Paul Walker f53234cbfd [AggressiveInstCombine] Fix invalid TypeSize conversion when combining loads.
Much of foldLoadsRecursive relies on knowing the size of loaded
data, which is not possible for scalable vector types.  However,
the logic of combining two small loads into one bigger load does
not apply for vector types so rather than converting the algorithm
to use TypeSize I've simply added an early exit for vectors.

Fixes #59510

Differential Revision: https://reviews.llvm.org/D140106
2022-12-17 15:34:27 +00:00

897 lines
33 KiB
C++

//===- AggressiveInstCombine.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the aggressive expression pattern combiner classes.
// Currently, it handles expression patterns for:
// * Truncate instruction
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
#include "AggressiveInstCombineInternal.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "aggressive-instcombine"
STATISTIC(NumAnyOrAllBitsSet, "Number of any/all-bits-set patterns folded");
STATISTIC(NumGuardedRotates,
"Number of guarded rotates transformed into funnel shifts");
STATISTIC(NumGuardedFunnelShifts,
"Number of guarded funnel shifts transformed into funnel shifts");
STATISTIC(NumPopCountRecognized, "Number of popcount idioms recognized");
static cl::opt<unsigned> MaxInstrsToScan(
"aggressive-instcombine-max-scan-instrs", cl::init(64), cl::Hidden,
cl::desc("Max number of instructions to scan for aggressive instcombine."));
/// Match a pattern for a bitwise funnel/rotate operation that partially guards
/// against undefined behavior by branching around the funnel-shift/rotation
/// when the shift amount is 0.
static bool foldGuardedFunnelShift(Instruction &I, const DominatorTree &DT) {
if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
return false;
// As with the one-use checks below, this is not strictly necessary, but we
// are being cautious to avoid potential perf regressions on targets that
// do not actually have a funnel/rotate instruction (where the funnel shift
// would be expanded back into math/shift/logic ops).
if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
return false;
// Match V to funnel shift left/right and capture the source operands and
// shift amount.
auto matchFunnelShift = [](Value *V, Value *&ShVal0, Value *&ShVal1,
Value *&ShAmt) {
Value *SubAmt;
unsigned Width = V->getType()->getScalarSizeInBits();
// fshl(ShVal0, ShVal1, ShAmt)
// == (ShVal0 << ShAmt) | (ShVal1 >> (Width -ShAmt))
if (match(V, m_OneUse(m_c_Or(
m_Shl(m_Value(ShVal0), m_Value(ShAmt)),
m_LShr(m_Value(ShVal1),
m_Sub(m_SpecificInt(Width), m_Value(SubAmt))))))) {
if (ShAmt == SubAmt) // TODO: Use m_Specific
return Intrinsic::fshl;
}
// fshr(ShVal0, ShVal1, ShAmt)
// == (ShVal0 >> ShAmt) | (ShVal1 << (Width - ShAmt))
if (match(V,
m_OneUse(m_c_Or(m_Shl(m_Value(ShVal0), m_Sub(m_SpecificInt(Width),
m_Value(SubAmt))),
m_LShr(m_Value(ShVal1), m_Value(ShAmt)))))) {
if (ShAmt == SubAmt) // TODO: Use m_Specific
return Intrinsic::fshr;
}
return Intrinsic::not_intrinsic;
};
// One phi operand must be a funnel/rotate operation, and the other phi
// operand must be the source value of that funnel/rotate operation:
// phi [ rotate(RotSrc, ShAmt), FunnelBB ], [ RotSrc, GuardBB ]
// phi [ fshl(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal0, GuardBB ]
// phi [ fshr(ShVal0, ShVal1, ShAmt), FunnelBB ], [ ShVal1, GuardBB ]
PHINode &Phi = cast<PHINode>(I);
unsigned FunnelOp = 0, GuardOp = 1;
Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
Value *ShVal0, *ShVal1, *ShAmt;
Intrinsic::ID IID = matchFunnelShift(P0, ShVal0, ShVal1, ShAmt);
if (IID == Intrinsic::not_intrinsic ||
(IID == Intrinsic::fshl && ShVal0 != P1) ||
(IID == Intrinsic::fshr && ShVal1 != P1)) {
IID = matchFunnelShift(P1, ShVal0, ShVal1, ShAmt);
if (IID == Intrinsic::not_intrinsic ||
(IID == Intrinsic::fshl && ShVal0 != P0) ||
(IID == Intrinsic::fshr && ShVal1 != P0))
return false;
assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
"Pattern must match funnel shift left or right");
std::swap(FunnelOp, GuardOp);
}
// The incoming block with our source operand must be the "guard" block.
