llvm-project/llvm/lib/Target/X86/X86PreTileConfig.cpp
Luo, Yuanke c4dba47196 [X86][AMX] Don't emit tilerelease for old AMX instrisic.
We should avoid mixing old AMX instrinsic with new AMX intrinsic. For
old AMX intrinsic, user is responsible for invoking tile release. This
patch is to check if there is any tile config generated by compiler. If
so it emit tilerelease instruction, otherwise it don't emit the
instruction.

Differential Revision: https://reviews.llvm.org/D114066
2021-11-18 09:28:32 +08:00

408 lines
15 KiB
C++

//===-- X86PreTileConfig.cpp - Tile Register Pre-configure-----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Pass to pre-config the shapes of AMX registers
/// AMX register needs to be configured before use. The shapes of AMX register
/// are encoded in the 1st and 2nd machine operand of AMX pseudo instructions.
///
/// The instruction ldtilecfg is used to config the shapes. It must be reachable
/// for all variable shapes. ldtilecfg will be inserted more than once if we
/// cannot find a dominating point for all AMX instructions.
///
/// The configure register is caller saved according to ABI. We need to insert
/// ldtilecfg again after the call instruction if callee clobbers any AMX
/// registers.
///
/// This pass calculates all points that ldtilecfg need to be inserted to and
/// insert them. It reports error if the reachability conditions aren't met.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
#define DEBUG_TYPE "tile-pre-config"
#define REPORT_CONFIG_FAIL \
report_fatal_error( \
MF.getName() + \
": Failed to config tile register, please define the shape earlier");
namespace {
struct MIRef {
MachineInstr *MI = nullptr;
MachineBasicBlock *MBB = nullptr;
// A virtual position for instruction that will be inserted after MI.
size_t Pos = 0;
MIRef() = default;
MIRef(MachineBasicBlock *MBB) : MBB(MBB) {
for (auto I = MBB->begin(), E = MBB->end(); I != E && I->isPHI();
++I, ++Pos)
MI = &*I;
}
MIRef(MachineInstr *MI)
: MI(MI), MBB(MI->getParent()),
Pos(std::distance(MBB->instr_begin(), ++MI->getIterator())) {}
MIRef(MachineInstr *MI, MachineBasicBlock *MBB)
: MI(MI), MBB(MBB),
Pos(std::distance(MBB->instr_begin(), ++MI->getIterator())) {}
MIRef(MachineInstr *MI, MachineBasicBlock *MBB, size_t Pos)
: MI(MI), MBB(MBB), Pos(Pos) {}
operator bool() const { return MBB != nullptr; }
bool operator==(const MIRef &RHS) const {
return MI == RHS.MI && MBB == RHS.MBB;
}
bool operator!=(const MIRef &RHS) const { return !(*this == RHS); }
bool operator<(const MIRef &RHS) const {
// Comparison between different BBs happens when inserting a MIRef into set.
// So we compare MBB first to make the insertion happy.
return MBB < RHS.MBB || (MBB == RHS.MBB && Pos < RHS.Pos);
}
bool operator>(const MIRef &RHS) const {
// Comparison between different BBs happens when inserting a MIRef into set.
// So we compare MBB first to make the insertion happy.
return MBB > RHS.MBB || (MBB == RHS.MBB && Pos > RHS.Pos);
}
};
struct BBInfo {
MIRef FirstAMX;
MIRef LastCall;
bool HasAMXRegLiveIn = false;
bool TileCfgForbidden = false;
bool NeedTileCfgLiveIn = false;
};
class X86PreTileConfig : public MachineFunctionPass {
MachineRegisterInfo *MRI;
const MachineLoopInfo *MLI;
SmallSet<MachineInstr *, 8> DefVisited;
DenseMap<MachineBasicBlock *, BBInfo> BBVisitedInfo;
DenseMap<MachineBasicBlock *, SmallVector<MIRef, 8>> ShapeBBs;
/// Check if the callee will clobber AMX registers.
bool isDestructiveCall(MachineInstr &MI, BitVector UsableRegs) {
auto Iter = llvm::find_if(
MI.operands(), [](MachineOperand &MO) { return MO.isRegMask(); });
if (Iter == MI.operands_end())
return false;
UsableRegs.clearBitsInMask(Iter->getRegMask());
return !UsableRegs.none();
}
/// Check if MI is AMX pseudo instruction.
bool isAMXInstruction(MachineInstr &MI) {
if (MI.isPHI() || MI.isDebugInstr() || MI.getNumOperands() < 3)
return false;
MachineOperand &MO = MI.getOperand(0);
// We can simply check if it is AMX instruction by its def.
