llvm-project/flang/lib/Semantics/check-cuda.cpp
Peter Klausler f674ddc19f
[flang] CUDA Fortran - part 5/5: statement semantics
Canonicalize !$CUF KERNEL DO loop nests, similar to OpenACC/OpenMP
canonicalization.  Check statements and expressions in device contexts
for usage that isn't supported.  Add more tests, and include some
tweaks to standard modules needed to build CUDA Fortran modules.

Depends on https://reviews.llvm.org/D150159,
https://reviews.llvm.org/D150161, https://reviews.llvm.org/D150162, &
https://reviews.llvm.org/D150163.

Differential Revision: https://reviews.llvm.org/D150164
2023-06-01 13:31:35 -07:00

417 lines
14 KiB
C++

//===-- lib/Semantics/check-cuda.cpp ----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "check-cuda.h"
#include "flang/Common/template.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/traverse.h"
#include "flang/Parser/parse-tree-visitor.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Parser/tools.h"
#include "flang/Semantics/expression.h"
#include "flang/Semantics/symbol.h"
// Once labeled DO constructs have been canonicalized and their parse subtrees
// transformed into parser::DoConstructs, scan the parser::Blocks of the program
// and merge adjacent CUFKernelDoConstructs and DoConstructs whenever the
// CUFKernelDoConstruct doesn't already have an embedded DoConstruct. Also
// emit errors about improper or missing DoConstructs.
namespace Fortran::parser {
struct Mutator {
template <typename A> bool Pre(A &) { return true; }
template <typename A> void Post(A &) {}
bool Pre(Block &);
};
bool Mutator::Pre(Block &block) {
for (auto iter{block.begin()}; iter != block.end(); ++iter) {
if (auto *kernel{Unwrap<CUFKernelDoConstruct>(*iter)}) {
auto &nested{std::get<std::optional<DoConstruct>>(kernel->t)};
if (!nested) {
if (auto next{iter}; ++next != block.end()) {
if (auto *doConstruct{Unwrap<DoConstruct>(*next)}) {
nested = std::move(*doConstruct);
block.erase(next);
}
}
}
} else {
Walk(*iter, *this);
}
}
return false;
}
} // namespace Fortran::parser
namespace Fortran::semantics {
bool CanonicalizeCUDA(parser::Program &program) {
parser::Mutator mutator;
parser::Walk(program, mutator);
return true;
}
using MaybeMsg = std::optional<parser::MessageFormattedText>;
// Traverses an evaluate::Expr<> in search of unsupported operations
// on the device.
struct DeviceExprChecker
: public evaluate::AnyTraverse<DeviceExprChecker, MaybeMsg> {
using Result = MaybeMsg;
using Base = evaluate::AnyTraverse<DeviceExprChecker, Result>;
DeviceExprChecker() : Base(*this) {}
using Base::operator();
Result operator()(const evaluate::ProcedureDesignator &x) const {
if (const Symbol * sym{x.GetInterfaceSymbol()}) {
const auto *subp{
sym->GetUltimate().detailsIf<semantics::SubprogramDetails>()};
if (subp) {
if (auto attrs{subp->cudaSubprogramAttrs()}) {
if (*attrs == common::CUDASubprogramAttrs::HostDevice ||
*attrs == common::CUDASubprogramAttrs::Device) {
return {};
}
}
}
} else if (x.GetSpecificIntrinsic()) {
// TODO(CUDA): Check for unsupported intrinsics here
return {};
}
return parser::MessageFormattedText(
"'%s' may not be called in device code"_err_en_US, x.GetName());
}
};