// That must contain a cmp+branch to avoid the funnel/rotate when the shift
// amount is equal to 0. The other incoming block is the block with the
// funnel/rotate.
BasicBlock *GuardBB = Phi.getIncomingBlock(GuardOp);
BasicBlock *FunnelBB = Phi.getIncomingBlock(FunnelOp);
Instruction *TermI = GuardBB->getTerminator();
// Ensure that the shift values dominate each block.
if (!DT.dominates(ShVal0, TermI) || !DT.dominates(ShVal1, TermI))
return false;
ICmpInst::Predicate Pred;
BasicBlock *PhiBB = Phi.getParent();
if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()),
m_SpecificBB(PhiBB), m_SpecificBB(FunnelBB))))
return false;
if (Pred != CmpInst::ICMP_EQ)
return false;
IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
if (ShVal0 == ShVal1)
++NumGuardedRotates;
else
++NumGuardedFunnelShifts;
// If this is not a rotate then the select was blocking poison from the
// 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
bool IsFshl = IID == Intrinsic::fshl;
if (ShVal0 != ShVal1) {
if (IsFshl && !llvm::isGuaranteedNotToBePoison(ShVal1))
ShVal1 = Builder.CreateFreeze(ShVal1);
else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(ShVal0))
ShVal0 = Builder.CreateFreeze(ShVal0);
}
// We matched a variation of this IR pattern:
// GuardBB:
// %cmp = icmp eq i32 %ShAmt, 0
// br i1 %cmp, label %PhiBB, label %FunnelBB
// FunnelBB:
// %sub = sub i32 32, %ShAmt
// %shr = lshr i32 %ShVal1, %sub
// %shl = shl i32 %ShVal0, %ShAmt
// %fsh = or i32 %shr, %shl
// br label %PhiBB
// PhiBB:
// %cond = phi i32 [ %fsh, %FunnelBB ], [ %ShVal0, %GuardBB ]
// -->
// llvm.fshl.i32(i32 %ShVal0, i32 %ShVal1, i32 %ShAmt)
Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
Phi.replaceAllUsesWith(Builder.CreateCall(F, {ShVal0, ShVal1, ShAmt}));
return true;
}
/// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
/// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
/// of 'and' ops, then we also need to capture the fact that we saw an
/// "and X, 1", so that's an extra return value for that case.
struct MaskOps {
Value *Root = nullptr;
APInt Mask;
bool MatchAndChain;
bool FoundAnd1 = false;
MaskOps(unsigned BitWidth, bool MatchAnds)
: Mask(APInt::getZero(BitWidth)), MatchAndChain(MatchAnds) {}
};
/// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
/// chain of 'and' or 'or' instructions looking for shift ops of a common source
/// value. Examples:
/// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
/// returns { X, 0x129 }
/// and (and (X >> 1), 1), (X >> 4)
/// returns { X, 0x12 }
static bool matchAndOrChain(Value *V, MaskOps &MOps) {
Value *Op0, *Op1;
if (MOps.MatchAndChain) {
// Recurse through a chain of 'and' operands. This requires an extra check
// vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
// in the chain to know that all of the high bits are cleared.
if (match(V, m_And(m_Value(Op0), m_One()))) {
MOps.FoundAnd1 = true;
return matchAndOrChain(Op0, MOps);
}
if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
} else {
// Recurse through a chain of 'or' operands.
if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
}
// We need a shift-right or a bare value representing a compare of bit 0 of
// the original source operand.
Value *Candidate;
const APInt *BitIndex = nullptr;
if (!match(V, m_LShr(m_Value(Candidate), m_APInt(BitIndex))))
Candidate = V;
// Initialize result source operand.
if (!MOps.Root)
MOps.Root = Candidate;
// The shift constant is out-of-range? This code hasn't been simplified.
if (BitIndex && BitIndex->uge(MOps.Mask.getBitWidth()))
return false;
// Fill in the mask bit derived from the shift constant.
MOps.Mask.setBit(BitIndex ? BitIndex->getZExtValue() : 0);
return MOps.Root == Candidate;
}
/// Match patterns that correspond to "any-bits-set" and "all-bits-set".
