llvm-project/llvm/lib/Analysis/MemoryBuiltins.cpp
serge-sans-paille f8c1a22220
[llvm] Improve llvm.objectsize computation by computing GEP, alloca a… (#117849)
…nd malloc parameters bound

Using a naive expression walker, it is possible to compute valuable
information for allocation functions, GEP and alloca, even in the
presence of some dynamic information.

We don't rely on computeConstantRange to avoid taking advantage of
undefined behavior, which would be counter-productive wrt. usual
llvm.objectsize usage.

llvm.objectsize plays an important role in _FORTIFY_SOURCE definitions,
so improving its diagnostic in turns improves the security of compiled
application.

As a side note, as a result of recent optimization improvements, clang
no longer passes
https://github.com/serge-sans-paille/builtin_object_size-test-suite This
commit restores the situation and greatly improves the scope of code
handled by the static version of __builtin_object_size.

This is a recommit of https://github.com/llvm/llvm-project/pull/115522
with fix applied.
2024-12-10 06:28:03 +00:00

1409 lines
56 KiB
C++

//===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This family of functions identifies calls to builtin functions that allocate
// or free memory.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <optional>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "memory-builtins"
static cl::opt<unsigned> ObjectSizeOffsetVisitorMaxVisitInstructions(
"object-size-offset-visitor-max-visit-instructions",
cl::desc("Maximum number of instructions for ObjectSizeOffsetVisitor to "
"look at"),
cl::init(100));
enum AllocType : uint8_t {
OpNewLike = 1<<0, // allocates; never returns null
MallocLike = 1<<1, // allocates; may return null
StrDupLike = 1<<2,
MallocOrOpNewLike = MallocLike | OpNewLike,
AllocLike = MallocOrOpNewLike | StrDupLike,
AnyAlloc = AllocLike
};
enum class MallocFamily {
Malloc,
CPPNew, // new(unsigned int)
CPPNewAligned, // new(unsigned int, align_val_t)
CPPNewArray, // new[](unsigned int)
CPPNewArrayAligned, // new[](unsigned long, align_val_t)
MSVCNew, // new(unsigned int)
MSVCArrayNew, // new[](unsigned int)
VecMalloc,
KmpcAllocShared,
};
StringRef mangledNameForMallocFamily(const MallocFamily &Family) {
switch (Family) {
case MallocFamily::Malloc:
return "malloc";
case MallocFamily::CPPNew:
return "_Znwm";
case MallocFamily::CPPNewAligned:
return "_ZnwmSt11align_val_t";
case MallocFamily::CPPNewArray:
return "_Znam";
case MallocFamily::CPPNewArrayAligned:
return "_ZnamSt11align_val_t";
case MallocFamily::MSVCNew:
return "??2@YAPAXI@Z";
case MallocFamily::MSVCArrayNew:
return "??_U@YAPAXI@Z";
case MallocFamily::VecMalloc:
return "vec_malloc";
case MallocFamily::KmpcAllocShared:
return "__kmpc_alloc_shared";
}
llvm_unreachable("missing an alloc family");
}
struct AllocFnsTy {
AllocType AllocTy;
unsigned NumParams;
// First and Second size parameters (or -1 if unused)
int FstParam, SndParam;
// Alignment parameter for aligned_alloc and aligned new
int AlignParam;
// Name of default allocator function to group malloc/free calls by family
MallocFamily Family;
};
// clang-format off
// FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
// know which functions are nounwind, noalias, nocapture parameters, etc.