template <typename A> static MaybeMsg CheckUnwrappedExpr(const A &x) {
if (const auto *expr{parser::Unwrap<parser::Expr>(x)}) {
return DeviceExprChecker{}(expr->typedExpr);
}
return {};
}
template <typename A>
static void CheckUnwrappedExpr(
SemanticsContext &context, SourceName at, const A &x) {
if (const auto *expr{parser::Unwrap<parser::Expr>(x)}) {
if (auto msg{DeviceExprChecker{}(expr->typedExpr)}) {
context.Say(at, std::move(*msg));
}
}
}
template <bool CUF_KERNEL> struct ActionStmtChecker {
template <typename A> static MaybeMsg WhyNotOk(const A &x) {
if constexpr (ConstraintTrait<A>) {
return WhyNotOk(x.thing);
} else if constexpr (WrapperTrait<A>) {
return WhyNotOk(x.v);
} else if constexpr (UnionTrait<A>) {
return WhyNotOk(x.u);
} else if constexpr (TupleTrait<A>) {
return WhyNotOk(x.t);
} else {
return parser::MessageFormattedText{
"Statement may not appear in device code"_err_en_US};
}
}
template <typename A>
static MaybeMsg WhyNotOk(const common::Indirection<A> &x) {
return WhyNotOk(x.value());
}
template <typename... As>
static MaybeMsg WhyNotOk(const std::variant<As...> &x) {
return common::visit([](const auto &x) { return WhyNotOk(x); }, x);
}
template <std::size_t J = 0, typename... As>
static MaybeMsg WhyNotOk(const std::tuple<As...> &x) {
if constexpr (J == sizeof...(As)) {
return {};
} else if (auto msg{WhyNotOk(std::get<J>(x))}) {
return msg;
} else {
return WhyNotOk<(J + 1)>(x);
}
}
template <typename A> static MaybeMsg WhyNotOk(const std::list<A> &x) {
for (const auto &y : x) {
if (MaybeMsg result{WhyNotOk(y)}) {
return result;
}
}
return {};
}
template <typename A> static MaybeMsg WhyNotOk(const std::optional<A> &x) {
if (x) {
return WhyNotOk(*x);
} else {
return {};
}
}
template <typename A>
static MaybeMsg WhyNotOk(const parser::UnlabeledStatement<A> &x) {
return WhyNotOk(x.statement);
}
template <typename A>
static MaybeMsg WhyNotOk(const parser::Statement<A> &x) {
return WhyNotOk(x.statement);
}
static MaybeMsg WhyNotOk(const parser::AllocateStmt &) {
return {}; // AllocateObjects are checked elsewhere
}
static MaybeMsg WhyNotOk(const parser::AllocateCoarraySpec &) {
return parser::MessageFormattedText(
"A coarray may not be allocated on the device"_err_en_US);
}
static MaybeMsg WhyNotOk(const parser::DeallocateStmt &) {
return {}; // AllocateObjects are checked elsewhere
}
static MaybeMsg WhyNotOk(const parser::AssignmentStmt &x) {
return DeviceExprChecker{}(x.typedAssignment);
}
static MaybeMsg WhyNotOk(const parser::CallStmt &x) {
return DeviceExprChecker{}(x.typedCall);
}
static MaybeMsg WhyNotOk(const parser::ContinueStmt &) { return {}; }
static MaybeMsg WhyNotOk(const parser::IfStmt &x) {
if (auto result{
CheckUnwrappedExpr(std::get<parser::ScalarLogicalExpr>(x.t))}) {
return result;
}
return WhyNotOk(
std::get<parser::UnlabeledStatement<parser::ActionStmt>>(x.t)
.statement);
}
static MaybeMsg WhyNotOk(const parser::NullifyStmt &x) {
for (const auto &y : x.v) {
if (MaybeMsg result{DeviceExprChecker{}(y.typedExpr)}) {
return result;
}
}
return {};
}
static MaybeMsg WhyNotOk(const parser::PointerAssignmentStmt &x) {
return DeviceExprChecker{}(x.typedAssignment);
}
};
template <bool IsCUFKernelDo> class DeviceContextChecker {
