llvm-project/llvm/lib/Transforms/Utils/UnifyLoopExits.cpp
Sameer Sahasrabuddhe 5f6172f068 [Transforms] Refactor CreateControlFlowHub (#103013)
CreateControlFlowHub is a method that redirects control flow edges from a set of
incoming blocks to a set of outgoing blocks through a new set of "guard" blocks.
This is now refactored into a separate file with one enhancement: The input to
the method is now a set of branches rather than two sets of blocks.

The original implementation reroutes every edge from incoming blocks to outgoing
blocks. But it is possible that for some incoming block InBB, some successor S
might be in the set of outgoing blocks, but that particular edge should not be
rerouted. The new implementation makes this possible by allowing the user to
specify the targets of each branch that need to be rerouted.

This is needed when improving the implementation of FixIrreducible #101386.
Current use in FixIrreducible does not demonstrate this finer control over the
edges being rerouted. But in UnifyLoopExits, when only one successor of an
exiting block is an exit block, this refinement now reroutes only the relevant
control-flow through the edge; the non-exit successor is not rerouted. This
results in fewer branches and PHI nodes in the hub.
2024-08-22 12:18:01 +05:30

239 lines
9.0 KiB
C++

//===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// For each natural loop with multiple exit blocks, this pass creates a new
// block N such that all exiting blocks now branch to N, and then control flow
// is redistributed to all the original exit blocks.
//
// Limitation: This assumes that all terminators in the CFG are direct branches
// (the "br" instruction). The presence of any other control flow
// such as indirectbr, switch or callbr will cause an assert.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/UnifyLoopExits.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ControlFlowUtils.h"
#define DEBUG_TYPE "unify-loop-exits"
using namespace llvm;
static cl::opt<unsigned> MaxBooleansInControlFlowHub(
"max-booleans-in-control-flow-hub", cl::init(32), cl::Hidden,
cl::desc("Set the maximum number of outgoing blocks for using a boolean "
"value to record the exiting block in the ControlFlowHub."));
namespace {
struct UnifyLoopExitsLegacyPass : public FunctionPass {
static char ID;
UnifyLoopExitsLegacyPass() : FunctionPass(ID) {
initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
}
bool runOnFunction(Function &F) override;
};
} // namespace
char UnifyLoopExitsLegacyPass::ID = 0;
FunctionPass *llvm::createUnifyLoopExitsPass() {
return new UnifyLoopExitsLegacyPass();
}
INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits",
"Fixup each natural loop to have a single exit block",
false /* Only looks at CFG */, false /* Analysis Pass */)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits",
"Fixup each natural loop to have a single exit block",
false /* Only looks at CFG */, false /* Analysis Pass */)
// The current transform introduces new control flow paths which may break the
// SSA requirement that every def must dominate all its uses. For example,
// consider a value D defined inside the loop that is used by some instruction
// U outside the loop. It follows that D dominates U, since the original
// program has valid SSA form. After merging the exits, all paths from D to U
// now flow through the unified exit block. In addition, there may be other
// paths that do not pass through D, but now reach the unified exit
// block. Thus, D no longer dominates U.
//
// Restore the dominance by creating a phi for each such D at the new unified
// loop exit. But when doing this, ignore any uses U that are in the new unified
// loop exit, since those were introduced specially when the block was created.
//
// The use of SSAUpdater seems like overkill for this operation. The location
// for creating the new PHI is well-known, and also the set of incoming blocks
// to the new PHI.
static void restoreSSA(const DominatorTree &DT, const Loop *L,
SmallVectorImpl<BasicBlock *> &Incoming,
BasicBlock *LoopExitBlock) {
using InstVector = SmallVector<Instruction *, 8>;
using IIMap = MapVector<Instruction *, InstVector>;
IIMap ExternalUsers;