static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
{LibFunc_Znwj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int)
{LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int, nothrow)
{LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t)
{LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t, nothrow)
{LibFunc_Znwm, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long)
{LibFunc_Znwm12__hot_cold_t, {OpNewLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, __hot_cold_t)
{LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow)
{LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, {MallocLike, 3, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow, __hot_cold_t)
{LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t)
{LibFunc_ZnwmSt11align_val_t12__hot_cold_t, {OpNewLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, __hot_cold_t)
{LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow)
{LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike, 4, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow, __hot_cold_t)
{LibFunc_Znaj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int)
{LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int, nothrow)
{LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t)
{LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t, nothrow)
{LibFunc_Znam, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long)
{LibFunc_Znam12__hot_cold_t, {OpNewLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new[](unsigned long, __hot_cold_t)
{LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long, nothrow)
{LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, {MallocLike, 3, 0, -1, -1, MallocFamily::CPPNew}}, // new[](unsigned long, nothrow, __hot_cold_t)
{LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t)
{LibFunc_ZnamSt11align_val_t12__hot_cold_t, {OpNewLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new[](unsigned long, align_val_t, __hot_cold_t)
{LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t, nothrow)
{LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike, 4, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new[](unsigned long, align_val_t, nothrow, __hot_cold_t)
{LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int)
{LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int, nothrow)
{LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long)
{LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long, nothrow)
{LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int)
{LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int, nothrow)
{LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long)
{LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long, nothrow)
{LibFunc_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}},
{LibFunc_dunder_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}},
{LibFunc_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}},
{LibFunc_dunder_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}},
{LibFunc___kmpc_alloc_shared, {MallocLike, 1, 0, -1, -1, MallocFamily::KmpcAllocShared}},
};
// clang-format on
static const Function *getCalledFunction(const Value *V) {
// Don't care about intrinsics in this case.
if (isa<IntrinsicInst>(V))
return nullptr;
const auto *CB = dyn_cast<CallBase>(V);
if (!CB)
return nullptr;
if (CB->isNoBuiltin())
return nullptr;
return CB->getCalledFunction();
}
/// Returns the allocation data for the given value if it's a call to a known
/// allocation function.
static std::optional<AllocFnsTy>
getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
const TargetLibraryInfo *TLI) {
// Don't perform a slow TLI lookup, if this function doesn't return a pointer
// and thus can't be an allocation function.
if (!Callee->getReturnType()->isPointerTy())
return std::nullopt;
// Make sure that the function is available.
LibFunc TLIFn;
if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
return std::nullopt;
const auto *Iter = find_if(
AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
return P.first == TLIFn;
});
if (Iter == std::end(AllocationFnData))
return std::nullopt;
const AllocFnsTy *FnData = &Iter->second;
if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
return std::nullopt;
// Check function prototype.
int FstParam = FnData->FstParam;
int SndParam = FnData->SndParam;
FunctionType *FTy = Callee->getFunctionType();
if (FTy->getReturnType()->isPointerTy() &&
FTy->getNumParams() == FnData->NumParams &&
(FstParam < 0 ||
(FTy->getParamType(FstParam)->isIntegerTy(32) ||
FTy->getParamType(FstParam)->isIntegerTy(64))) &&
(SndParam < 0 ||
FTy->getParamType(SndParam)->isIntegerTy(32) ||
FTy->getParamType(SndParam)->isIntegerTy(64)))
return *FnData;
return std::nullopt;
}
static std::optional<AllocFnsTy>
getAllocationData(const Value *V, AllocType AllocTy,
const TargetLibraryInfo *TLI) {
if (const Function *Callee = getCalledFunction(V))
return getAllocationDataForFunction(Callee, AllocTy, TLI);
return std::nullopt;
}
static std::optional<AllocFnsTy>
getAllocationData(const Value *V, AllocType AllocTy,
function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
if (const Function *Callee = getCalledFunction(V))
return getAllocationDataForFunction(
Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
return std::nullopt;
}
static std::optional<AllocFnsTy>
getAllocationSize(const CallBase *CB, const TargetLibraryInfo *TLI) {
if (const Function *Callee = getCalledFunction(CB)) {
// Prefer to use existing information over allocsize. This will give us an
// accurate AllocTy.
if (std::optional<AllocFnsTy> Data =
getAllocationDataForFunction(Callee, AnyAlloc, TLI))
return Data;
}
Attribute Attr = CB->getFnAttr(Attribute::AllocSize);
if (Attr == Attribute())
return std::nullopt;
std::pair<unsigned, std::optional<unsigned>> Args = Attr.getAllocSizeArgs();
AllocFnsTy Result;
// Because allocsize only tells us how many bytes are allocated, we're not
// really allowed to assume anything, so we use MallocLike.