public:
explicit DeviceContextChecker(SemanticsContext &c) : context_{c} {}
void CheckSubprogram(const parser::Name &name, const parser::Block &body) {
if (name.symbol) {
const auto *subp{
name.symbol->GetUltimate().detailsIf<SubprogramDetails>()};
if (subp && subp->moduleInterface()) {
subp = subp->moduleInterface()
->GetUltimate()
.detailsIf<SubprogramDetails>();
}
if (subp &&
subp->cudaSubprogramAttrs().value_or(
common::CUDASubprogramAttrs::Host) !=
common::CUDASubprogramAttrs::Host) {
Check(body);
}
}
}
void Check(const parser::Block &block) {
for (const auto &epc : block) {
Check(epc);
}
}
private:
void Check(const parser::ExecutionPartConstruct &epc) {
common::visit(
common::visitors{
[&](const parser::ExecutableConstruct &x) { Check(x); },
[&](const parser::Statement<common::Indirection<parser::EntryStmt>>
&x) {
context_.Say(x.source,
"Device code may not contain an ENTRY statement"_err_en_US);
},
[](const parser::Statement<common::Indirection<parser::FormatStmt>>
&) {},
[](const parser::Statement<common::Indirection<parser::DataStmt>>
&) {},
[](const parser::Statement<
common::Indirection<parser::NamelistStmt>> &) {},
[](const parser::ErrorRecovery &) {},
},
epc.u);
}
void Check(const parser::ExecutableConstruct &ec) {
common::visit(
common::visitors{
[&](const parser::Statement<parser::ActionStmt> &stmt) {
Check(stmt.statement, stmt.source);
},
[&](const common::Indirection<parser::DoConstruct> &x) {
if (const std::optional<parser::LoopControl> &control{
x.value().GetLoopControl()}) {
common::visit([&](const auto &y) { Check(y); }, control->u);
}
Check(std::get<parser::Block>(x.value().t));
},
[&](const common::Indirection<parser::BlockConstruct> &x) {
Check(std::get<parser::Block>(x.value().t));
},
[&](const common::Indirection<parser::IfConstruct> &x) {
Check(x.value());
},
[&](const auto &x) {
if (auto source{parser::GetSource(x)}) {
context_.Say(*source,
"Statement may not appear in device code"_err_en_US);
}
},
},
ec.u);
}
void Check(const parser::ActionStmt &stmt, const parser::CharBlock &source) {
common::visit(
common::visitors{
[&](const auto &x) {
if (auto msg{ActionStmtChecker<IsCUFKernelDo>::WhyNotOk(x)}) {
context_.Say(source, std::move(*msg));
}
},
},
stmt.u);
}
void Check(const parser::IfConstruct &ic) {
const auto &ifS{std::get<parser::Statement<parser::IfThenStmt>>(ic.t)};
CheckUnwrappedExpr(context_, ifS.source,
std::get<parser::ScalarLogicalExpr>(ifS.statement.t));
Check(std::get<parser::Block>(ic.t));
for (const auto &eib :
std::get<std::list<parser::IfConstruct::ElseIfBlock>>(ic.t)) {
const auto &eIfS{std::get<parser::Statement<parser::ElseIfStmt>>(eib.t)};
CheckUnwrappedExpr(context_, eIfS.source,
std::get<parser::ScalarLogicalExpr>(eIfS.statement.t));
Check(std::get<parser::Block>(eib.t));
}
if (const auto &eb{
std::get<std::optional<parser::IfConstruct::ElseBlock>>(ic.t)}) {
Check(std::get<parser::Block>(eb->t));
}
}
void Check(const parser::LoopControl::Bounds &bounds) {
Check(bounds.lower);
Check(bounds.upper);
if (bounds.step) {
Check(*bounds.step);
}
}
void Check(const parser::LoopControl::Concurrent &x) {
const auto &header{std::get<parser::ConcurrentHeader>(x.t)};
