
ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
return MDNode::get(Context, MDs);
}
/// Set input string into loop metadata by keeping other values intact.
/// If the string is already in loop metadata update value if it is
/// different.
void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
unsigned V) {
SmallVector<Metadata *, 4> MDs(1);
// If the loop already has metadata, retain it.
MDNode *LoopID = TheLoop->getLoopID();
if (LoopID) {
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
// If it is of form key = value, try to parse it.
if (Node->getNumOperands() == 2) {
MDString *S = dyn_cast<MDString>(Node->getOperand(0));
if (S && S->getString() == StringMD) {
ConstantInt *IntMD =
mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
if (IntMD && IntMD->getSExtValue() == V)
// It is already in place. Do nothing.
return;
// We need to update the value, so just skip it here and it will
// be added after copying other existed nodes.
continue;
}
}
MDs.push_back(Node);
}
}
// Add new metadata.
MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
// Replace current metadata node with new one.
LLVMContext &Context = TheLoop->getHeader()->getContext();
MDNode *NewLoopID = MDNode::get(Context, MDs);
// Set operand 0 to refer to the loop id itself.
NewLoopID->replaceOperandWith(0, NewLoopID);
TheLoop->setLoopID(NewLoopID);
}
std::optional<ElementCount>
llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) {
std::optional<int> Width =
getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
if (Width) {
std::optional<int> IsScalable = getOptionalIntLoopAttribute(
TheLoop, "llvm.loop.vectorize.scalable.enable");
return ElementCount::get(*Width, IsScalable.value_or(false));
}
return std::nullopt;
}
std::optional<MDNode *> llvm::makeFollowupLoopID(
MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
if (!OrigLoopID) {
if (AlwaysNew)
return nullptr;
return std::nullopt;
}
assert(OrigLoopID->getOperand(0) == OrigLoopID);
bool InheritAllAttrs = !InheritOptionsExceptPrefix;
bool InheritSomeAttrs =
InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
SmallVector<Metadata *, 8> MDs;
MDs.push_back(nullptr);
bool Changed = false;
if (InheritAllAttrs || InheritSomeAttrs) {
for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
MDNode *Op = cast<MDNode>(Existing.get());
auto InheritThisAttribute = [InheritSomeAttrs,
InheritOptionsExceptPrefix](MDNode *Op) {
if (!InheritSomeAttrs)
return false;
// Skip malformatted attribute metadata nodes.
if (Op->getNumOperands() == 0)
return true;
Metadata *NameMD = Op->getOperand(0).get();
if (!isa<MDString>(NameMD))
return true;
StringRef AttrName = cast<MDString>(NameMD)->getString();
// Do not inherit excluded attributes.
return !AttrName.starts_with(InheritOptionsExceptPrefix);
};
if (InheritThisAttribute(Op))
MDs.push_back(Op);
else
Changed = true;
}
} else {
// Modified if we dropped at least one attribute.
Changed = OrigLoopID->getNumOperands() > 1;
}
bool HasAnyFollowup = false;
for (StringRef OptionName : FollowupOptions) {
MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
if (!FollowupNode)
continue;
HasAnyFollowup = true;
for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
MDs.push_back(Option.get());
Changed = true;
}
}
// Attributes of the followup loop not specified explicity, so signal to the
// transformation pass to add suitable attributes.
if (!AlwaysNew && !HasAnyFollowup)
return std::nullopt;
// If no attributes were added or remove, the previous loop Id can be reused.
if (!AlwaysNew && !Changed)
return OrigLoopID;
// No attributes is equivalent to having no !llvm.loop metadata at all.
if (MDs.size() == 1)
return nullptr;
// Build the new loop ID.
MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
return FollowupLoopID;
}
bool llvm::hasDisableAllTransformsHint(const Loop *L) {
return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
}
bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
}
TransformationMode llvm::hasUnrollTransformation(const Loop *L) {
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
return TM_SuppressedByUser;
std::optional<int> Count =
getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
if (Count)
return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
return TM_ForcedByUser;
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
return TM_ForcedByUser;
if (hasDisableAllTransformsHint(L))
return TM_Disable;
return TM_Unspecified;
}
TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) {
if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
return TM_SuppressedByUser;
std::optional<int> Count =
getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
if (Count)
return *Count == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
return TM_ForcedByUser;
if (hasDisableAllTransformsHint(L))
return TM_Disable;
return TM_Unspecified;
}
TransformationMode llvm::hasVectorizeTransformation(const Loop *L) {
std::optional<bool> Enable =
getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
if (Enable == false)
return TM_SuppressedByUser;
std::optional<ElementCount> VectorizeWidth =
getOptionalElementCountLoopAttribute(L);
std::optional<int> InterleaveCount =
getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
// 'Forcing' vector width and interleave count to one effectively disables
// this tranformation.
if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
InterleaveCount == 1)
return TM_SuppressedByUser;
if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
return TM_Disable;
if (Enable == true)
return TM_ForcedByUser;
if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
return TM_Disable;
if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
return TM_Enable;
if (hasDisableAllTransformsHint(L))
return TM_Disable;
return TM_Unspecified;
}
TransformationMode llvm::hasDistributeTransformation(const Loop *L) {
if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
return TM_ForcedByUser;
if (hasDisableAllTransformsHint(L))
return TM_Disable;
return TM_Unspecified;
}
TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) {
if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
return TM_SuppressedByUser;
if (hasDisableAllTransformsHint(L))
return TM_Disable;
return TM_Unspecified;
}
/// Does a BFS from a given node to all of its children inside a given loop.
/// The returned vector of basic blocks includes the starting point.
SmallVector<BasicBlock *, 16> llvm::collectChildrenInLoop(DominatorTree *DT,
DomTreeNode *N,
const Loop *CurLoop) {
SmallVector<BasicBlock *, 16> Worklist;
auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
// Only include subregions in the top level loop.
BasicBlock *BB = DTN->getBlock();
if (CurLoop->contains(BB))
Worklist.push_back(DTN->getBlock());
};
AddRegionToWorklist(N);
for (size_t I = 0; I < Worklist.size(); I++) {
for (DomTreeNode *Child : DT->getNode(Worklist[I])->children())
AddRegionToWorklist(Child);
}
return Worklist;
}
bool llvm::isAlmostDeadIV(PHINode *PN, BasicBlock *LatchBlock, Value *Cond) {
int LatchIdx = PN->getBasicBlockIndex(LatchBlock);
assert(LatchIdx != -1 && "LatchBlock is not a case in this PHINode");
Value *IncV = PN->getIncomingValue(LatchIdx);
for (User *U : PN->users())
if (U != Cond && U != IncV) return false;
for (User *U : IncV->users())
if (U != Cond && U != PN) return false;
return true;
}
void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
LoopInfo *LI, MemorySSA *MSSA) {
assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
auto *Preheader = L->getLoopPreheader();
assert(Preheader && "Preheader should exist!");
std::unique_ptr<MemorySSAUpdater> MSSAU;
if (MSSA)
MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
// Now that we know the removal is safe, remove the loop by changing the
// branch from the preheader to go to the single exit block.
//
// Because we're deleting a large chunk of code at once, the sequence in which
// we remove things is very important to avoid invalidation issues.
// Tell ScalarEvolution that the loop is deleted. Do this before
// deleting the loop so that ScalarEvolution can look at the loop
// to determine what it needs to clean up.
if (SE) {
SE->forgetLoop(L);
SE->forgetBlockAndLoopDispositions();
}
Instruction *OldTerm = Preheader->getTerminator();
assert(!OldTerm->mayHaveSideEffects() &&
"Preheader must end with a side-effect-free terminator");
assert(OldTerm->getNumSuccessors() == 1 &&
"Preheader must have a single successor");
// Connect the preheader to the exit block. Keep the old edge to the header
// around to perform the dominator tree update in two separate steps
// -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
// preheader -> header.