Result.AllocTy = MallocLike;
Result.NumParams = CB->arg_size();
Result.FstParam = Args.first;
Result.SndParam = Args.second.value_or(-1);
// Allocsize has no way to specify an alignment argument
Result.AlignParam = -1;
return Result;
}
static AllocFnKind getAllocFnKind(const Value *V) {
if (const auto *CB = dyn_cast<CallBase>(V)) {
Attribute Attr = CB->getFnAttr(Attribute::AllocKind);
if (Attr.isValid())
return AllocFnKind(Attr.getValueAsInt());
}
return AllocFnKind::Unknown;
}
static AllocFnKind getAllocFnKind(const Function *F) {
return F->getAttributes().getAllocKind();
}
static bool checkFnAllocKind(const Value *V, AllocFnKind Wanted) {
return (getAllocFnKind(V) & Wanted) != AllocFnKind::Unknown;
}
static bool checkFnAllocKind(const Function *F, AllocFnKind Wanted) {
return (getAllocFnKind(F) & Wanted) != AllocFnKind::Unknown;
}
/// Tests if a value is a call or invoke to a library function that
/// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
/// like).
bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) {
return getAllocationData(V, AnyAlloc, TLI).has_value() ||
checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc);
}
bool llvm::isAllocationFn(
const Value *V,
function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
return getAllocationData(V, AnyAlloc, GetTLI).has_value() ||
checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc);
}
/// Tests if a value is a call or invoke to a library function that
/// allocates memory via new.
bool llvm::isNewLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
return getAllocationData(V, OpNewLike, TLI).has_value();
}
/// Tests if a value is a call or invoke to a library function that
/// allocates memory similar to malloc or calloc.
bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
// TODO: Function behavior does not match name.
return getAllocationData(V, MallocOrOpNewLike, TLI).has_value();
}
/// Tests if a value is a call or invoke to a library function that
/// allocates memory (either malloc, calloc, or strdup like).
bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
return getAllocationData(V, AllocLike, TLI).has_value() ||
checkFnAllocKind(V, AllocFnKind::Alloc);
}
/// Tests if a functions is a call or invoke to a library function that
/// reallocates memory (e.g., realloc).
bool llvm::isReallocLikeFn(const Function *F) {
return checkFnAllocKind(F, AllocFnKind::Realloc);
}
Value *llvm::getReallocatedOperand(const CallBase *CB) {
if (checkFnAllocKind(CB, AllocFnKind::Realloc))
return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer);
return nullptr;
}
bool llvm::isRemovableAlloc(const CallBase *CB, const TargetLibraryInfo *TLI) {
// Note: Removability is highly dependent on the source language. For
// example, recent C++ requires direct calls to the global allocation
// [basic.stc.dynamic.allocation] to be observable unless part of a new
// expression [expr.new paragraph 13].
// Historically we've treated the C family allocation routines and operator
// new as removable
return isAllocLikeFn(CB, TLI);
}
Value *llvm::getAllocAlignment(const CallBase *V,
const TargetLibraryInfo *TLI) {
const std::optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI);
if (FnData && FnData->AlignParam >= 0) {
return V->getOperand(FnData->AlignParam);
}
return V->getArgOperandWithAttribute(Attribute::AllocAlign);
}
/// When we're compiling N-bit code, and the user uses parameters that are
/// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
/// trouble with APInt size issues. This function handles resizing + overflow
/// checks for us. Check and zext or trunc \p I depending on IntTyBits and
/// I's value.
static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) {
// More bits than we can handle. Checking the bit width isn't necessary, but
// it's faster than checking active bits, and should give `false` in the
// vast majority of cases.
if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
return false;
if (I.getBitWidth() != IntTyBits)
I = I.zextOrTrunc(IntTyBits);
return true;
}
std::optional<APInt>
llvm::getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI,
function_ref<const Value *(const Value *)> Mapper) {
// Note: This handles both explicitly listed allocation functions and
// allocsize. The code structure could stand to be cleaned up a bit.