/// These will include a chain of 'or' or 'and'-shifted bits from a
/// common source value:
/// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0
/// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
/// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
/// that differ only with a final 'not' of the result. We expect that final
/// 'not' to be folded with the compare that we create here (invert predicate).
static bool foldAnyOrAllBitsSet(Instruction &I) {
// The 'any-bits-set' ('or' chain) pattern is simpler to match because the
// final "and X, 1" instruction must be the final op in the sequence.
bool MatchAllBitsSet;
if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
MatchAllBitsSet = true;
else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
MatchAllBitsSet = false;
else
return false;
MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
if (MatchAllBitsSet) {
if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
return false;
} else {
if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
return false;
}
// The pattern was found. Create a masked compare that replaces all of the
// shift and logic ops.
IRBuilder<> Builder(&I);
Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
Value *And = Builder.CreateAnd(MOps.Root, Mask);
Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask)
: Builder.CreateIsNotNull(And);
Value *Zext = Builder.CreateZExt(Cmp, I.getType());
I.replaceAllUsesWith(Zext);
++NumAnyOrAllBitsSet;
return true;
}
// Try to recognize below function as popcount intrinsic.
// This is the "best" algorithm from
// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
// Also used in TargetLowering::expandCTPOP().
//
// int popcount(unsigned int i) {
// i = i - ((i >> 1) & 0x55555555);
// i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
// i = ((i + (i >> 4)) & 0x0F0F0F0F);
// return (i * 0x01010101) >> 24;
// }
static bool tryToRecognizePopCount(Instruction &I) {
if (I.getOpcode() != Instruction::LShr)
return false;
Type *Ty = I.getType();
if (!Ty->isIntOrIntVectorTy())
return false;
unsigned Len = Ty->getScalarSizeInBits();
// FIXME: fix Len == 8 and other irregular type lengths.
if (!(Len <= 128 && Len > 8 && Len % 8 == 0))
return false;
APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55));
APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33));
APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F));
APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01));
APInt MaskShift = APInt(Len, Len - 8);
Value *Op0 = I.getOperand(0);
Value *Op1 = I.getOperand(1);
Value *MulOp0;
// Matching "(i * 0x01010101...) >> 24".
if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) &&
match(Op1, m_SpecificInt(MaskShift))) {
Value *ShiftOp0;
// Matching "((i + (i >> 4)) & 0x0F0F0F0F...)".
if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)),
m_Deferred(ShiftOp0)),
m_SpecificInt(Mask0F)))) {
Value *AndOp0;
// Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)".
if (match(ShiftOp0,
m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)),
m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)),
m_SpecificInt(Mask33))))) {
Value *Root, *SubOp1;
// Matching "i - ((i >> 1) & 0x55555555...)".
if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) &&
match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)),
m_SpecificInt(Mask55)))) {
LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n");
IRBuilder<> Builder(&I);
Function *Func = Intrinsic::getDeclaration(
I.getModule(), Intrinsic::ctpop, I.getType());
I.replaceAllUsesWith(Builder.CreateCall(Func, {Root}));
++NumPopCountRecognized;
return true;
}
}
}
}
return false;
}
/// Fold smin(smax(fptosi(x), C1), C2) to llvm.fptosi.sat(x), providing C1 and
/// C2 saturate the value of the fp conversion. The transform is not reversable
/// as the fptosi.sat is more defined than the input - all values produce a
/// valid value for the fptosi.sat, where as some produce poison for original
/// that were out of range of the integer conversion. The reversed pattern may
/// use fmax and fmin instead. As we cannot directly reverse the transform, and
/// it is not always profitable, we make it conditional on the cost being
/// reported as lower by TTI.
static bool tryToFPToSat(Instruction &I, TargetTransformInfo &TTI) {
// Look for min(max(fptosi, converting to fptosi_sat.