//
//
// 0. Preheader 1. Preheader 2. Preheader
// | | | |
// V | V |
// Header <--\ | Header <--\ | Header <--\
// | | | | | | | | | | |
// | V | | | V | | | V |
// | Body --/ | | Body --/ | | Body --/
// V V V V V
// Exit Exit Exit
//
// By doing this is two separate steps we can perform the dominator tree
// update without using the batch update API.
//
// Even when the loop is never executed, we cannot remove the edge from the
// source block to the exit block. Consider the case where the unexecuted loop
// branches back to an outer loop. If we deleted the loop and removed the edge
// coming to this inner loop, this will break the outer loop structure (by
// deleting the backedge of the outer loop). If the outer loop is indeed a
// non-loop, it will be deleted in a future iteration of loop deletion pass.
IRBuilder<> Builder(OldTerm);
auto *ExitBlock = L->getUniqueExitBlock();
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
if (ExitBlock) {
assert(ExitBlock && "Should have a unique exit block!");
assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
// Remove the old branch. The conditional branch becomes a new terminator.
OldTerm->eraseFromParent();
// Rewrite phis in the exit block to get their inputs from the Preheader
// instead of the exiting block.
for (PHINode &P : ExitBlock->phis()) {
// Set the zero'th element of Phi to be from the preheader and remove all
// other incoming values. Given the loop has dedicated exits, all other
// incoming values must be from the exiting blocks.
int PredIndex = 0;
P.setIncomingBlock(PredIndex, Preheader);
// Removes all incoming values from all other exiting blocks (including
// duplicate values from an exiting block).
// Nuke all entries except the zero'th entry which is the preheader entry.
P.removeIncomingValueIf([](unsigned Idx) { return Idx != 0; },
/* DeletePHIIfEmpty */ false);
assert((P.getNumIncomingValues() == 1 &&
P.getIncomingBlock(PredIndex) == Preheader) &&
"Should have exactly one value and that's from the preheader!");
}
if (DT) {
DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
if (MSSA) {
MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
*DT);
if (VerifyMemorySSA)
MSSA->verifyMemorySSA();
}
}
// Disconnect the loop body by branching directly to its exit.
Builder.SetInsertPoint(Preheader->getTerminator());
Builder.CreateBr(ExitBlock);
// Remove the old branch.
Preheader->getTerminator()->eraseFromParent();
} else {
assert(L->hasNoExitBlocks() &&
"Loop should have either zero or one exit blocks.");
Builder.SetInsertPoint(OldTerm);
Builder.CreateUnreachable();
Preheader->getTerminator()->eraseFromParent();
}
if (DT) {
DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
if (MSSA) {
MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
*DT);
SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
L->block_end());
MSSAU->removeBlocks(DeadBlockSet);
if (VerifyMemorySSA)
MSSA->verifyMemorySSA();
}
}
// Use a map to unique and a vector to guarantee deterministic ordering.
llvm::SmallDenseSet<DebugVariable, 4> DeadDebugSet;
llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
llvm::SmallVector<DbgVariableRecord *, 4> DeadDbgVariableRecords;
if (ExitBlock) {
// Given LCSSA form is satisfied, we should not have users of instructions
// within the dead loop outside of the loop. However, LCSSA doesn't take
// unreachable uses into account. We handle them here.
// We could do it after drop all references (in this case all users in the
// loop will be already eliminated and we have less work to do but according
// to API doc of User::dropAllReferences only valid operation after dropping
// references, is deletion. So let's substitute all usages of
// instruction from the loop with poison value of corresponding type first.
for (auto *Block : L->blocks())
for (Instruction &I : *Block) {
auto *Poison = PoisonValue::get(I.getType());
for (Use &U : llvm::make_early_inc_range(I.uses())) {
if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
if (L->contains(Usr->getParent()))
continue;
// If we have a DT then we can check that uses outside a loop only in
// unreachable block.
if (DT)
assert(!DT->isReachableFromEntry(U) &&
"Unexpected user in reachable block");
U.set(Poison);
}
// RemoveDIs: do the same as below for DbgVariableRecords.
if (Block->IsNewDbgInfoFormat) {
for (DbgVariableRecord &DVR : llvm::make_early_inc_range(
filterDbgVars(I.getDbgRecordRange()))) {
DebugVariable Key(DVR.getVariable(), DVR.getExpression(),
DVR.getDebugLoc().get());
if (!DeadDebugSet.insert(Key).second)
continue;
// Unlinks the DVR from it's container, for later insertion.
DVR.removeFromParent();
DeadDbgVariableRecords.push_back(&DVR);
}
}
// For one of each variable encountered, preserve a debug intrinsic (set
// to Poison) and transfer it to the loop exit. This terminates any
// variable locations that were set during the loop.
auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
if (!DVI)
continue;
if (!DeadDebugSet.insert(DebugVariable(DVI)).second)
continue;
DeadDebugInst.push_back(DVI);
}
// After the loop has been deleted all the values defined and modified
// inside the loop are going to be unavailable. Values computed in the
// loop will have been deleted, automatically causing their debug uses
// be be replaced with undef. Loop invariant values will still be available.
// Move dbg.values out the loop so that earlier location ranges are still
// terminated and loop invariant assignments are preserved.
DIBuilder DIB(*ExitBlock->getModule());
BasicBlock::iterator InsertDbgValueBefore =
ExitBlock->getFirstInsertionPt();
assert(InsertDbgValueBefore != ExitBlock->end() &&
"There should be a non-PHI instruction in exit block, else these "
"instructions will have no parent.");
for (auto *DVI : DeadDebugInst)
DVI->moveBefore(*ExitBlock, InsertDbgValueBefore);
// Due to the "head" bit in BasicBlock::iterator, we're going to insert
// each DbgVariableRecord right at the start of the block, wheras dbg.values
// would be repeatedly inserted before the first instruction. To replicate
// this behaviour, do it backwards.
for (DbgVariableRecord *DVR : llvm::reverse(DeadDbgVariableRecords))
ExitBlock->insertDbgRecordBefore(DVR, InsertDbgValueBefore);
}
// Remove the block from the reference counting scheme, so that we can
// delete it freely later.
for (auto *Block : L->blocks())
Block->dropAllReferences();
if (MSSA && VerifyMemorySSA)
MSSA->verifyMemorySSA();
if (LI) {
// Erase the instructions and the blocks without having to worry
// about ordering because we already dropped the references.
// NOTE: This iteration is safe because erasing the block does not remove
// its entry from the loop's block list. We do that in the next section.
for (BasicBlock *BB : L->blocks())
BB->eraseFromParent();
// Finally, the blocks from loopinfo. This has to happen late because
// otherwise our loop iterators won't work.
SmallPtrSet<BasicBlock *, 8> blocks;
blocks.insert(L->block_begin(), L->block_end());
for (BasicBlock *BB : blocks)
LI->removeBlock(BB);
// The last step is to update LoopInfo now that we've eliminated this loop.
// Note: LoopInfo::erase remove the given loop and relink its subloops with
// its parent. While removeLoop/removeChildLoop remove the given loop but
// not relink its subloops, which is what we want.
if (Loop *ParentLoop = L->getParentLoop()) {
Loop::iterator I = find(*ParentLoop, L);
assert(I != ParentLoop->end() && "Couldn't find loop");
ParentLoop->removeChildLoop(I);
} else {
Loop::iterator I = find(*LI, L);
assert(I != LI->end() && "Couldn't find loop");
LI->removeLoop(I);
}
LI->destroy(L);
}
}
void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
LoopInfo &LI, MemorySSA *MSSA) {
auto *Latch = L->getLoopLatch();
assert(Latch && "multiple latches not yet supported");
auto *Header = L->getHeader();
Loop *OutermostLoop = L->getOutermostLoop();
SE.forgetLoop(L);
SE.forgetBlockAndLoopDispositions();
std::unique_ptr<MemorySSAUpdater> MSSAU;
if (MSSA)
MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
// Update the CFG and domtree. We chose to special case a couple of
// of common cases for code quality and test readability reasons.