// But we should exclude old API which uses physical registers.
if (MO.isReg() && MO.getReg().isVirtual() &&
MRI->getRegClass(MO.getReg())->getID() == X86::TILERegClassID) {
collectShapeInfo(MI);
return true;
}
// PTILESTOREDV is the only exception that doesn't def a AMX register.
return MI.getOpcode() == X86::PTILESTOREDV;
}
/// Check if it is an edge from loop bottom to loop head.
bool isLoopBackEdge(MachineBasicBlock *Header, MachineBasicBlock *Bottom) {
if (!MLI->isLoopHeader(Header))
return false;
auto *ML = MLI->getLoopFor(Header);
if (ML->contains(Bottom) && ML->isLoopLatch(Bottom))
return true;
return false;
}
/// Collect the shape def information for later use.
void collectShapeInfo(MachineInstr &MI);
/// Try to hoist shapes definded below AMX instructions.
bool hoistShapesInBB(MachineBasicBlock *MBB, SmallVectorImpl<MIRef> &Shapes) {
MIRef &FirstAMX = BBVisitedInfo[MBB].FirstAMX;
auto FirstShapeBelowAMX = llvm::lower_bound(Shapes, FirstAMX);
auto InsertPoint = FirstAMX.MI->getIterator();
for (auto I = FirstShapeBelowAMX, E = Shapes.end(); I != E; ++I) {
// Do not hoist instructions that access memory.
if (I->MI->mayLoadOrStore())
return false;
for (auto &MO : I->MI->operands()) {
if (MO.isDef())
continue;
// Do not hoist instructions if the sources' def under AMX instruction.
// TODO: We can handle isMoveImmediate MI here.
if (MO.isReg() && MIRef(MRI->getVRegDef(MO.getReg())) > FirstAMX)
return false;
// TODO: Maybe need more checks here.
}
MBB->insert(InsertPoint, I->MI->removeFromParent());
}
// We only need to mark the last shape in the BB now.
Shapes.clear();
Shapes.push_back(MIRef(&*--InsertPoint, MBB));
return true;
}
public:
X86PreTileConfig() : MachineFunctionPass(ID) {}
/// Return the pass name.
StringRef getPassName() const override {
return "Tile Register Pre-configure";
}
/// X86PreTileConfig analysis usage.
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
/// Clear MF related structures.
void releaseMemory() override {
ShapeBBs.clear();
DefVisited.clear();
BBVisitedInfo.clear();
}
/// Perform ldtilecfg instructions inserting.
bool runOnMachineFunction(MachineFunction &MF) override;
static char ID;
};
} // end anonymous namespace
char X86PreTileConfig::ID = 0;
INITIALIZE_PASS_BEGIN(X86PreTileConfig, "tilepreconfig",
"Tile Register Pre-configure", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(X86PreTileConfig, "tilepreconfig",
"Tile Register Pre-configure", false, false)
void X86PreTileConfig::collectShapeInfo(MachineInstr &MI) {
auto RecordShape = [&](MachineInstr *MI, MachineBasicBlock *MBB) {
MIRef MIR(MI, MBB);
auto I = llvm::lower_bound(ShapeBBs[MBB], MIR);
if (I == ShapeBBs[MBB].end() || *I != MIR)
ShapeBBs[MBB].insert(I, MIR);
};
SmallVector<Register, 8> WorkList(
{MI.getOperand(1).getReg(), MI.getOperand(2).getReg()});
while (!WorkList.empty()) {
Register R = WorkList.pop_back_val();
MachineInstr *DefMI = MRI->getVRegDef(R);
assert(DefMI && "R must has one define instruction");
MachineBasicBlock *DefMBB = DefMI->getParent();
if (DefMI->isMoveImmediate() || !DefVisited.insert(DefMI).second)
continue;
if (DefMI->isPHI()) {
for (unsigned I = 1; I < DefMI->getNumOperands(); I += 2)
if (isLoopBackEdge(DefMBB, DefMI->getOperand(I + 1).getMBB()))
RecordShape(DefMI, DefMBB); // In this case, PHI is also a shape def.