Value *In;
const APInt *MinC, *MaxC;
if (!match(&I, m_SMax(m_OneUse(m_SMin(m_OneUse(m_FPToSI(m_Value(In))),
m_APInt(MinC))),
m_APInt(MaxC))) &&
!match(&I, m_SMin(m_OneUse(m_SMax(m_OneUse(m_FPToSI(m_Value(In))),
m_APInt(MaxC))),
m_APInt(MinC))))
return false;
// Check that the constants clamp a saturate.
if (!(*MinC + 1).isPowerOf2() || -*MaxC != *MinC + 1)
return false;
Type *IntTy = I.getType();
Type *FpTy = In->getType();
Type *SatTy =
IntegerType::get(IntTy->getContext(), (*MinC + 1).exactLogBase2() + 1);
if (auto *VecTy = dyn_cast<VectorType>(IntTy))
SatTy = VectorType::get(SatTy, VecTy->getElementCount());
// Get the cost of the intrinsic, and check that against the cost of
// fptosi+smin+smax
InstructionCost SatCost = TTI.getIntrinsicInstrCost(
IntrinsicCostAttributes(Intrinsic::fptosi_sat, SatTy, {In}, {FpTy}),
TTI::TCK_RecipThroughput);
SatCost += TTI.getCastInstrCost(Instruction::SExt, SatTy, IntTy,
TTI::CastContextHint::None,
TTI::TCK_RecipThroughput);
InstructionCost MinMaxCost = TTI.getCastInstrCost(
Instruction::FPToSI, IntTy, FpTy, TTI::CastContextHint::None,
TTI::TCK_RecipThroughput);
MinMaxCost += TTI.getIntrinsicInstrCost(
IntrinsicCostAttributes(Intrinsic::smin, IntTy, {IntTy}),
TTI::TCK_RecipThroughput);
MinMaxCost += TTI.getIntrinsicInstrCost(
IntrinsicCostAttributes(Intrinsic::smax, IntTy, {IntTy}),
TTI::TCK_RecipThroughput);
if (SatCost >= MinMaxCost)
return false;
IRBuilder<> Builder(&I);
Function *Fn = Intrinsic::getDeclaration(I.getModule(), Intrinsic::fptosi_sat,
{SatTy, FpTy});
Value *Sat = Builder.CreateCall(Fn, In);
I.replaceAllUsesWith(Builder.CreateSExt(Sat, IntTy));
return true;
}
/// Try to replace a mathlib call to sqrt with the LLVM intrinsic. This avoids
/// pessimistic codegen that has to account for setting errno and can enable
/// vectorization.
static bool
foldSqrt(Instruction &I, TargetTransformInfo &TTI, TargetLibraryInfo &TLI) {
// Match a call to sqrt mathlib function.
auto *Call = dyn_cast<CallInst>(&I);
if (!Call)
return false;
Module *M = Call->getModule();
LibFunc Func;
if (!TLI.getLibFunc(*Call, Func) || !isLibFuncEmittable(M, &TLI, Func))
return false;
if (Func != LibFunc_sqrt && Func != LibFunc_sqrtf && Func != LibFunc_sqrtl)
return false;
// If (1) this is a sqrt libcall, (2) we can assume that NAN is not created
// (because NNAN or the operand arg must not be less than -0.0) and (2) we
// would not end up lowering to a libcall anyway (which could change the value
// of errno), then:
// (1) errno won't be set.
// (2) it is safe to convert this to an intrinsic call.
Type *Ty = Call->getType();
Value *Arg = Call->getArgOperand(0);
if (TTI.haveFastSqrt(Ty) &&
(Call->hasNoNaNs() || CannotBeOrderedLessThanZero(Arg, &TLI))) {
IRBuilder<> Builder(&I);
IRBuilderBase::FastMathFlagGuard Guard(Builder);
Builder.setFastMathFlags(Call->getFastMathFlags());
Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, Ty);
Value *NewSqrt = Builder.CreateCall(Sqrt, Arg, "sqrt");
I.replaceAllUsesWith(NewSqrt);
// Explicitly erase the old call because a call with side effects is not
// trivially dead.
I.eraseFromParent();
return true;
}
return false;
}
// Check if this array of constants represents a cttz table.
// Iterate over the elements from \p Table by trying to find/match all
// the numbers from 0 to \p InputBits that should represent cttz results.
static bool isCTTZTable(const ConstantDataArray &Table, uint64_t Mul,
uint64_t Shift, uint64_t InputBits) {
unsigned Length = Table.getNumElements();
if (Length < InputBits || Length > InputBits * 2)
return false;
APInt Mask = APInt::getBitsSetFrom(InputBits, Shift);
unsigned Matched = 0;
for (unsigned i = 0; i < Length; i++) {
uint64_t Element = Table.getElementAsInteger(i);
if (Element >= InputBits)
continue;
// Check if \p Element matches a concrete answer. It could fail for some
// elements that are never accessed, so we keep iterating over each element
// from the table. The number of matched elements should be equal to the
// number of potential right answers which is \p InputBits actually.
if ((((Mul << Element) & Mask.getZExtValue()) >> Shift) == i)
Matched++;
}
return Matched == InputBits;
}
// Try to recognize table-based ctz implementation.