[&]() -> void {
if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) {
if (!BI->isConditional()) {
DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
(void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU,
MSSAU.get());
return;
}
// Conditional latch/exit - note that latch can be shared by inner
// and outer loop so the other target doesn't need to an exit
if (L->isLoopExiting(Latch)) {
// TODO: Generalize ConstantFoldTerminator so that it can be used
// here without invalidating LCSSA or MemorySSA. (Tricky case for
// LCSSA: header is an exit block of a preceeding sibling loop w/o
// dedicated exits.)
const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
Header->removePredecessor(Latch, true);
IRBuilder<> Builder(BI);
auto *NewBI = Builder.CreateBr(ExitBB);
// Transfer the metadata to the new branch instruction (minus the
// loop info since this is no longer a loop)
NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
LLVMContext::MD_annotation});
BI->eraseFromParent();
DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}});
if (MSSA)
MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT);
return;
}
}
// General case. By splitting the backedge, and then explicitly making it
// unreachable we gracefully handle corner cases such as switch and invoke
// termiantors.
auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
(void)changeToUnreachable(BackedgeBB->getTerminator(),
/*PreserveLCSSA*/ true, &DTU, MSSAU.get());
}();
// Erase (and destroy) this loop instance. Handles relinking sub-loops
// and blocks within the loop as needed.
LI.erase(L);
// If the loop we broke had a parent, then changeToUnreachable might have
// caused a block to be removed from the parent loop (see loop_nest_lcssa
// test case in zero-btc.ll for an example), thus changing the parent's
// exit blocks. If that happened, we need to rebuild LCSSA on the outermost
// loop which might have a had a block removed.
if (OutermostLoop != L)
formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
}
/// Checks if \p L has an exiting latch branch. There may also be other
/// exiting blocks. Returns branch instruction terminating the loop
/// latch if above check is successful, nullptr otherwise.
static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
BasicBlock *Latch = L->getLoopLatch();
if (!Latch)
return nullptr;
BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
return nullptr;
assert((LatchBR->getSuccessor(0) == L->getHeader() ||
LatchBR->getSuccessor(1) == L->getHeader()) &&
"At least one edge out of the latch must go to the header");
return LatchBR;
}
/// Return the estimated trip count for any exiting branch which dominates
/// the loop latch.
static std::optional<uint64_t> getEstimatedTripCount(BranchInst *ExitingBranch,
Loop *L,
uint64_t &OrigExitWeight) {
// To estimate the number of times the loop body was executed, we want to
// know the number of times the backedge was taken, vs. the number of times
// we exited the loop.
uint64_t LoopWeight, ExitWeight;
if (!extractBranchWeights(*ExitingBranch, LoopWeight, ExitWeight))
return std::nullopt;
if (L->contains(ExitingBranch->getSuccessor(1)))
std::swap(LoopWeight, ExitWeight);
if (!ExitWeight)
// Don't have a way to return predicated infinite
return std::nullopt;
OrigExitWeight = ExitWeight;
// Estimated exit count is a ratio of the loop weight by the weight of the
// edge exiting the loop, rounded to nearest.
uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight);
// Estimated trip count is one plus estimated exit count.
return ExitCount + 1;
}
std::optional<unsigned>
llvm::getLoopEstimatedTripCount(Loop *L,
unsigned *EstimatedLoopInvocationWeight) {
// Currently we take the estimate exit count only from the loop latch,
// ignoring other exiting blocks. This can overestimate the trip count
// if we exit through another exit, but can never underestimate it.
// TODO: incorporate information from other exits
if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) {
uint64_t ExitWeight;
if (std::optional<uint64_t> EstTripCount =
getEstimatedTripCount(LatchBranch, L, ExitWeight)) {
if (EstimatedLoopInvocationWeight)
*EstimatedLoopInvocationWeight = ExitWeight;
return *EstTripCount;
}
}
return std::nullopt;
}
bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
unsigned EstimatedloopInvocationWeight) {
// At the moment, we currently support changing the estimate trip count of
// the latch branch only. We could extend this API to manipulate estimated
// trip counts for any exit.
BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
if (!LatchBranch)
return false;
// Calculate taken and exit weights.
unsigned LatchExitWeight = 0;
unsigned BackedgeTakenWeight = 0;
if (EstimatedTripCount > 0) {
LatchExitWeight = EstimatedloopInvocationWeight;
BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
}
// Make a swap if back edge is taken when condition is "false".
if (LatchBranch->getSuccessor(0) != L->getHeader())
std::swap(BackedgeTakenWeight, LatchExitWeight);
MDBuilder MDB(LatchBranch->getContext());
// Set/Update profile metadata.
LatchBranch->setMetadata(
LLVMContext::MD_prof,
MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
return true;
}
bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
ScalarEvolution &SE) {
Loop *OuterL = InnerLoop->getParentLoop();
if (!OuterL)
return true;
// Get the backedge taken count for the inner loop
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
!InnerLoopBECountSC->getType()->isIntegerTy())
return false;
// Get whether count is invariant to the outer loop
ScalarEvolution::LoopDisposition LD =
SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
if (LD != ScalarEvolution::LoopInvariant)
return false;
return true;
}
constexpr Intrinsic::ID llvm::getReductionIntrinsicID(RecurKind RK) {
switch (RK) {
default:
llvm_unreachable("Unexpected recurrence kind");
case RecurKind::Add:
return Intrinsic::vector_reduce_add;
case RecurKind::Mul:
return Intrinsic::vector_reduce_mul;
case RecurKind::And:
return Intrinsic::vector_reduce_and;
case RecurKind::Or:
return Intrinsic::vector_reduce_or;
case RecurKind::Xor:
return Intrinsic::vector_reduce_xor;
case RecurKind::FMulAdd:
case RecurKind::FAdd:
return Intrinsic::vector_reduce_fadd;
case RecurKind::FMul:
return Intrinsic::vector_reduce_fmul;
case RecurKind::SMax:
return Intrinsic::vector_reduce_smax;
case RecurKind::SMin:
return Intrinsic::vector_reduce_smin;
case RecurKind::UMax:
return Intrinsic::vector_reduce_umax;
case RecurKind::UMin:
return Intrinsic::vector_reduce_umin;
case RecurKind::FMax:
return Intrinsic::vector_reduce_fmax;
case RecurKind::FMin:
return Intrinsic::vector_reduce_fmin;
case RecurKind::FMaximum:
return Intrinsic::vector_reduce_fmaximum;
case RecurKind::FMinimum:
return Intrinsic::vector_reduce_fminimum;
}
}
unsigned llvm::getArithmeticReductionInstruction(Intrinsic::ID RdxID) {
switch (RdxID) {
case Intrinsic::vector_reduce_fadd:
return Instruction::FAdd;
case Intrinsic::vector_reduce_fmul:
return Instruction::FMul;
case Intrinsic::vector_reduce_add:
return Instruction::Add;
case Intrinsic::vector_reduce_mul:
return Instruction::Mul;
case Intrinsic::vector_reduce_and:
return Instruction::And;
case Intrinsic::vector_reduce_or:
return Instruction::Or;
case Intrinsic::vector_reduce_xor:
return Instruction::Xor;
case Intrinsic::vector_reduce_smax:
case Intrinsic::vector_reduce_smin:
case Intrinsic::vector_reduce_umax:
case Intrinsic::vector_reduce_umin:
return Instruction::ICmp;
case Intrinsic::vector_reduce_fmax:
case Intrinsic::vector_reduce_fmin:
return Instruction::FCmp;
default:
llvm_unreachable("Unexpected ID");
}
}
Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID) {
switch (RdxID) {
default:
llvm_unreachable("Unknown min/max recurrence kind");
case Intrinsic::vector_reduce_umin:
return Intrinsic::umin;
case Intrinsic::vector_reduce_umax:
return Intrinsic::umax;
case Intrinsic::vector_reduce_smin:
return Intrinsic::smin;
case Intrinsic::vector_reduce_smax:
return Intrinsic::smax;
case Intrinsic::vector_reduce_fmin:
return Intrinsic::minnum;
case Intrinsic::vector_reduce_fmax:
return Intrinsic::maxnum;
case Intrinsic::vector_reduce_fminimum:
return Intrinsic::minimum;
case Intrinsic::vector_reduce_fmaximum:
return Intrinsic::maximum;
}
}
Intrinsic::ID llvm::getMinMaxReductionIntrinsicOp(RecurKind RK) {
switch (RK) {
default:
llvm_unreachable("Unknown min/max recurrence kind");
case RecurKind::UMin:
return Intrinsic::umin;
case RecurKind::UMax:
return Intrinsic::umax;
case RecurKind::SMin:
return Intrinsic::smin;
case RecurKind::SMax:
return Intrinsic::smax;
case RecurKind::FMin:
return Intrinsic::minnum;
case RecurKind::FMax:
return Intrinsic::maxnum;
case RecurKind::FMinimum:
return Intrinsic::minimum;
case RecurKind::FMaximum:
return Intrinsic::maximum;
}
}
RecurKind llvm::getMinMaxReductionRecurKind(Intrinsic::ID RdxID) {
switch (RdxID) {
case Intrinsic::vector_reduce_smax:
return RecurKind::SMax;
case Intrinsic::vector_reduce_smin:
return RecurKind::SMin;
case Intrinsic::vector_reduce_umax:
return RecurKind::UMax;
case Intrinsic::vector_reduce_umin:
return RecurKind::UMin;
case Intrinsic::vector_reduce_fmax:
return RecurKind::FMax;
case Intrinsic::vector_reduce_fmin:
return RecurKind::FMin;
default:
return RecurKind::None;
}
}
CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) {
switch (RK) {
default:
llvm_unreachable("Unknown min/max recurrence kind");
case RecurKind::UMin:
return CmpInst::ICMP_ULT;
case RecurKind::UMax:
return CmpInst::ICMP_UGT;
case RecurKind::SMin:
return CmpInst::ICMP_SLT;
case RecurKind::SMax:
return CmpInst::ICMP_SGT;
case RecurKind::FMin:
return CmpInst::FCMP_OLT;
case RecurKind::FMax:
return CmpInst::FCMP_OGT;
// We do not add FMinimum/FMaximum recurrence kind here since there is no
// equivalent predicate which compares signed zeroes according to the
// semantics of the intrinsics (llvm.minimum/maximum).