std::optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI);
if (!FnData)
return std::nullopt;
// Get the index type for this address space, results and intermediate
// computations are performed at that width.
auto &DL = CB->getDataLayout();
const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType());
// Handle strdup-like functions separately.
if (FnData->AllocTy == StrDupLike) {
APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0))));
if (!Size)
return std::nullopt;
// Strndup limits strlen.
if (FnData->FstParam > 0) {
const ConstantInt *Arg =
dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
if (!Arg)
return std::nullopt;
APInt MaxSize = Arg->getValue().zext(IntTyBits);
if (Size.ugt(MaxSize))
Size = MaxSize + 1;
}
return Size;
}
const ConstantInt *Arg =
dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
if (!Arg)
return std::nullopt;
APInt Size = Arg->getValue();
if (!CheckedZextOrTrunc(Size, IntTyBits))
return std::nullopt;
// Size is determined by just 1 parameter.
if (FnData->SndParam < 0)
return Size;
Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam)));
if (!Arg)
return std::nullopt;
APInt NumElems = Arg->getValue();
if (!CheckedZextOrTrunc(NumElems, IntTyBits))
return std::nullopt;
bool Overflow;
Size = Size.umul_ov(NumElems, Overflow);
if (Overflow)
return std::nullopt;
return Size;
}
Constant *llvm::getInitialValueOfAllocation(const Value *V,
const TargetLibraryInfo *TLI,
Type *Ty) {
auto *Alloc = dyn_cast<CallBase>(V);
if (!Alloc)
return nullptr;
// malloc are uninitialized (undef)
if (getAllocationData(Alloc, MallocOrOpNewLike, TLI).has_value())
return UndefValue::get(Ty);
AllocFnKind AK = getAllocFnKind(Alloc);
if ((AK & AllocFnKind::Uninitialized) != AllocFnKind::Unknown)
return UndefValue::get(Ty);
if ((AK & AllocFnKind::Zeroed) != AllocFnKind::Unknown)
return Constant::getNullValue(Ty);
return nullptr;
}
struct FreeFnsTy {
unsigned NumParams;
// Name of default allocator function to group malloc/free calls by family
MallocFamily Family;
};
// clang-format off
static const std::pair<LibFunc, FreeFnsTy> FreeFnData[] = {
{LibFunc_ZdlPv, {1, MallocFamily::CPPNew}}, // operator delete(void*)
{LibFunc_ZdaPv, {1, MallocFamily::CPPNewArray}}, // operator delete[](void*)
{LibFunc_msvc_delete_ptr32, {1, MallocFamily::MSVCNew}}, // operator delete(void*)
{LibFunc_msvc_delete_ptr64, {1, MallocFamily::MSVCNew}}, // operator delete(void*)
{LibFunc_msvc_delete_array_ptr32, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*)
{LibFunc_msvc_delete_array_ptr64, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*)
{LibFunc_ZdlPvj, {2, MallocFamily::CPPNew}}, // delete(void*, uint)
{LibFunc_ZdlPvm, {2, MallocFamily::CPPNew}}, // delete(void*, ulong)
{LibFunc_ZdlPvRKSt9nothrow_t, {2, MallocFamily::CPPNew}}, // delete(void*, nothrow)
{LibFunc_ZdlPvSt11align_val_t, {2, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t)
{LibFunc_ZdaPvj, {2, MallocFamily::CPPNewArray}}, // delete[](void*, uint)
{LibFunc_ZdaPvm, {2, MallocFamily::CPPNewArray}}, // delete[](void*, ulong)
{LibFunc_ZdaPvRKSt9nothrow_t, {2, MallocFamily::CPPNewArray}}, // delete[](void*, nothrow)
{LibFunc_ZdaPvSt11align_val_t, {2, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t)
{LibFunc_msvc_delete_ptr32_int, {2, MallocFamily::MSVCNew}}, // delete(void*, uint)
{LibFunc_msvc_delete_ptr64_longlong, {2, MallocFamily::MSVCNew}}, // delete(void*, ulonglong)
{LibFunc_msvc_delete_ptr32_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow)
{LibFunc_msvc_delete_ptr64_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow)
{LibFunc_msvc_delete_array_ptr32_int, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, uint)