// E.g., an example in C (for more cases please see the llvm/tests):
// int f(unsigned x) {
// static const char table[32] =
// {0, 1, 28, 2, 29, 14, 24, 3, 30,
// 22, 20, 15, 25, 17, 4, 8, 31, 27,
// 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9};
// return table[((unsigned)((x & -x) * 0x077CB531U)) >> 27];
// }
// this can be lowered to `cttz` instruction.
// There is also a special case when the element is 0.
//
// Here are some examples or LLVM IR for a 64-bit target:
//
// CASE 1:
// %sub = sub i32 0, %x
// %and = and i32 %sub, %x
// %mul = mul i32 %and, 125613361
// %shr = lshr i32 %mul, 27
// %idxprom = zext i32 %shr to i64
// %arrayidx = getelementptr inbounds [32 x i8], [32 x i8]* @ctz1.table, i64 0,
// i64 %idxprom %0 = load i8, i8* %arrayidx, align 1, !tbaa !8
//
// CASE 2:
// %sub = sub i32 0, %x
// %and = and i32 %sub, %x
// %mul = mul i32 %and, 72416175
// %shr = lshr i32 %mul, 26
// %idxprom = zext i32 %shr to i64
// %arrayidx = getelementptr inbounds [64 x i16], [64 x i16]* @ctz2.table, i64
// 0, i64 %idxprom %0 = load i16, i16* %arrayidx, align 2, !tbaa !8
//
// CASE 3:
// %sub = sub i32 0, %x
// %and = and i32 %sub, %x
// %mul = mul i32 %and, 81224991
// %shr = lshr i32 %mul, 27
// %idxprom = zext i32 %shr to i64
// %arrayidx = getelementptr inbounds [32 x i32], [32 x i32]* @ctz3.table, i64
// 0, i64 %idxprom %0 = load i32, i32* %arrayidx, align 4, !tbaa !8
//
// CASE 4:
// %sub = sub i64 0, %x
// %and = and i64 %sub, %x
// %mul = mul i64 %and, 283881067100198605
// %shr = lshr i64 %mul, 58
// %arrayidx = getelementptr inbounds [64 x i8], [64 x i8]* @table, i64 0, i64
// %shr %0 = load i8, i8* %arrayidx, align 1, !tbaa !8
//
// All this can be lowered to @llvm.cttz.i32/64 intrinsic.
static bool tryToRecognizeTableBasedCttz(Instruction &I) {
LoadInst *LI = dyn_cast<LoadInst>(&I);
if (!LI)
return false;
Type *AccessType = LI->getType();
if (!AccessType->isIntegerTy())
return false;
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getPointerOperand());
if (!GEP || !GEP->isInBounds() || GEP->getNumIndices() != 2)
return false;
if (!GEP->getSourceElementType()->isArrayTy())
return false;
uint64_t ArraySize = GEP->getSourceElementType()->getArrayNumElements();
if (ArraySize != 32 && ArraySize != 64)
return false;
GlobalVariable *GVTable = dyn_cast<GlobalVariable>(GEP->getPointerOperand());
if (!GVTable || !GVTable->hasInitializer() || !GVTable->isConstant())
return false;
ConstantDataArray *ConstData =
dyn_cast<ConstantDataArray>(GVTable->getInitializer());
if (!ConstData)
return false;
if (!match(GEP->idx_begin()->get(), m_ZeroInt()))
return false;
Value *Idx2 = std::next(GEP->idx_begin())->get();
Value *X1;
uint64_t MulConst, ShiftConst;
// FIXME: 64-bit targets have `i64` type for the GEP index, so this match will
// probably fail for other (e.g. 32-bit) targets.
if (!match(Idx2, m_ZExtOrSelf(
m_LShr(m_Mul(m_c_And(m_Neg(m_Value(X1)), m_Deferred(X1)),
m_ConstantInt(MulConst)),
m_ConstantInt(ShiftConst)))))
return false;
unsigned InputBits = X1->getType()->getScalarSizeInBits();
if (InputBits != 32 && InputBits != 64)
return false;
// Shift should extract top 5..7 bits.