}
}
Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
Value *Right) {
Type *Ty = Left->getType();
if (Ty->isIntOrIntVectorTy() ||
(RK == RecurKind::FMinimum || RK == RecurKind::FMaximum)) {
// TODO: Add float minnum/maxnum support when FMF nnan is set.
Intrinsic::ID Id = getMinMaxReductionIntrinsicOp(RK);
return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr,
"rdx.minmax");
}
CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK);
Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
return Select;
}
// Helper to generate an ordered reduction.
Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
unsigned Op, RecurKind RdxKind) {
unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
// Extract and apply reduction ops in ascending order:
// e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
Value *Result = Acc;
for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
Value *Ext =
Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
"bin.rdx");
} else {
assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
"Invalid min/max");
Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
}
}
return Result;
}
// Helper to generate a log2 shuffle reduction.
Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
unsigned Op,
TargetTransformInfo::ReductionShuffle RS,
RecurKind RdxKind) {
unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
// VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
// and vector ops, reducing the set of values being computed by half each
// round.
assert(isPowerOf2_32(VF) &&
"Reduction emission only supported for pow2 vectors!");
// Note: fast-math-flags flags are controlled by the builder configuration
// and are assumed to apply to all generated arithmetic instructions. Other
// poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part
// of the builder configuration, and since they're not passed explicitly,
// will never be relevant here. Note that it would be generally unsound to
// propagate these from an intrinsic call to the expansion anyways as we/
// change the order of operations.
auto BuildShuffledOp = [&Builder, &Op,
&RdxKind](SmallVectorImpl<int> &ShuffleMask,
Value *&TmpVec) -> void {
Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
"bin.rdx");
} else {
assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
"Invalid min/max");
TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
}
};
Value *TmpVec = Src;
if (TargetTransformInfo::ReductionShuffle::Pairwise == RS) {
SmallVector<int, 32> ShuffleMask(VF);
for (unsigned stride = 1; stride < VF; stride <<= 1) {
// Initialise the mask with undef.
std::fill(ShuffleMask.begin(), ShuffleMask.end(), -1);
for (unsigned j = 0; j < VF; j += stride << 1) {
ShuffleMask[j] = j + stride;
}
BuildShuffledOp(ShuffleMask, TmpVec);
}
} else {
SmallVector<int, 32> ShuffleMask(VF);
for (unsigned i = VF; i != 1; i >>= 1) {
// Move the upper half of the vector to the lower half.
for (unsigned j = 0; j != i / 2; ++j)
ShuffleMask[j] = i / 2 + j;
// Fill the rest of the mask with undef.
std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
BuildShuffledOp(ShuffleMask, TmpVec);
}
}
// The result is in the first element of the vector.
return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
}
Value *llvm::createAnyOfReduction(IRBuilderBase &Builder, Value *Src,
const RecurrenceDescriptor &Desc,
PHINode *OrigPhi) {
assert(
RecurrenceDescriptor::isAnyOfRecurrenceKind(Desc.getRecurrenceKind()) &&
"Unexpected reduction kind");
Value *InitVal = Desc.getRecurrenceStartValue();
Value *NewVal = nullptr;
// First use the original phi to determine the new value we're trying to
// select from in the loop.
SelectInst *SI = nullptr;
for (auto *U : OrigPhi->users()) {
if ((SI = dyn_cast<SelectInst>(U)))
break;
}
assert(SI && "One user of the original phi should be a select");
if (SI->getTrueValue() == OrigPhi)
NewVal = SI->getFalseValue();
else {
assert(SI->getFalseValue() == OrigPhi &&
"At least one input to the select should be the original Phi");
NewVal = SI->getTrueValue();
}
// If any predicate is true it means that we want to select the new value.
Value *AnyOf =
Src->getType()->isVectorTy() ? Builder.CreateOrReduce(Src) : Src;
// The compares in the loop may yield poison, which propagates through the
// bitwise ORs. Freeze it here before the condition is used.