{LibFunc_msvc_delete_array_ptr64_longlong, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, ulonglong)
{LibFunc_msvc_delete_array_ptr32_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow)
{LibFunc_msvc_delete_array_ptr64_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow)
{LibFunc___kmpc_free_shared, {2, MallocFamily::KmpcAllocShared}}, // OpenMP Offloading RTL free
{LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t, nothrow)
{LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t, nothrow)
{LibFunc_ZdlPvjSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned int, align_val_t)
{LibFunc_ZdlPvmSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned long, align_val_t)
{LibFunc_ZdaPvjSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned int, align_val_t)
{LibFunc_ZdaPvmSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned long, align_val_t)
};
// clang-format on
std::optional<FreeFnsTy> getFreeFunctionDataForFunction(const Function *Callee,
const LibFunc TLIFn) {
const auto *Iter =
find_if(FreeFnData, [TLIFn](const std::pair<LibFunc, FreeFnsTy> &P) {
return P.first == TLIFn;
});
if (Iter == std::end(FreeFnData))
return std::nullopt;
return Iter->second;
}
std::optional<StringRef>
llvm::getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI) {
if (const Function *Callee = getCalledFunction(I)) {
LibFunc TLIFn;
if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn)) {
// Callee is some known library function.
const auto AllocData =
getAllocationDataForFunction(Callee, AnyAlloc, TLI);
if (AllocData)
return mangledNameForMallocFamily(AllocData->Family);
const auto FreeData = getFreeFunctionDataForFunction(Callee, TLIFn);
if (FreeData)
return mangledNameForMallocFamily(FreeData->Family);
}
}
// Callee isn't a known library function, still check attributes.
if (checkFnAllocKind(I, AllocFnKind::Free | AllocFnKind::Alloc |
AllocFnKind::Realloc)) {
Attribute Attr = cast<CallBase>(I)->getFnAttr("alloc-family");
if (Attr.isValid())
return Attr.getValueAsString();
}
return std::nullopt;
}
/// isLibFreeFunction - Returns true if the function is a builtin free()
bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
std::optional<FreeFnsTy> FnData = getFreeFunctionDataForFunction(F, TLIFn);
if (!FnData)
return checkFnAllocKind(F, AllocFnKind::Free);
// Check free prototype.
// FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
// attribute will exist.
FunctionType *FTy = F->getFunctionType();
if (!FTy->getReturnType()->isVoidTy())
return false;
if (FTy->getNumParams() != FnData->NumParams)
return false;
if (!FTy->getParamType(0)->isPointerTy())
return false;
return true;
}
Value *llvm::getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI) {
if (const Function *Callee = getCalledFunction(CB)) {
LibFunc TLIFn;
if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn) &&
isLibFreeFunction(Callee, TLIFn)) {
// All currently supported free functions free the first argument.
return CB->getArgOperand(0);
}
}
if (checkFnAllocKind(CB, AllocFnKind::Free))
return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer);
return nullptr;
}
//===----------------------------------------------------------------------===//
// Utility functions to compute size of objects.
//
static APInt getSizeWithOverflow(const SizeOffsetAPInt &Data) {
APInt Size = Data.Size;
APInt Offset = Data.Offset;
if (Offset.isNegative() || Size.ult(Offset))
return APInt::getZero(Size.getBitWidth());
return Size - Offset;
}
/// Compute the size of the object pointed by Ptr. Returns true and the
/// object size in Size if successful, and false otherwise.
