llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h
Florian Hahn aa00b1d763
[LV] Try to sink users recursively for first-order recurrences.
Update isFirstOrderRecurrence to  explore all uses of a recurrence phi
and check if we can sink them. If there are multiple users to sink, they
are all mapped to the previous instruction.

Fixes PR44286 (and another PR or two).

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D84951
2021-05-31 19:55:33 +01:00

365 lines
13 KiB
C++

//===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file provides a LoopVectorizationPlanner class.
/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// LoopVectorizationPlanner - drives the vectorization process after having
/// passed Legality checks.
/// The planner builds and optimizes the Vectorization Plans which record the
/// decisions how to vectorize the given loop. In particular, represent the
/// control-flow of the vectorized version, the replication of instructions that
/// are to be scalarized, and interleave access groups.
///
/// Also provides a VPlan-based builder utility analogous to IRBuilder.
/// It provides an instruction-level API for generating VPInstructions while
/// abstracting away the Recipe manipulation details.
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
#define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
#include "VPlan.h"
namespace llvm {
class LoopInfo;
class LoopVectorizationLegality;
class LoopVectorizationCostModel;
class PredicatedScalarEvolution;
class LoopVectorizationRequirements;
class LoopVectorizeHints;
class OptimizationRemarkEmitter;
class TargetTransformInfo;
class TargetLibraryInfo;
class VPRecipeBuilder;
/// VPlan-based builder utility analogous to IRBuilder.
class VPBuilder {
VPBasicBlock *BB = nullptr;
VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
VPInstruction *createInstruction(unsigned Opcode,
ArrayRef<VPValue *> Operands) {
VPInstruction *Instr = new VPInstruction(Opcode, Operands);
if (BB)
BB->insert(Instr, InsertPt);
return Instr;
}
VPInstruction *createInstruction(unsigned Opcode,
std::initializer_list<VPValue *> Operands) {
return createInstruction(Opcode, ArrayRef<VPValue *>(Operands));
}
public:
VPBuilder() {}
/// Clear the insertion point: created instructions will not be inserted into
/// a block.
void clearInsertionPoint() {
BB = nullptr;
InsertPt = VPBasicBlock::iterator();
}
VPBasicBlock *getInsertBlock() const { return BB; }
VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
/// InsertPoint - A saved insertion point.
class VPInsertPoint {
VPBasicBlock *Block = nullptr;
VPBasicBlock::iterator Point;
public:
/// Creates a new insertion point which doesn't point to anything.
VPInsertPoint() = default;
/// Creates a new insertion point at the given location.
VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
: Block(InsertBlock), Point(InsertPoint) {}
/// Returns true if this insert point is set.
bool isSet() const { return Block != nullptr; }
VPBasicBlock *getBlock() const { return Block; }
VPBasicBlock::iterator getPoint() const { return Point; }
};
/// Sets the current insert point to a previously-saved location.
void restoreIP(VPInsertPoint IP) {
if (IP.isSet())
setInsertPoint(IP.getBlock(), IP.getPoint());
else
clearInsertionPoint();
}
/// This specifies that created VPInstructions should be appended to the end
/// of the specified block.
void setInsertPoint(VPBasicBlock *TheBB) {
assert(TheBB && "Attempting to set a null insert point");
BB = TheBB;
InsertPt = BB->end();
}
/// This specifies that created instructions should be inserted at the
/// specified point.
void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
BB = TheBB;
InsertPt = IP;
}
/// Insert and return the specified instruction.
VPInstruction *insert(VPInstruction *I) const {
BB->insert(I, InsertPt);
return I;
}
/// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
/// its underlying Instruction.
VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
Instruction *Inst = nullptr) {
VPInstruction *NewVPInst = createInstruction(Opcode, Operands);
NewVPInst->setUnderlyingValue(Inst);
return NewVPInst;
}
VPValue *createNaryOp(unsigned Opcode,
std::initializer_list<VPValue *> Operands,
Instruction *Inst = nullptr) {
return createNaryOp(Opcode, ArrayRef<VPValue *>(Operands), Inst);
}
VPValue *createNot(VPValue *Operand) {
return createInstruction(VPInstruction::Not, {Operand});
}
VPValue *createAnd(VPValue *LHS, VPValue *RHS) {
return createInstruction(Instruction::BinaryOps::And, {LHS, RHS});
}
VPValue *createOr(VPValue *LHS, VPValue *RHS) {
return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS});
}
VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal) {
return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal});
}
//===--------------------------------------------------------------------===//
// RAII helpers.
//===--------------------------------------------------------------------===//
/// RAII object that stores the current insertion point and restores it when
/// the object is destroyed.
class InsertPointGuard {
VPBuilder &Builder;
VPBasicBlock *Block;
VPBasicBlock::iterator Point;
public:
InsertPointGuard(VPBuilder &B)
: Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
InsertPointGuard(const InsertPointGuard &) = delete;
InsertPointGuard &operator=(const InsertPointGuard &) = delete;
~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
};
};
/// TODO: The following VectorizationFactor was pulled out of
/// LoopVectorizationCostModel class. LV also deals with
/// VectorizerParams::VectorizationFactor and VectorizationCostTy.
/// We need to streamline them.
/// Information about vectorization costs
struct VectorizationFactor {
// Vector width with best cost
ElementCount Width;
// Cost of the loop with that width
InstructionCost Cost;
VectorizationFactor(ElementCount Width, InstructionCost Cost)