AnyOf = Builder.CreateFreeze(AnyOf);
return Builder.CreateSelect(AnyOf, NewVal, InitVal, "rdx.select");
}
Value *llvm::getReductionIdentity(Intrinsic::ID RdxID, Type *Ty,
FastMathFlags Flags) {
bool Negative = false;
switch (RdxID) {
default:
llvm_unreachable("Expecting a reduction intrinsic");
case Intrinsic::vector_reduce_add:
case Intrinsic::vector_reduce_mul:
case Intrinsic::vector_reduce_or:
case Intrinsic::vector_reduce_xor:
case Intrinsic::vector_reduce_and:
case Intrinsic::vector_reduce_fadd:
case Intrinsic::vector_reduce_fmul: {
unsigned Opc = getArithmeticReductionInstruction(RdxID);
return ConstantExpr::getBinOpIdentity(Opc, Ty, false,
Flags.noSignedZeros());
}
case Intrinsic::vector_reduce_umax:
case Intrinsic::vector_reduce_umin:
case Intrinsic::vector_reduce_smin:
case Intrinsic::vector_reduce_smax: {
Intrinsic::ID ScalarID = getMinMaxReductionIntrinsicOp(RdxID);
return ConstantExpr::getIntrinsicIdentity(ScalarID, Ty);
}
case Intrinsic::vector_reduce_fmax:
case Intrinsic::vector_reduce_fmaximum:
Negative = true;
[[fallthrough]];
case Intrinsic::vector_reduce_fmin:
case Intrinsic::vector_reduce_fminimum: {
bool PropagatesNaN = RdxID == Intrinsic::vector_reduce_fminimum ||
RdxID == Intrinsic::vector_reduce_fmaximum;
const fltSemantics &Semantics = Ty->getFltSemantics();
return (!Flags.noNaNs() && !PropagatesNaN)
? ConstantFP::getQNaN(Ty, Negative)
: !Flags.noInfs()
? ConstantFP::getInfinity(Ty, Negative)
: ConstantFP::get(Ty, APFloat::getLargest(Semantics, Negative));
}
}
}
Value *llvm::getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF) {
assert((!(K == RecurKind::FMin || K == RecurKind::FMax) ||
(FMF.noNaNs() && FMF.noSignedZeros())) &&
"nnan, nsz is expected to be set for FP min/max reduction.");
Intrinsic::ID RdxID = getReductionIntrinsicID(K);
return getReductionIdentity(RdxID, Tp, FMF);
}
Value *llvm::createSimpleReduction(IRBuilderBase &Builder, Value *Src,
RecurKind RdxKind) {
auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
auto getIdentity = [&]() {
return getRecurrenceIdentity(RdxKind, SrcVecEltTy,
Builder.getFastMathFlags());
};
switch (RdxKind) {
case RecurKind::Add:
case RecurKind::Mul:
case RecurKind::And:
case RecurKind::Or:
case RecurKind::Xor:
case RecurKind::SMax:
case RecurKind::SMin:
case RecurKind::UMax:
case RecurKind::UMin:
case RecurKind::FMax:
case RecurKind::FMin:
case RecurKind::FMinimum:
case RecurKind::FMaximum:
return Builder.CreateUnaryIntrinsic(getReductionIntrinsicID(RdxKind), Src);
case RecurKind::FMulAdd:
case RecurKind::FAdd:
return Builder.CreateFAddReduce(getIdentity(), Src);
case RecurKind::FMul:
return Builder.CreateFMulReduce(getIdentity(), Src);
default:
llvm_unreachable("Unhandled opcode");
}
}
Value *llvm::createSimpleReduction(VectorBuilder &VBuilder, Value *Src,
const RecurrenceDescriptor &Desc) {
RecurKind Kind = Desc.getRecurrenceKind();
assert(!RecurrenceDescriptor::isAnyOfRecurrenceKind(Kind) &&
"AnyOf reduction is not supported.");
Intrinsic::ID Id = getReductionIntrinsicID(Kind);
auto *SrcTy = cast<VectorType>(Src->getType());
Type *SrcEltTy = SrcTy->getElementType();
Value *Iden = getRecurrenceIdentity(Kind, SrcEltTy, Desc.getFastMathFlags());
Value *Ops[] = {Iden, Src};
return VBuilder.createSimpleReduction(Id, SrcTy, Ops);
}
Value *llvm::createReduction(IRBuilderBase &B,
const RecurrenceDescriptor &Desc, Value *Src,
PHINode *OrigPhi) {
// TODO: Support in-order reductions based on the recurrence descriptor.
// All ops in the reduction inherit fast-math-flags from the recurrence
// descriptor.
IRBuilderBase::FastMathFlagGuard FMFGuard(B);
B.setFastMathFlags(Desc.getFastMathFlags());
RecurKind RK = Desc.getRecurrenceKind();
if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK))
return createAnyOfReduction(B, Src, Desc, OrigPhi);
return createSimpleReduction(B, Src, RK);
}
Value *llvm::createOrderedReduction(IRBuilderBase &B,
const RecurrenceDescriptor &Desc,
Value *Src, Value *Start) {
assert((Desc.getRecurrenceKind() == RecurKind::FAdd ||
Desc.getRecurrenceKind() == RecurKind::FMulAdd) &&
"Unexpected reduction kind");
assert(Src->getType()->isVectorTy() && "Expected a vector type");
assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
return B.CreateFAddReduce(Start, Src);
}
Value *llvm::createOrderedReduction(VectorBuilder &VBuilder,
const RecurrenceDescriptor &Desc,
Value *Src, Value *Start) {
assert((Desc.getRecurrenceKind() == RecurKind::FAdd ||
Desc.getRecurrenceKind() == RecurKind::FMulAdd) &&
"Unexpected reduction kind");
assert(Src->getType()->isVectorTy() && "Expected a vector type");
assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
Intrinsic::ID Id = getReductionIntrinsicID(RecurKind::FAdd);
auto *SrcTy = cast<VectorType>(Src->getType());
Value *Ops[] = {Start, Src};
return VBuilder.createSimpleReduction(Id, SrcTy, Ops);
}
void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue,
bool IncludeWrapFlags) {
auto *VecOp = dyn_cast<Instruction>(I);
if (!VecOp)
return;
auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
: dyn_cast<Instruction>(OpValue);
if (!Intersection)
return;
const unsigned Opcode = Intersection->getOpcode();
VecOp->copyIRFlags(Intersection, IncludeWrapFlags);
for (auto *V : VL) {
auto *Instr = dyn_cast<Instruction>(V);
if (!Instr)
continue;
if (OpValue == nullptr || Opcode == Instr->getOpcode())
VecOp->andIRFlags(V);
}
}
bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
ScalarEvolution &SE) {
const SCEV *Zero = SE.getZero(S->getType());
return SE.isAvailableAtLoopEntry(S, L) &&
SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
}
bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
ScalarEvolution &SE) {
const SCEV *Zero = SE.getZero(S->getType());
return SE.isAvailableAtLoopEntry(S, L) &&
SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
}
bool llvm::isKnownPositiveInLoop(const SCEV *S, const Loop *L,
ScalarEvolution &SE) {
const SCEV *Zero = SE.getZero(S->getType());
return SE.isAvailableAtLoopEntry(S, L) &&
SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, S, Zero);
}
bool llvm::isKnownNonPositiveInLoop(const SCEV *S, const Loop *L,
ScalarEvolution &SE) {
const SCEV *Zero = SE.getZero(S->getType());
return SE.isAvailableAtLoopEntry(S, L) &&
SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLE, S, Zero);
}
bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
bool Signed) {
unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
APInt::getMinValue(BitWidth);
auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
return SE.isAvailableAtLoopEntry(S, L) &&
SE.isLoopEntryGuardedByCond(L, Predicate, S,
SE.getConstant(Min));
}
bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
bool Signed) {
unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
APInt::getMaxValue(BitWidth);
auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
return SE.isAvailableAtLoopEntry(S, L) &&
SE.isLoopEntryGuardedByCond(L, Predicate, S,
SE.getConstant(Max));
}
//===----------------------------------------------------------------------===//
// rewriteLoopExitValues - Optimize IV users outside the loop.
// As a side effect, reduces the amount of IV processing within the loop.
//===----------------------------------------------------------------------===//
static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
SmallPtrSet<const Instruction *, 8> Visited;
SmallVector<const Instruction *, 8> WorkList;
Visited.insert(I);
WorkList.push_back(I);
while (!WorkList.empty()) {
const Instruction *Curr = WorkList.pop_back_val();
// This use is outside the loop, nothing to do.
if (!L->contains(Curr))
continue;
// Do we assume it is a "hard" use which will not be eliminated easily?
if (Curr->mayHaveSideEffects())
return true;
// Otherwise, add all its users to worklist.
for (const auto *U : Curr->users()) {
auto *UI = cast<Instruction>(U);
if (Visited.insert(UI).second)
WorkList.push_back(UI);
}
}
return false;
}
// Collect information about PHI nodes which can be transformed in
// rewriteLoopExitValues.
struct RewritePhi {
PHINode *PN; // For which PHI node is this replacement?
unsigned Ith; // For which incoming value?
const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
bool HighCost; // Is this expansion a high-cost?
RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
bool H)
: PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
HighCost(H) {}
};
// Check whether it is possible to delete the loop after rewriting exit
// value. If it is possible, ignore ReplaceExitValue and do rewriting
// aggressively.
static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
BasicBlock *Preheader = L->getLoopPreheader();
// If there is no preheader, the loop will not be deleted.
if (!Preheader)
return false;
// In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
// We obviate multiple ExitingBlocks case for simplicity.
// TODO: If we see testcase with multiple ExitingBlocks can be deleted
// after exit value rewriting, we can enhance the logic here.