else
WorkList.push_back(DefMI->getOperand(I).getReg());
} else {
RecordShape(DefMI, DefMBB);
}
}
}
bool X86PreTileConfig::runOnMachineFunction(MachineFunction &MF) {
const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
const TargetInstrInfo *TII = ST.getInstrInfo();
const TargetRegisterInfo *TRI = ST.getRegisterInfo();
const TargetRegisterClass *RC = TRI->getRegClass(X86::TILERegClassID);
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
BitVector AMXRegs(TRI->getNumRegs());
for (unsigned I = 0; I < RC->getNumRegs(); I++)
AMXRegs.set(X86::TMM0 + I);
// Iterate MF to collect information.
MRI = &MF.getRegInfo();
MLI = &getAnalysis<MachineLoopInfo>();
SmallSet<MIRef, 8> CfgNeedInsert;
SmallVector<MachineBasicBlock *, 8> CfgLiveInBBs;
for (auto &MBB : MF) {
size_t Pos = 0;
for (auto &MI : MBB) {
++Pos;
if (isAMXInstruction(MI)) {
// If there's call before the AMX, we need to reload tile config.
if (BBVisitedInfo[&MBB].LastCall)
CfgNeedInsert.insert(BBVisitedInfo[&MBB].LastCall);
else // Otherwise, we need tile config to live in this BB.
BBVisitedInfo[&MBB].NeedTileCfgLiveIn = true;
// Always record the first AMX in case there's shape def after it.
if (!BBVisitedInfo[&MBB].FirstAMX)
BBVisitedInfo[&MBB].FirstAMX = MIRef(&MI, &MBB, Pos);
} else if (MI.isCall() && isDestructiveCall(MI, AMXRegs)) {
// Record the call only if the callee clobbers all AMX registers.
BBVisitedInfo[&MBB].LastCall = MIRef(&MI, &MBB, Pos);
}
}
if (BBVisitedInfo[&MBB].NeedTileCfgLiveIn) {
if (&MBB == &MF.front())
CfgNeedInsert.insert(MIRef(&MBB));
else
CfgLiveInBBs.push_back(&MBB);
}
if (BBVisitedInfo[&MBB].FirstAMX || BBVisitedInfo[&MBB].HasAMXRegLiveIn)
for (auto *Succ : MBB.successors())
if (!isLoopBackEdge(Succ, &MBB))
BBVisitedInfo[Succ].HasAMXRegLiveIn = true;
}
// Update NeedTileCfgLiveIn for predecessors.
while (!CfgLiveInBBs.empty()) {
MachineBasicBlock *MBB = CfgLiveInBBs.pop_back_val();
for (auto *Pred : MBB->predecessors()) {
if (BBVisitedInfo[Pred].LastCall) {
CfgNeedInsert.insert(BBVisitedInfo[Pred].LastCall);
} else if (!BBVisitedInfo[Pred].NeedTileCfgLiveIn) {
BBVisitedInfo[Pred].NeedTileCfgLiveIn = true;
if (Pred == &MF.front())
CfgNeedInsert.insert(MIRef(Pred));
else
CfgLiveInBBs.push_back(Pred);
}
}
}
// There's no AMX instruction if we didn't find a tile config live in point.
if (CfgNeedInsert.empty())
return false;
X86FI->setHasVirtualTileReg(true);
// Avoid to insert ldtilecfg before any shape defs.