if (InputBits - Log2_32(InputBits) != ShiftConst &&
InputBits - Log2_32(InputBits) - 1 != ShiftConst)
return false;
if (!isCTTZTable(*ConstData, MulConst, ShiftConst, InputBits))
return false;
auto ZeroTableElem = ConstData->getElementAsInteger(0);
bool DefinedForZero = ZeroTableElem == InputBits;
IRBuilder<> B(LI);
ConstantInt *BoolConst = B.getInt1(!DefinedForZero);
Type *XType = X1->getType();
auto Cttz = B.CreateIntrinsic(Intrinsic::cttz, {XType}, {X1, BoolConst});
Value *ZExtOrTrunc = nullptr;
if (DefinedForZero) {
ZExtOrTrunc = B.CreateZExtOrTrunc(Cttz, AccessType);
} else {
// If the value in elem 0 isn't the same as InputBits, we still want to
// produce the value from the table.
auto Cmp = B.CreateICmpEQ(X1, ConstantInt::get(XType, 0));
auto Select =
B.CreateSelect(Cmp, ConstantInt::get(XType, ZeroTableElem), Cttz);
// NOTE: If the table[0] is 0, but the cttz(0) is defined by the Target
// it should be handled as: `cttz(x) & (typeSize - 1)`.
ZExtOrTrunc = B.CreateZExtOrTrunc(Select, AccessType);
}
LI->replaceAllUsesWith(ZExtOrTrunc);
return true;
}
/// This is used by foldLoadsRecursive() to capture a Root Load node which is
/// of type or(load, load) and recursively build the wide load. Also capture the
/// shift amount, zero extend type and loadSize.
struct LoadOps {
LoadInst *Root = nullptr;
LoadInst *RootInsert = nullptr;
bool FoundRoot = false;
uint64_t LoadSize = 0;
Value *Shift = nullptr;
Type *ZextType;
AAMDNodes AATags;
};
// Identify and Merge consecutive loads recursively which is of the form
// (ZExt(L1) << shift1) | (ZExt(L2) << shift2) -> ZExt(L3) << shift1
// (ZExt(L1) << shift1) | ZExt(L2) -> ZExt(L3)
static bool foldLoadsRecursive(Value *V, LoadOps &LOps, const DataLayout &DL,
AliasAnalysis &AA) {
Value *ShAmt2 = nullptr;
Value *X;
Instruction *L1, *L2;
// Go to the last node with loads.
if (match(V, m_OneUse(m_c_Or(
m_Value(X),
m_OneUse(m_Shl(m_OneUse(m_ZExt(m_OneUse(m_Instruction(L2)))),
m_Value(ShAmt2)))))) ||
match(V, m_OneUse(m_Or(m_Value(X),
m_OneUse(m_ZExt(m_OneUse(m_Instruction(L2)))))))) {
if (!foldLoadsRecursive(X, LOps, DL, AA) && LOps.FoundRoot)
// Avoid Partial chain merge.
return false;
} else
return false;
// Check if the pattern has loads
LoadInst *LI1 = LOps.Root;
Value *ShAmt1 = LOps.Shift;
if (LOps.FoundRoot == false &&
(match(X, m_OneUse(m_ZExt(m_Instruction(L1)))) ||
match(X, m_OneUse(m_Shl(m_OneUse(m_ZExt(m_OneUse(m_Instruction(L1)))),
m_Value(ShAmt1)))))) {
LI1 = dyn_cast<LoadInst>(L1);
}
LoadInst *LI2 = dyn_cast<LoadInst>(L2);
// Check if loads are same, atomic, volatile and having same address space.
if (LI1 == LI2 || !LI1 || !LI2 || !LI1->isSimple() || !LI2->isSimple() ||
LI1->getPointerAddressSpace() != LI2->getPointerAddressSpace())
return false;
// Check if Loads come from same BB.
if (LI1->getParent() != LI2->getParent())
return false;
// Find the data layout
bool IsBigEndian = DL.isBigEndian();
// Check if loads are consecutive and same size.