SmallVector<BasicBlock *, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
SmallVector<BasicBlock *, 8> ExitBlocks;
L->getUniqueExitBlocks(ExitBlocks);
if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
return false;
BasicBlock *ExitBlock = ExitBlocks[0];
BasicBlock::iterator BI = ExitBlock->begin();
while (PHINode *P = dyn_cast<PHINode>(BI)) {
Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
// If the Incoming value of P is found in RewritePhiSet, we know it
// could be rewritten to use a loop invariant value in transformation
// phase later. Skip it in the loop invariant check below.
bool found = false;
for (const RewritePhi &Phi : RewritePhiSet) {
unsigned i = Phi.Ith;
if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
found = true;
break;
}
}
Instruction *I;
if (!found && (I = dyn_cast<Instruction>(Incoming)))
if (!L->hasLoopInvariantOperands(I))
return false;
++BI;
}
for (auto *BB : L->blocks())
if (llvm::any_of(*BB, [](Instruction &I) {
return I.mayHaveSideEffects();
}))
return false;
return true;
}
/// Checks if it is safe to call InductionDescriptor::isInductionPHI for \p Phi,
/// and returns true if this Phi is an induction phi in the loop. When
/// isInductionPHI returns true, \p ID will be also be set by isInductionPHI.
static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE,
InductionDescriptor &ID) {
if (!Phi)
return false;
if (!L->getLoopPreheader())
return false;
if (Phi->getParent() != L->getHeader())
return false;
return InductionDescriptor::isInductionPHI(Phi, L, SE, ID);
}
int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
ScalarEvolution *SE,
const TargetTransformInfo *TTI,
SCEVExpander &Rewriter, DominatorTree *DT,
ReplaceExitVal ReplaceExitValue,
SmallVector<WeakTrackingVH, 16> &DeadInsts) {
// Check a pre-condition.
assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
"Indvars did not preserve LCSSA!");
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getUniqueExitBlocks(ExitBlocks);
SmallVector<RewritePhi, 8> RewritePhiSet;
// Find all values that are computed inside the loop, but used outside of it.
// Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
// the exit blocks of the loop to find them.
for (BasicBlock *ExitBB : ExitBlocks) {
// If there are no PHI nodes in this exit block, then no values defined
// inside the loop are used on this path, skip it.
PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
if (!PN) continue;
unsigned NumPreds = PN->getNumIncomingValues();
// Iterate over all of the PHI nodes.
BasicBlock::iterator BBI = ExitBB->begin();
while ((PN = dyn_cast<PHINode>(BBI++))) {
if (PN->use_empty())
continue; // dead use, don't replace it
if (!SE->isSCEVable(PN->getType()))
continue;
// Iterate over all of the values in all the PHI nodes.
for (unsigned i = 0; i != NumPreds; ++i) {
// If the value being merged in is not integer or is not defined
// in the loop, skip it.
Value *InVal = PN->getIncomingValue(i);
if (!isa<Instruction>(InVal))
continue;
// If this pred is for a subloop, not L itself, skip it.
if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
continue; // The Block is in a subloop, skip it.
// Check that InVal is defined in the loop.
Instruction *Inst = cast<Instruction>(InVal);
if (!L->contains(Inst))
continue;
// Find exit values which are induction variables in the loop, and are
// unused in the loop, with the only use being the exit block PhiNode,
// and the induction variable update binary operator.
// The exit value can be replaced with the final value when it is cheap
// to do so.
if (ReplaceExitValue == UnusedIndVarInLoop) {
InductionDescriptor ID;
PHINode *IndPhi = dyn_cast<PHINode>(Inst);
if (IndPhi) {
if (!checkIsIndPhi(IndPhi, L, SE, ID))
continue;
// This is an induction PHI. Check that the only users are PHI
// nodes, and induction variable update binary operators.
if (llvm::any_of(Inst->users(), [&](User *U) {
if (!isa<PHINode>(U) && !isa<BinaryOperator>(U))
return true;
BinaryOperator *B = dyn_cast<BinaryOperator>(U);
if (B && B != ID.getInductionBinOp())
return true;
return false;
}))
continue;
} else {
// If it is not an induction phi, it must be an induction update
// binary operator with an induction phi user.
BinaryOperator *B = dyn_cast<BinaryOperator>(Inst);
if (!B)
continue;
if (llvm::any_of(Inst->users(), [&](User *U) {
PHINode *Phi = dyn_cast<PHINode>(U);
if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID))
return true;
return false;
}))
continue;
if (B != ID.getInductionBinOp())
continue;
}
}
// Okay, this instruction has a user outside of the current loop
// and varies predictably *inside* the loop. Evaluate the value it
// contains when the loop exits, if possible. We prefer to start with
// expressions which are true for all exits (so as to maximize
// expression reuse by the SCEVExpander), but resort to per-exit
// evaluation if that fails.
const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
if (isa<SCEVCouldNotCompute>(ExitValue) ||
!SE->isLoopInvariant(ExitValue, L) ||
!Rewriter.isSafeToExpand(ExitValue)) {
// TODO: This should probably be sunk into SCEV in some way; maybe a
// getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for
// most SCEV expressions and other recurrence types (e.g. shift
// recurrences). Is there existing code we can reuse?
const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
if (isa<SCEVCouldNotCompute>(ExitCount))
continue;
if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
if (AddRec->getLoop() == L)
ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
if (isa<SCEVCouldNotCompute>(ExitValue) ||
!SE->isLoopInvariant(ExitValue, L) ||
!Rewriter.isSafeToExpand(ExitValue))
continue;
}
// Computing the value outside of the loop brings no benefit if it is
// definitely used inside the loop in a way which can not be optimized
// away. Avoid doing so unless we know we have a value which computes
// the ExitValue already. TODO: This should be merged into SCEV
// expander to leverage its knowledge of existing expressions.
if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
!isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
continue;
// Check if expansions of this SCEV would count as being high cost.
bool HighCost = Rewriter.isHighCostExpansion(
ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
// Note that we must not perform expansions until after
// we query *all* the costs, because if we perform temporary expansion
// inbetween, one that we might not intend to keep, said expansion
// *may* affect cost calculation of the next SCEV's we'll query,
// and next SCEV may errneously get smaller cost.
// Collect all the candidate PHINodes to be rewritten.
Instruction *InsertPt =
(isa<PHINode>(Inst) || isa<LandingPadInst>(Inst)) ?
&*Inst->getParent()->getFirstInsertionPt() : Inst;
RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost);
}
}
}
// TODO: evaluate whether it is beneficial to change how we calculate
// high-cost: if we have SCEV 'A' which we know we will expand, should we
// calculate the cost of other SCEV's after expanding SCEV 'A', thus
// potentially giving cost bonus to those other SCEV's?
bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
int NumReplaced = 0;
// Transformation.
for (const RewritePhi &Phi : RewritePhiSet) {
PHINode *PN = Phi.PN;
// Only do the rewrite when the ExitValue can be expanded cheaply.
// If LoopCanBeDel is true, rewrite exit value aggressively.
if ((ReplaceExitValue == OnlyCheapRepl ||
ReplaceExitValue == UnusedIndVarInLoop) &&
!LoopCanBeDel && Phi.HighCost)
continue;
Value *ExitVal = Rewriter.expandCodeFor(
Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);
LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
<< '\n'
<< " LoopVal = " << *(Phi.ExpansionPoint) << "\n");
#ifndef NDEBUG
// If we reuse an instruction from a loop which is neither L nor one of
// its containing loops, we end up breaking LCSSA form for this loop by
// creating a new use of its instruction.
if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
if (EVL != L)
assert(EVL->contains(L) && "LCSSA breach detected!");
#endif
NumReplaced++;
Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
PN->setIncomingValue(Phi.Ith, ExitVal);
// It's necessary to tell ScalarEvolution about this explicitly so that
// it can walk the def-use list and forget all SCEVs, as it may not be
// watching the PHI itself. Once the new exit value is in place, there
// may not be a def-use connection between the loop and every instruction
// which got a SCEVAddRecExpr for that loop.
SE->forgetValue(PN);
// If this instruction is dead now, delete it. Don't do it now to avoid
// invalidating iterators.
if (isInstructionTriviallyDead(Inst, TLI))
DeadInsts.push_back(Inst);
// Replace PN with ExitVal if that is legal and does not break LCSSA.
if (PN->getNumIncomingValues() == 1 &&
LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
PN->replaceAllUsesWith(ExitVal);
PN->eraseFromParent();
}
}
// The insertion point instruction may have been deleted; clear it out
// so that the rewriter doesn't trip over it later.