SmallVector<MachineBasicBlock *, 8> WorkList;
for (auto &I : ShapeBBs) {
// TODO: We can hoist shapes across BBs here.
if (BBVisitedInfo[I.first].HasAMXRegLiveIn)
REPORT_CONFIG_FAIL
if (BBVisitedInfo[I.first].FirstAMX &&
BBVisitedInfo[I.first].FirstAMX < I.second.back() &&
!hoistShapesInBB(I.first, I.second))
REPORT_CONFIG_FAIL
WorkList.push_back(I.first);
}
while (!WorkList.empty()) {
MachineBasicBlock *MBB = WorkList.pop_back_val();
for (auto *Pred : MBB->predecessors()) {
if (!BBVisitedInfo[Pred].TileCfgForbidden && !isLoopBackEdge(MBB, Pred)) {
BBVisitedInfo[Pred].TileCfgForbidden = true;
WorkList.push_back(Pred);
}
}
}
DebugLoc DL;
SmallSet<MIRef, 8> VisitedOrInserted;
int SS = MF.getFrameInfo().CreateStackObject(
ST.getTileConfigSize(), ST.getTileConfigAlignment(), false);
// Try to insert for the tile config live in points.
for (const auto &I : CfgNeedInsert) {
SmallSet<MIRef, 8> InsertPoints;
SmallVector<MIRef, 8> WorkList({I});
while (!WorkList.empty()) {
MIRef I = WorkList.pop_back_val();
if (!VisitedOrInserted.count(I)) {
if (!BBVisitedInfo[I.MBB].TileCfgForbidden) {
// If the BB is all shapes reachable, stop sink and try to insert.
InsertPoints.insert(I);
} else {
// Avoid the BB to be multi visited.
VisitedOrInserted.insert(I);
// Sink the inserting point along the chain with NeedTileCfgLiveIn =
// true when MBB isn't all shapes reachable.
for (auto *Succ : I.MBB->successors())
if (BBVisitedInfo[Succ].NeedTileCfgLiveIn)
WorkList.push_back(MIRef(Succ));
}
}
}
// A given point might be forked due to shape conditions are not met.
for (MIRef I : InsertPoints) {
// Make sure we insert ldtilecfg after the last shape def in MBB.
if (ShapeBBs.count(I.MBB) && I < ShapeBBs[I.MBB].back())
I = ShapeBBs[I.MBB].back();
// There're chances the MBB is sunk more than once. Record it to avoid
// multi insert.
if (VisitedOrInserted.insert(I).second) {
auto II = I.MI ? I.MI->getIterator() : I.MBB->instr_begin();
addFrameReference(BuildMI(*I.MBB, ++II, DL, TII->get(X86::LDTILECFG)),
SS);
}
}
}
// Zero stack slot.
MachineBasicBlock &MBB = MF.front();
MachineInstr *MI = &*MBB.begin();
if (ST.hasAVX512()) {
Register Zmm = MRI->createVirtualRegister(&X86::VR512RegClass);
BuildMI(MBB, MI, DL, TII->get(X86::VPXORDZrr), Zmm)
.addReg(Zmm, RegState::Undef)
.addReg(Zmm, RegState::Undef);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::VMOVUPSZmr)), SS)
.addReg(Zmm);
} else if (ST.hasAVX2()) {
Register Ymm = MRI->createVirtualRegister(&X86::VR256RegClass);
BuildMI(MBB, MI, DL, TII->get(X86::VPXORYrr), Ymm)
.addReg(Ymm, RegState::Undef)
.addReg(Ymm, RegState::Undef);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::VMOVUPSYmr)), SS)
.addReg(Ymm);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::VMOVUPSYmr)), SS, 32)
.addReg(Ymm);
} else {
assert(ST.hasSSE2() && "AMX should assume SSE2 enabled");
Register Xmm = MRI->createVirtualRegister(&X86::VR128RegClass);
BuildMI(MBB, MI, DL, TII->get(X86::PXORrr), Xmm)
.addReg(Xmm, RegState::Undef)
.addReg(Xmm, RegState::Undef);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::MOVUPSmr)), SS)
.addReg(Xmm);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::MOVUPSmr)), SS, 16)
.addReg(Xmm);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::MOVUPSmr)), SS, 32)
.addReg(Xmm);
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::MOVUPSmr)), SS, 48)
.addReg(Xmm);
}
// Fill in the palette first.
addFrameReference(BuildMI(MBB, MI, DL, TII->get(X86::MOV8mi)), SS).addImm(1);
return true;
}
FunctionPass *llvm::createX86PreTileConfigPass() {
return new X86PreTileConfig();
}