for (const auto &cc :
std::get<std::list<parser::ConcurrentControl>>(header.t)) {
Check(std::get<1>(cc.t));
Check(std::get<2>(cc.t));
if (const auto &step{
std::get<std::optional<parser::ScalarIntExpr>>(cc.t)}) {
Check(*step);
}
}
if (const auto &mask{
std::get<std::optional<parser::ScalarLogicalExpr>>(header.t)}) {
Check(*mask);
}
}
void Check(const parser::ScalarLogicalExpr &x) {
Check(DEREF(parser::Unwrap<parser::Expr>(x)));
}
void Check(const parser::ScalarIntExpr &x) {
Check(DEREF(parser::Unwrap<parser::Expr>(x)));
}
void Check(const parser::ScalarExpr &x) {
Check(DEREF(parser::Unwrap<parser::Expr>(x)));
}
void Check(const parser::Expr &expr) {
if (MaybeMsg msg{DeviceExprChecker{}(expr.typedExpr)}) {
context_.Say(expr.source, std::move(*msg));
}
}
SemanticsContext &context_;
};
void CUDAChecker::Enter(const parser::SubroutineSubprogram &x) {
DeviceContextChecker<false>{context_}.CheckSubprogram(
std::get<parser::Name>(
std::get<parser::Statement<parser::SubroutineStmt>>(x.t).statement.t),
std::get<parser::ExecutionPart>(x.t).v);
}
void CUDAChecker::Enter(const parser::FunctionSubprogram &x) {
DeviceContextChecker<false>{context_}.CheckSubprogram(
std::get<parser::Name>(
std::get<parser::Statement<parser::FunctionStmt>>(x.t).statement.t),
std::get<parser::ExecutionPart>(x.t).v);
}
void CUDAChecker::Enter(const parser::SeparateModuleSubprogram &x) {
DeviceContextChecker<false>{context_}.CheckSubprogram(
std::get<parser::Statement<parser::MpSubprogramStmt>>(x.t).statement.v,
std::get<parser::ExecutionPart>(x.t).v);
}
// !$CUF KERNEL DO semantic checks
static int DoConstructTightNesting(
const parser::DoConstruct *doConstruct, const parser::Block *&innerBlock) {
if (!doConstruct || !doConstruct->IsDoNormal()) {
return 0;
}
innerBlock = &std::get<parser::Block>(doConstruct->t);
if (innerBlock->size() == 1) {
if (const auto *execConstruct{
std::get_if<parser::ExecutableConstruct>(&innerBlock->front().u)}) {
if (const auto *next{
std::get_if<common::Indirection<parser::DoConstruct>>(
&execConstruct->u)}) {
return 1 + DoConstructTightNesting(&next->value(), innerBlock);
}
}
}
return 1;
}
void CUDAChecker::Enter(const parser::CUFKernelDoConstruct &x) {
auto source{std::get<parser::CUFKernelDoConstruct::Directive>(x.t).source};
const auto &directive{std::get<parser::CUFKernelDoConstruct::Directive>(x.t)};
std::int64_t depth{1};
if (auto expr{AnalyzeExpr(context_,
std::get<std::optional<parser::ScalarIntConstantExpr>>(
directive.t))}) {
depth = evaluate::ToInt64(expr).value_or(0);
if (depth <= 0) {
context_.Say(source,
"!$CUF KERNEL DO (%jd): loop nesting depth must be positive"_err_en_US,
std::intmax_t{depth});
depth = 1;
}
}
const parser::DoConstruct *doConstruct{common::GetPtrFromOptional(
std::get<std::optional<parser::DoConstruct>>(x.t))};
const parser::Block *innerBlock{nullptr};
if (DoConstructTightNesting(doConstruct, innerBlock) < depth) {
context_.Say(source,
"!$CUF KERNEL DO (%jd) must be followed by a DO construct with tightly nested outer levels of counted DO loops"_err_en_US,
std::intmax_t{depth});
}
if (innerBlock) {
DeviceContextChecker<true>{context_}.Check(*innerBlock);
}
}
} // namespace Fortran::semantics