: Width(Width), Cost(Cost) {}
// Width 1 means no vectorization, cost 0 means uncomputed cost.
static VectorizationFactor Disabled() {
return {ElementCount::getFixed(1), 0};
}
bool operator==(const VectorizationFactor &rhs) const {
return Width == rhs.Width && Cost == rhs.Cost;
}
bool operator!=(const VectorizationFactor &rhs) const {
return !(*this == rhs);
}
};
/// A class that represents two vectorization factors (initialized with 0 by
/// default). One for fixed-width vectorization and one for scalable
/// vectorization. This can be used by the vectorizer to choose from a range of
/// fixed and/or scalable VFs in order to find the most cost-effective VF to
/// vectorize with.
struct FixedScalableVFPair {
ElementCount FixedVF;
ElementCount ScalableVF;
FixedScalableVFPair()
: FixedVF(ElementCount::getFixed(0)),
ScalableVF(ElementCount::getScalable(0)) {}
FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() {
*(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
}
FixedScalableVFPair(const ElementCount &FixedVF,
const ElementCount &ScalableVF)
: FixedVF(FixedVF), ScalableVF(ScalableVF) {
assert(!FixedVF.isScalable() && ScalableVF.isScalable() &&
"Invalid scalable properties");
}
static FixedScalableVFPair getNone() { return FixedScalableVFPair(); }
/// \return true if either fixed- or scalable VF is non-zero.
explicit operator bool() const { return FixedVF || ScalableVF; }
/// \return true if either fixed- or scalable VF is a valid vector VF.
bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
};
/// Planner drives the vectorization process after having passed
/// Legality checks.
class LoopVectorizationPlanner {
/// The loop that we evaluate.
Loop *OrigLoop;
/// Loop Info analysis.
LoopInfo *LI;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// Target Transform Info.
const TargetTransformInfo *TTI;
/// The legality analysis.
LoopVectorizationLegality *Legal;
/// The profitability analysis.
LoopVectorizationCostModel &CM;
/// The interleaved access analysis.
InterleavedAccessInfo &IAI;
PredicatedScalarEvolution &PSE;
const LoopVectorizeHints &Hints;
LoopVectorizationRequirements &Requirements;
OptimizationRemarkEmitter *ORE;
SmallVector<VPlanPtr, 4> VPlans;
/// A builder used to construct the current plan.
VPBuilder Builder;
/// The best number of elements of the vector types used in the
/// transformed loop. BestVF = None means that vectorization is
/// disabled.
Optional<ElementCount> BestVF = None;
unsigned BestUF = 0;
public:
LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI,
LoopVectorizationLegality *Legal,
LoopVectorizationCostModel &CM,
InterleavedAccessInfo &IAI,
PredicatedScalarEvolution &PSE,
const LoopVectorizeHints &Hints,
LoopVectorizationRequirements &Requirements,
OptimizationRemarkEmitter *ORE)
: OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI),
PSE(PSE), Hints(Hints), Requirements(Requirements), ORE(ORE) {}
/// Plan how to best vectorize, return the best VF and its cost, or None if
/// vectorization and interleaving should be avoided up front.
Optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC);
/// Use the VPlan-native path to plan how to best vectorize, return the best
/// VF and its cost.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF);
/// Finalize the best decision and dispose of all other VPlans.
void setBestPlan(ElementCount VF, unsigned UF);
/// Generate the IR code for the body of the vectorized loop according to the
/// best selected VPlan.
void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT);
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void printPlans(raw_ostream &O);
#endif
/// Look through the existing plans and return true if we have one with all
/// the vectorization factors in question.
bool hasPlanWithVFs(const ArrayRef<ElementCount> VFs) const {
return any_of(VPlans, [&](const VPlanPtr &Plan) {
return all_of(VFs, [&](const ElementCount &VF) {
return Plan->hasVF(VF);
});
});
}
/// Test a \p Predicate on a \p Range of VF's. Return the value of applying
/// \p Predicate on Range.Start, possibly decreasing Range.End such that the
/// returned value holds for the entire \p Range.
static bool
getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
VFRange &Range);
protected:
/// Collect the instructions from the original loop that would be trivially
/// dead in the vectorized loop if generated.
void collectTriviallyDeadInstructions(
SmallPtrSetImpl<Instruction *> &DeadInstructions);
/// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
/// according to the information gathered by Legal when it checked if it is
/// legal to vectorize the loop.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
private:
/// Build a VPlan according to the information gathered by Legal. \return a
/// VPlan for vectorization factors \p Range.Start and up to \p Range.End
/// exclusive, possibly decreasing \p Range.End.
VPlanPtr buildVPlan(VFRange &Range);
/// Build a VPlan using VPRecipes according to the information gather by
/// Legal. This method is only used for the legacy inner loop vectorizer.
VPlanPtr buildVPlanWithVPRecipes(
VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
const MapVector<Instruction *, Instruction *> &SinkAfter);
/// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
/// according to the information gathered by Legal when it checked if it is
/// legal to vectorize the loop. This method creates VPlans using VPRecipes.
void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
/// Adjust the recipes for any inloop reductions. The chain of instructions
/// leading from the loop exit instr to the phi need to be converted to
/// reductions, with one operand being vector and the other being the scalar
/// reduction chain.
void adjustRecipesForInLoopReductions(VPlanPtr &Plan,
VPRecipeBuilder &RecipeBuilder);
};
} // namespace llvm
#endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H