for (auto *BB : L->blocks()) {
for (auto &I : *BB) {
for (auto &U : I.uses()) {
auto UserInst = cast<Instruction>(U.getUser());
auto UserBlock = UserInst->getParent();
if (UserBlock == LoopExitBlock)
continue;
if (L->contains(UserBlock))
continue;
LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "("
<< BB->getName() << ")"
<< ": " << UserInst->getName() << "("
<< UserBlock->getName() << ")"
<< "\n");
ExternalUsers[&I].push_back(UserInst);
}
}
}
for (const auto &II : ExternalUsers) {
// For each Def used outside the loop, create NewPhi in
// LoopExitBlock. NewPhi receives Def only along exiting blocks that
// dominate it, while the remaining values are undefined since those paths
// didn't exist in the original CFG.
auto Def = II.first;
LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n");
auto NewPhi =
PHINode::Create(Def->getType(), Incoming.size(),
Def->getName() + ".moved", LoopExitBlock->begin());
for (auto *In : Incoming) {
LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": ");
if (Def->getParent() == In || DT.dominates(Def, In)) {
LLVM_DEBUG(dbgs() << "dominated\n");
NewPhi->addIncoming(Def, In);
} else {
LLVM_DEBUG(dbgs() << "not dominated\n");
NewPhi->addIncoming(PoisonValue::get(Def->getType()), In);
}
}
LLVM_DEBUG(dbgs() << "external users:");
for (auto *U : II.second) {
LLVM_DEBUG(dbgs() << " " << U->getName());
U->replaceUsesOfWith(Def, NewPhi);
}
LLVM_DEBUG(dbgs() << "\n");
}
}
static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) {
// To unify the loop exits, we need a list of the exiting blocks as
// well as exit blocks. The functions for locating these lists both
// traverse the entire loop body. It is more efficient to first
// locate the exiting blocks and then examine their successors to
// locate the exit blocks.
SmallVector<BasicBlock *, 8> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
// Redirect exiting edges through a control flow hub.
ControlFlowHub CHub;
for (auto *BB : ExitingBlocks) {
auto *Branch = cast<BranchInst>(BB->getTerminator());
BasicBlock *Succ0 = Branch->getSuccessor(0);
Succ0 = L->contains(Succ0) ? nullptr : Succ0;
BasicBlock *Succ1 =
Branch->isUnconditional() ? nullptr : Branch->getSuccessor(1);
Succ1 = L->contains(Succ1) ? nullptr : Succ1;
CHub.addBranch(BB, Succ0, Succ1);
LLVM_DEBUG(dbgs() << "Added exiting branch: " << BB->getName() << " -> {"
<< (Succ0 ? Succ0->getName() : "<none>") << ", "
<< (Succ1 ? Succ1->getName() : "<none>") << "}\n");
}
SmallVector<BasicBlock *, 8> GuardBlocks;
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
BasicBlock *LoopExitBlock = CHub.finalize(
&DTU, GuardBlocks, "loop.exit", MaxBooleansInControlFlowHub.getValue());
restoreSSA(DT, L, ExitingBlocks, LoopExitBlock);
#if defined(EXPENSIVE_CHECKS)
assert(DT.verify(DominatorTree::VerificationLevel::Full));
#else
assert(DT.verify(DominatorTree::VerificationLevel::Fast));
#endif // EXPENSIVE_CHECKS
L->verifyLoop();
// The guard blocks were created outside the loop, so they need to become
// members of the parent loop.
if (auto ParentLoop = L->getParentLoop()) {
for (auto *G : GuardBlocks) {
ParentLoop->addBasicBlockToLoop(G, LI);
}
ParentLoop->verifyLoop();
}
#if defined(EXPENSIVE_CHECKS)
LI.verify(DT);
#endif // EXPENSIVE_CHECKS
return true;
}
static bool runImpl(LoopInfo &LI, DominatorTree &DT) {
bool Changed = false;
auto Loops = LI.getLoopsInPreorder();
for (auto *L : Loops) {
LLVM_DEBUG(dbgs() << "Processing loop:\n"; L->print(dbgs()));
Changed |= unifyLoopExits(DT, LI, L);
}
return Changed;
}
bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) {
LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
<< "\n");
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
assert(hasOnlySimpleTerminator(F) && "Unsupported block terminator.");
return runImpl(LI, DT);
}
namespace llvm {
PreservedAnalyses UnifyLoopExitsPass::run(Function &F,
FunctionAnalysisManager &AM) {
LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
<< "\n");
auto &LI = AM.getResult<LoopAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
if (!runImpl(LI, DT))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<LoopAnalysis>();
PA.preserve<DominatorTreeAnalysis>();
return PA;
}
} // namespace llvm