Rewriter.clearInsertPoint();
return NumReplaced;
}
/// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
/// \p OrigLoop.
void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
Loop *RemainderLoop, uint64_t UF) {
assert(UF > 0 && "Zero unrolled factor is not supported");
assert(UnrolledLoop != RemainderLoop &&
"Unrolled and Remainder loops are expected to distinct");
// Get number of iterations in the original scalar loop.
unsigned OrigLoopInvocationWeight = 0;
std::optional<unsigned> OrigAverageTripCount =
getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
if (!OrigAverageTripCount)
return;
// Calculate number of iterations in unrolled loop.
unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
// Calculate number of iterations for remainder loop.
unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
OrigLoopInvocationWeight);
setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
OrigLoopInvocationWeight);
}
/// Utility that implements appending of loops onto a worklist.
/// Loops are added in preorder (analogous for reverse postorder for trees),
/// and the worklist is processed LIFO.
template <typename RangeT>
void llvm::appendReversedLoopsToWorklist(
RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
// We use an internal worklist to build up the preorder traversal without
// recursion.
SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
// We walk the initial sequence of loops in reverse because we generally want
// to visit defs before uses and the worklist is LIFO.
for (Loop *RootL : Loops) {
assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
assert(PreOrderWorklist.empty() &&
"Must start with an empty preorder walk worklist.");
PreOrderWorklist.push_back(RootL);
do {
Loop *L = PreOrderWorklist.pop_back_val();
PreOrderWorklist.append(L->begin(), L->end());
PreOrderLoops.push_back(L);
} while (!PreOrderWorklist.empty());
Worklist.insert(std::move(PreOrderLoops));
PreOrderLoops.clear();
}
}
template <typename RangeT>
void llvm::appendLoopsToWorklist(RangeT &&Loops,
SmallPriorityWorklist<Loop *, 4> &Worklist) {
appendReversedLoopsToWorklist(reverse(Loops), Worklist);
}
template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
template void
llvm::appendLoopsToWorklist<Loop &>(Loop &L,
SmallPriorityWorklist<Loop *, 4> &Worklist);
void llvm::appendLoopsToWorklist(LoopInfo &LI,
SmallPriorityWorklist<Loop *, 4> &Worklist) {
appendReversedLoopsToWorklist(LI, Worklist);
}
Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
LoopInfo *LI, LPPassManager *LPM) {
Loop &New = *LI->AllocateLoop();
if (PL)
PL->addChildLoop(&New);
else
LI->addTopLevelLoop(&New);
if (LPM)
LPM->addLoop(New);
// Add all of the blocks in L to the new loop.
for (BasicBlock *BB : L->blocks())
if (LI->getLoopFor(BB) == L)
New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI);
// Add all of the subloops to the new loop.
for (Loop *I : *L)
cloneLoop(I, &New, VM, LI, LPM);
return &New;
}
/// IR Values for the lower and upper bounds of a pointer evolution. We
/// need to use value-handles because SCEV expansion can invalidate previously
/// expanded values. Thus expansion of a pointer can invalidate the bounds for
/// a previous one.
struct PointerBounds {
TrackingVH<Value> Start;
TrackingVH<Value> End;
Value *StrideToCheck;
};
/// Expand code for the lower and upper bound of the pointer group \p CG
/// in \p TheLoop. \return the values for the bounds.
static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
Loop *TheLoop, Instruction *Loc,
SCEVExpander &Exp, bool HoistRuntimeChecks) {
LLVMContext &Ctx = Loc->getContext();
Type *PtrArithTy = PointerType::get(Ctx, CG->AddressSpace);
Value *Start = nullptr, *End = nullptr;
LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
const SCEV *Low = CG->Low, *High = CG->High, *Stride = nullptr;
// If the Low and High values are themselves loop-variant, then we may want
// to expand the range to include those covered by the outer loop as well.
// There is a trade-off here with the advantage being that creating checks
// using the expanded range permits the runtime memory checks to be hoisted
// out of the outer loop. This reduces the cost of entering the inner loop,
// which can be significant for low trip counts. The disadvantage is that
// there is a chance we may now never enter the vectorized inner loop,
// whereas using a restricted range check could have allowed us to enter at
// least once. This is why the behaviour is not currently the default and is
// controlled by the parameter 'HoistRuntimeChecks'.
if (HoistRuntimeChecks && TheLoop->getParentLoop() &&
isa<SCEVAddRecExpr>(High) && isa<SCEVAddRecExpr>(Low)) {
auto *HighAR = cast<SCEVAddRecExpr>(High);
auto *LowAR = cast<SCEVAddRecExpr>(Low);
const Loop *OuterLoop = TheLoop->getParentLoop();
ScalarEvolution &SE = *Exp.getSE();
const SCEV *Recur = LowAR->getStepRecurrence(SE);
if (Recur == HighAR->getStepRecurrence(SE) &&
HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) {
BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
const SCEV *OuterExitCount = SE.getExitCount(OuterLoop, OuterLoopLatch);
if (!isa<SCEVCouldNotCompute>(OuterExitCount) &&
OuterExitCount->getType()->isIntegerTy()) {
const SCEV *NewHigh =
cast<SCEVAddRecExpr>(High)->evaluateAtIteration(OuterExitCount, SE);
if (!isa<SCEVCouldNotCompute>(NewHigh)) {
LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include "
"outer loop in order to permit hoisting\n");
High = NewHigh;
Low = cast<SCEVAddRecExpr>(Low)->getStart();
// If there is a possibility that the stride is negative then we have
// to generate extra checks to ensure the stride is positive.
if (!SE.isKnownNonNegative(
SE.applyLoopGuards(Recur, HighAR->getLoop()))) {
Stride = Recur;
LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is "
"positive: "
<< *Stride << '\n');
}
}
}
}
}
Start = Exp.expandCodeFor(Low, PtrArithTy, Loc);
End = Exp.expandCodeFor(High, PtrArithTy, Loc);
if (CG->NeedsFreeze) {
IRBuilder<> Builder(Loc);
Start = Builder.CreateFreeze(Start, Start->getName() + ".fr");
End = Builder.CreateFreeze(End, End->getName() + ".fr");
}
Value *StrideVal =
Stride ? Exp.expandCodeFor(Stride, Stride->getType(), Loc) : nullptr;
LLVM_DEBUG(dbgs() << "Start: " << *Low << " End: " << *High << "\n");
return {Start, End, StrideVal};
}
/// Turns a collection of checks into a collection of expanded upper and
/// lower bounds for both pointers in the check.
static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks) {
SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
// Here we're relying on the SCEV Expander's cache to only emit code for the
// same bounds once.
transform(PointerChecks, std::back_inserter(ChecksWithBounds),
[&](const RuntimePointerCheck &Check) {
PointerBounds First = expandBounds(Check.first, L, Loc, Exp,
HoistRuntimeChecks),
Second = expandBounds(Check.second, L, Loc, Exp,
HoistRuntimeChecks);
return std::make_pair(First, Second);
});
return ChecksWithBounds;
}
Value *llvm::addRuntimeChecks(
Instruction *Loc, Loop *TheLoop,
const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
SCEVExpander &Exp, bool HoistRuntimeChecks) {
// TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
// TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible
auto ExpandedChecks =
expandBounds(PointerChecks, TheLoop, Loc, Exp, HoistRuntimeChecks);
LLVMContext &Ctx = Loc->getContext();
IRBuilder ChkBuilder(Ctx, InstSimplifyFolder(Loc->getDataLayout()));
ChkBuilder.SetInsertPoint(Loc);
// Our instructions might fold to a constant.
