Aart Bik f767f09252 [mlir][sparse] sparse storage scheme type conversion
This builds a compound type for the buffers required for the sparse storage scheme defined by the MLIR sparse tensor types. The use of a tuple allows for a simple 1:1 type conversion. A subsequent pass can expand this tuple into its component with an isolated 1:N type conversion.

Reviewed By: Peiming

Differential Revision: https://reviews.llvm.org/D133050
2022-08-31 15:12:55 -07:00

141 lines
5.9 KiB
C++

//===- SparseTensorCodegen.cpp - Sparse tensor primitives conversion ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor types and primitives to actual compiler
// visible buffers and actual compiler IR that implements these primitives on
// the selected sparse tensor storage schemes. This pass provides an alternative
// to the SparseTensorConversion pass, eliminating the dependence on a runtime
// support library, and providing much more opportunities for subsequent
// compiler optimization of the generated code.
//
//===----------------------------------------------------------------------===//
#include "CodegenUtils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Maps a sparse tensor type to the appropriate compounded buffers.
static Optional<Type> convertSparseTensorType(Type type) {
auto enc = getSparseTensorEncoding(type);
if (!enc)
return llvm::None;
// Construct the basic types.
auto context = type.getContext();
unsigned idxWidth = enc.getIndexBitWidth();
unsigned ptrWidth = enc.getPointerBitWidth();
RankedTensorType rType = type.cast<RankedTensorType>();
Type indexType = IndexType::get(context);
Type idxType = idxWidth ? IntegerType::get(context, idxWidth) : indexType;
Type ptrType = ptrWidth ? IntegerType::get(context, ptrWidth) : indexType;
Type eltType = rType.getElementType();
//
// Sparse tensor storage for rank-dimensional tensor is organized as a
// single compound type with the following fields:
//
// struct {
// memref<rank x index> dimSize ; size in each dimension
// ; per-dimension d:
// ; if dense:
// <nothing>
// ; if compresed:
// memref<? x idx> indices-d ; indices for sparse dim d
// memref<? x ptr> pointers-d ; pointers for sparse dim d
// ; if singleton:
// memref<? x idx> indices-d ; indices for singleton dim d
// memref<? x eltType> values ; values
// };
//
// TODO: fill in the ? when statically known
//
// TODO: emit dimSizes when not needed (e.g. all-dense)
//
unsigned rank = rType.getShape().size();
SmallVector<Type, 8> fields;
fields.push_back(MemRefType::get({rank}, indexType));
for (unsigned r = 0; r < rank; r++) {
// Dimension level types apply in order to the reordered dimension.
// As a result, the compound type can be constructed directly in the given
// order. Clients of this type know what field is what from the sparse
// tensor type.
switch (enc.getDimLevelType()[r]) {
case SparseTensorEncodingAttr::DimLevelType::Dense:
break;
case SparseTensorEncodingAttr::DimLevelType::Compressed:
case SparseTensorEncodingAttr::DimLevelType::CompressedNu:
case SparseTensorEncodingAttr::DimLevelType::CompressedNo:
case SparseTensorEncodingAttr::DimLevelType::CompressedNuNo:
fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, idxType));
fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, ptrType));
break;
case SparseTensorEncodingAttr::DimLevelType::Singleton:
case SparseTensorEncodingAttr::DimLevelType::SingletonNu:
case SparseTensorEncodingAttr::DimLevelType::SingletonNo:
case SparseTensorEncodingAttr::DimLevelType::SingletonNuNo:
fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, idxType));
break;
}
}
fields.push_back(MemRefType::get({ShapedType::kDynamicSize}, eltType));
// Sparse tensor storage (temporarily) lives in a tuple. This allows a
// simple 1:1 type conversion during codegen. A subsequent pass uses
// a 1:N type conversion to expand the tuple into its fields.
return TupleType::get(context, fields);
}
//===----------------------------------------------------------------------===//
// Conversion rules.
//===----------------------------------------------------------------------===//
/// Sparse conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands());
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Sparse tensor type conversion into an actual buffer.
//===----------------------------------------------------------------------===//
mlir::SparseTensorTypeToBufferConverter::SparseTensorTypeToBufferConverter() {
addConversion([](Type type) { return type; });
addConversion(convertSparseTensorType);
}
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorCodegenPatterns(TypeConverter &typeConverter,
RewritePatternSet &patterns) {
patterns.add<SparseReturnConverter>(typeConverter, patterns.getContext());
}