Value *Load1Ptr = LI1->getPointerOperand();
APInt Offset1(DL.getIndexTypeSizeInBits(Load1Ptr->getType()), 0);
Load1Ptr =
Load1Ptr->stripAndAccumulateConstantOffsets(DL, Offset1,
/* AllowNonInbounds */ true);
Value *Load2Ptr = LI2->getPointerOperand();
APInt Offset2(DL.getIndexTypeSizeInBits(Load2Ptr->getType()), 0);
Load2Ptr =
Load2Ptr->stripAndAccumulateConstantOffsets(DL, Offset2,
/* AllowNonInbounds */ true);
// Verify if both loads have same base pointers and load sizes are same.
uint64_t LoadSize1 = LI1->getType()->getPrimitiveSizeInBits();
uint64_t LoadSize2 = LI2->getType()->getPrimitiveSizeInBits();
if (Load1Ptr != Load2Ptr || LoadSize1 != LoadSize2)
return false;
// Support Loadsizes greater or equal to 8bits and only power of 2.
if (LoadSize1 < 8 || !isPowerOf2_64(LoadSize1))
return false;
// Alias Analysis to check for stores b/w the loads.
LoadInst *Start = LOps.FoundRoot ? LOps.RootInsert : LI1, *End = LI2;
MemoryLocation Loc;
if (!Start->comesBefore(End)) {
std::swap(Start, End);
Loc = MemoryLocation::get(End);
if (LOps.FoundRoot)
Loc = Loc.getWithNewSize(LOps.LoadSize);
} else
Loc = MemoryLocation::get(End);
unsigned NumScanned = 0;
for (Instruction &Inst :
make_range(Start->getIterator(), End->getIterator())) {
if (Inst.mayWriteToMemory() && isModSet(AA.getModRefInfo(&Inst, Loc)))
return false;
if (++NumScanned > MaxInstrsToScan)
return false;
}
// Make sure Load with lower Offset is at LI1
bool Reverse = false;
if (Offset2.slt(Offset1)) {
std::swap(LI1, LI2);
std::swap(ShAmt1, ShAmt2);
std::swap(Offset1, Offset2);
std::swap(Load1Ptr, Load2Ptr);
std::swap(LoadSize1, LoadSize2);
Reverse = true;
}
// Big endian swap the shifts
if (IsBigEndian)
std::swap(ShAmt1, ShAmt2);
// Find Shifts values.
const APInt *Temp;
uint64_t Shift1 = 0, Shift2 = 0;
if (ShAmt1 && match(ShAmt1, m_APInt(Temp)))
Shift1 = Temp->getZExtValue();
if (ShAmt2 && match(ShAmt2, m_APInt(Temp)))
Shift2 = Temp->getZExtValue();
// First load is always LI1. This is where we put the new load.
// Use the merged load size available from LI1 for forward loads.
if (LOps.FoundRoot) {
if (!Reverse)
LoadSize1 = LOps.LoadSize;
else
LoadSize2 = LOps.LoadSize;
}
// Verify if shift amount and load index aligns and verifies that loads
// are consecutive.
uint64_t ShiftDiff = IsBigEndian ? LoadSize2 : LoadSize1;
uint64_t PrevSize =
DL.getTypeStoreSize(IntegerType::get(LI1->getContext(), LoadSize1));
if ((Shift2 - Shift1) != ShiftDiff || (Offset2 - Offset1) != PrevSize)
return false;
// Update LOps
AAMDNodes AATags1 = LOps.AATags;
AAMDNodes AATags2 = LI2->getAAMetadata();
if (LOps.FoundRoot == false) {
LOps.FoundRoot = true;
AATags1 = LI1->getAAMetadata();
}
LOps.LoadSize = LoadSize1 + LoadSize2;
LOps.RootInsert = Start;
// Concatenate the AATags of the Merged Loads.
LOps.AATags = AATags1.concat(AATags2);
LOps.Root = LI1;
LOps.Shift = ShAmt1;
LOps.ZextType = X->getType();
return true;
}
// For a given BB instruction, evaluate all loads in the chain that form a
// pattern which suggests that the loads can be combined. The one and only use
// of the loads is to form a wider load.
static bool foldConsecutiveLoads(Instruction &I, const DataLayout &DL,
TargetTransformInfo &TTI, AliasAnalysis &AA) {
// Only consider load chains of scalar values.