Value *MemoryRuntimeCheck = nullptr;
for (const auto &[A, B] : ExpandedChecks) {
// Check if two pointers (A and B) conflict where conflict is computed as:
// start(A) <= end(B) && start(B) <= end(A)
assert((A.Start->getType()->getPointerAddressSpace() ==
B.End->getType()->getPointerAddressSpace()) &&
(B.Start->getType()->getPointerAddressSpace() ==
A.End->getType()->getPointerAddressSpace()) &&
"Trying to bounds check pointers with different address spaces");
// [A|B].Start points to the first accessed byte under base [A|B].
// [A|B].End points to the last accessed byte, plus one.
// There is no conflict when the intervals are disjoint:
// NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
//
// bound0 = (B.Start < A.End)
// bound1 = (A.Start < B.End)
// IsConflict = bound0 & bound1
Value *Cmp0 = ChkBuilder.CreateICmpULT(A.Start, B.End, "bound0");
Value *Cmp1 = ChkBuilder.CreateICmpULT(B.Start, A.End, "bound1");
Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
if (A.StrideToCheck) {
Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
A.StrideToCheck, ConstantInt::get(A.StrideToCheck->getType(), 0),
"stride.check");
IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
}
if (B.StrideToCheck) {
Value *IsNegativeStride = ChkBuilder.CreateICmpSLT(
B.StrideToCheck, ConstantInt::get(B.StrideToCheck->getType(), 0),
"stride.check");
IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
}
if (MemoryRuntimeCheck) {
IsConflict =
ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
}
MemoryRuntimeCheck = IsConflict;
}
return MemoryRuntimeCheck;
}
Value *llvm::addDiffRuntimeChecks(
Instruction *Loc, ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander,
function_ref<Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC) {
LLVMContext &Ctx = Loc->getContext();
IRBuilder ChkBuilder(Ctx, InstSimplifyFolder(Loc->getDataLayout()));
ChkBuilder.SetInsertPoint(Loc);
// Our instructions might fold to a constant.
Value *MemoryRuntimeCheck = nullptr;
auto &SE = *Expander.getSE();
// Map to keep track of created compares, The key is the pair of operands for
// the compare, to allow detecting and re-using redundant compares.
DenseMap<std::pair<Value *, Value *>, Value *> SeenCompares;
for (const auto &[SrcStart, SinkStart, AccessSize, NeedsFreeze] : Checks) {
Type *Ty = SinkStart->getType();
// Compute VF * IC * AccessSize.
auto *VFTimesUFTimesSize =
ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()),
ConstantInt::get(Ty, IC * AccessSize));
Value *Diff =
Expander.expandCodeFor(SE.getMinusSCEV(SinkStart, SrcStart), Ty, Loc);
// Check if the same compare has already been created earlier. In that case,
// there is no need to check it again.
Value *IsConflict = SeenCompares.lookup({Diff, VFTimesUFTimesSize});
if (IsConflict)
continue;
IsConflict =
ChkBuilder.CreateICmpULT(Diff, VFTimesUFTimesSize, "diff.check");
SeenCompares.insert({{Diff, VFTimesUFTimesSize}, IsConflict});
if (NeedsFreeze)
IsConflict =
ChkBuilder.CreateFreeze(IsConflict, IsConflict->getName() + ".fr");
if (MemoryRuntimeCheck) {
IsConflict =
ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
}
MemoryRuntimeCheck = IsConflict;
}
return MemoryRuntimeCheck;
}
std::optional<IVConditionInfo>
llvm::hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold,
const MemorySSA &MSSA, AAResults &AA) {
auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
if (!TI || !TI->isConditional())
return {};
auto *CondI = dyn_cast<Instruction>(TI->getCondition());
// The case with the condition outside the loop should already be handled
// earlier.
// Allow CmpInst and TruncInsts as they may be users of load instructions
// and have potential for partial unswitching
if (!CondI || !isa<CmpInst, TruncInst>(CondI) || !L.contains(CondI))
return {};
SmallVector<Instruction *> InstToDuplicate;
InstToDuplicate.push_back(CondI);
SmallVector<Value *, 4> WorkList;
WorkList.append(CondI->op_begin(), CondI->op_end());
SmallVector<MemoryAccess *, 4> AccessesToCheck;
SmallVector<MemoryLocation, 4> AccessedLocs;
while (!WorkList.empty()) {
Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
if (!I || !L.contains(I))
continue;
// TODO: support additional instructions.
if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
return {};
// Do not duplicate volatile and atomic loads.
if (auto *LI = dyn_cast<LoadInst>(I))
if (LI->isVolatile() || LI->isAtomic())
return {};
InstToDuplicate.push_back(I);
if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
// Queue the defining access to check for alias checks.
AccessesToCheck.push_back(MemUse->getDefiningAccess());
AccessedLocs.push_back(MemoryLocation::get(I));
} else {
// MemoryDefs may clobber the location or may be atomic memory
// operations. Bail out.
return {};
}
}
WorkList.append(I->op_begin(), I->op_end());
}
if (InstToDuplicate.empty())
return {};
SmallVector<BasicBlock *, 4> ExitingBlocks;
L.getExitingBlocks(ExitingBlocks);
auto HasNoClobbersOnPath =
[&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
SmallVector<MemoryAccess *, 4> AccessesToCheck)
-> std::optional<IVConditionInfo> {
IVConditionInfo Info;
// First, collect all blocks in the loop that are on a patch from Succ
// to the header.
SmallVector<BasicBlock *, 4> WorkList;
WorkList.push_back(Succ);
WorkList.push_back(Header);
SmallPtrSet<BasicBlock *, 4> Seen;
Seen.insert(Header);
Info.PathIsNoop &=
all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
while (!WorkList.empty()) {
BasicBlock *Current = WorkList.pop_back_val();
if (!L.contains(Current))
continue;
const auto &SeenIns = Seen.insert(Current);
if (!SeenIns.second)
continue;
Info.PathIsNoop &= all_of(
*Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
WorkList.append(succ_begin(Current), succ_end(Current));
}
// Require at least 2 blocks on a path through the loop. This skips
// paths that directly exit the loop.
if (Seen.size() < 2)
return {};
// Next, check if there are any MemoryDefs that are on the path through
// the loop (in the Seen set) and they may-alias any of the locations in
// AccessedLocs. If that is the case, they may modify the condition and
// partial unswitching is not possible.
SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
while (!AccessesToCheck.empty()) {
MemoryAccess *Current = AccessesToCheck.pop_back_val();
auto SeenI = SeenAccesses.insert(Current);
if (!SeenI.second || !Seen.contains(Current->getBlock()))
continue;
// Bail out if exceeded the threshold.
if (SeenAccesses.size() >= MSSAThreshold)
return {};
// MemoryUse are read-only accesses.
if (isa<MemoryUse>(Current))
continue;
// For a MemoryDef, check if is aliases any of the location feeding
// the original condition.
if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
return isModSet(
AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
}))
return {};
}
for (Use &U : Current->uses())
AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
}
// We could also allow loops with known trip counts without mustprogress,
// but ScalarEvolution may not be available.
Info.PathIsNoop &= isMustProgress(&L);
// If the path is considered a no-op so far, check if it reaches a
// single exit block without any phis. This ensures no values from the
// loop are used outside of the loop.
if (Info.PathIsNoop) {
for (auto *Exiting : ExitingBlocks) {
if (!Seen.contains(Exiting))
continue;
for (auto *Succ : successors(Exiting)) {
if (L.contains(Succ))
continue;
Info.PathIsNoop &= Succ->phis().empty() &&
(!Info.ExitForPath || Info.ExitForPath == Succ);
if (!Info.PathIsNoop)
break;
assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
"cannot have multiple exit blocks");
Info.ExitForPath = Succ;
}
}
}
if (!Info.ExitForPath)
Info.PathIsNoop = false;
Info.InstToDuplicate = InstToDuplicate;
return Info;
};
// If we branch to the same successor, partial unswitching will not be
// beneficial.
if (TI->getSuccessor(0) == TI->getSuccessor(1))
return {};
if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
AccessesToCheck)) {
Info->KnownValue = ConstantInt::getTrue(TI->getContext());
return Info;
}
if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
AccessesToCheck)) {
Info->KnownValue = ConstantInt::getFalse(TI->getContext());
return Info;
}
return {};
}