if (isa<VectorType>(I.getType()))
return false;
LoadOps LOps;
if (!foldLoadsRecursive(&I, LOps, DL, AA) || !LOps.FoundRoot)
return false;
IRBuilder<> Builder(&I);
LoadInst *NewLoad = nullptr, *LI1 = LOps.Root;
IntegerType *WiderType = IntegerType::get(I.getContext(), LOps.LoadSize);
// TTI based checks if we want to proceed with wider load
bool Allowed = TTI.isTypeLegal(WiderType);
if (!Allowed)
return false;
unsigned AS = LI1->getPointerAddressSpace();
unsigned Fast = 0;
Allowed = TTI.allowsMisalignedMemoryAccesses(I.getContext(), LOps.LoadSize,
AS, LI1->getAlign(), &Fast);
if (!Allowed || !Fast)
return false;
// Make sure the Load pointer of type GEP/non-GEP is above insert point
Instruction *Inst = dyn_cast<Instruction>(LI1->getPointerOperand());
if (Inst && Inst->getParent() == LI1->getParent() &&
!Inst->comesBefore(LOps.RootInsert))
Inst->moveBefore(LOps.RootInsert);
// New load can be generated
Value *Load1Ptr = LI1->getPointerOperand();
Builder.SetInsertPoint(LOps.RootInsert);
Value *NewPtr = Builder.CreateBitCast(Load1Ptr, WiderType->getPointerTo(AS));
NewLoad = Builder.CreateAlignedLoad(WiderType, NewPtr, LI1->getAlign(),
LI1->isVolatile(), "");
NewLoad->takeName(LI1);
// Set the New Load AATags Metadata.
if (LOps.AATags)
NewLoad->setAAMetadata(LOps.AATags);
Value *NewOp = NewLoad;
// Check if zero extend needed.
if (LOps.ZextType)
NewOp = Builder.CreateZExt(NewOp, LOps.ZextType);
// Check if shift needed. We need to shift with the amount of load1
// shift if not zero.
if (LOps.Shift)
NewOp = Builder.CreateShl(NewOp, LOps.Shift);
I.replaceAllUsesWith(NewOp);
return true;
}
/// This is the entry point for folds that could be implemented in regular
/// InstCombine, but they are separated because they are not expected to
/// occur frequently and/or have more than a constant-length pattern match.
static bool foldUnusualPatterns(Function &F, DominatorTree &DT,
TargetTransformInfo &TTI,
TargetLibraryInfo &TLI, AliasAnalysis &AA) {
bool MadeChange = false;
for (BasicBlock &BB : F) {
// Ignore unreachable basic blocks.
if (!DT.isReachableFromEntry(&BB))
continue;
const DataLayout &DL = F.getParent()->getDataLayout();
// Walk the block backwards for efficiency. We're matching a chain of
// use->defs, so we're more likely to succeed by starting from the bottom.
// Also, we want to avoid matching partial patterns.
// TODO: It would be more efficient if we removed dead instructions
// iteratively in this loop rather than waiting until the end.
for (Instruction &I : make_early_inc_range(llvm::reverse(BB))) {
MadeChange |= foldAnyOrAllBitsSet(I);
MadeChange |= foldGuardedFunnelShift(I, DT);
MadeChange |= tryToRecognizePopCount(I);
MadeChange |= tryToFPToSat(I, TTI);
MadeChange |= tryToRecognizeTableBasedCttz(I);
MadeChange |= foldConsecutiveLoads(I, DL, TTI, AA);
// NOTE: This function introduces erasing of the instruction `I`, so it
// needs to be called at the end of this sequence, otherwise we may make
// bugs.
MadeChange |= foldSqrt(I, TTI, TLI);
}
}
// We're done with transforms, so remove dead instructions.
if (MadeChange)
for (BasicBlock &BB : F)
SimplifyInstructionsInBlock(&BB);
return MadeChange;
}
/// This is the entry point for all transforms. Pass manager differences are
/// handled in the callers of this function.
static bool runImpl(Function &F, AssumptionCache &AC, TargetTransformInfo &TTI,
TargetLibraryInfo &TLI, DominatorTree &DT,
AliasAnalysis &AA) {
bool MadeChange = false;
const DataLayout &DL = F.getParent()->getDataLayout();
TruncInstCombine TIC(AC, TLI, DL, DT);
MadeChange |= TIC.run(F);
MadeChange |= foldUnusualPatterns(F, DT, TTI, TLI, AA);
return MadeChange;
}
PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &AC = AM.getResult<AssumptionAnalysis>(F);
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
auto &AA = AM.getResult<AAManager>(F);
if (!runImpl(F, AC, TTI, TLI, DT, AA)) {
// No changes, all analyses are preserved.
return PreservedAnalyses::all();
}
// Mark all the analyses that instcombine updates as preserved.
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}