/// If RoundToAlign is true, then Size is rounded up to the alignment of
/// allocas, byval arguments, and global variables.
bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
SizeOffsetAPInt Data = Visitor.compute(const_cast<Value *>(Ptr));
if (!Data.bothKnown())
return false;
Size = getSizeWithOverflow(Data).getZExtValue();
return true;
}
Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
const DataLayout &DL,
const TargetLibraryInfo *TLI,
bool MustSucceed) {
return lowerObjectSizeCall(ObjectSize, DL, TLI, /*AAResults=*/nullptr,
MustSucceed);
}
Value *llvm::lowerObjectSizeCall(
IntrinsicInst *ObjectSize, const DataLayout &DL,
const TargetLibraryInfo *TLI, AAResults *AA, bool MustSucceed,
SmallVectorImpl<Instruction *> *InsertedInstructions) {
assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
"ObjectSize must be a call to llvm.objectsize!");
bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
ObjectSizeOpts EvalOptions;
EvalOptions.AA = AA;
// Unless we have to fold this to something, try to be as accurate as
// possible.
if (MustSucceed)
EvalOptions.EvalMode =
MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
else
EvalOptions.EvalMode = ObjectSizeOpts::Mode::ExactSizeFromOffset;
EvalOptions.NullIsUnknownSize =
cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
auto *ResultType = cast<IntegerType>(ObjectSize->getType());
bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
if (StaticOnly) {
// FIXME: Does it make sense to just return a failure value if the size won't
// fit in the output and `!MustSucceed`?
uint64_t Size;
if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
isUIntN(ResultType->getBitWidth(), Size))
return ConstantInt::get(ResultType, Size);
} else {
LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
SizeOffsetValue SizeOffsetPair = Eval.compute(ObjectSize->getArgOperand(0));
if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
Ctx, TargetFolder(DL), IRBuilderCallbackInserter([&](Instruction *I) {
if (InsertedInstructions)
InsertedInstructions->push_back(I);
}));
Builder.SetInsertPoint(ObjectSize);
Value *Size = SizeOffsetPair.Size;
Value *Offset = SizeOffsetPair.Offset;
// If we've outside the end of the object, then we can always access
// exactly 0 bytes.
Value *ResultSize = Builder.CreateSub(Size, Offset);
Value *UseZero = Builder.CreateICmpULT(Size, Offset);
ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
Value *Ret = Builder.CreateSelect(
UseZero, ConstantInt::get(ResultType, 0), ResultSize);
// The non-constant size expression cannot evaluate to -1.
if (!isa<Constant>(Size) || !isa<Constant>(Offset))
Builder.CreateAssumption(
Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
return Ret;
}
}
if (!MustSucceed)
return nullptr;
return MaxVal ? Constant::getAllOnesValue(ResultType)
: Constant::getNullValue(ResultType);
}
STATISTIC(ObjectVisitorArgument,
"Number of arguments with unsolved size and offset");
STATISTIC(ObjectVisitorLoad,
"Number of load instructions with unsolved size and offset");
static std::optional<APInt>
combinePossibleConstantValues(std::optional<APInt> LHS,
std::optional<APInt> RHS,
ObjectSizeOpts::Mode EvalMode) {
if (!LHS || !RHS)
return std::nullopt;
if (EvalMode == ObjectSizeOpts::Mode::Max)
return LHS->sge(*RHS) ? *LHS : *RHS;
else
return LHS->sle(*RHS) ? *LHS : *RHS;
}
static std::optional<APInt> aggregatePossibleConstantValuesImpl(
const Value *V, ObjectSizeOpts::Mode EvalMode, unsigned recursionDepth) {
constexpr unsigned maxRecursionDepth = 4;
if (recursionDepth == maxRecursionDepth)
return std::nullopt;
if (const auto *CI = dyn_cast<ConstantInt>(V)) {
return CI->getValue();
} else if (const auto *SI = dyn_cast<SelectInst>(V)) {
return combinePossibleConstantValues(
aggregatePossibleConstantValuesImpl(SI->getTrueValue(), EvalMode,
recursionDepth + 1),
aggregatePossibleConstantValuesImpl(SI->getFalseValue(), EvalMode,
recursionDepth + 1),
EvalMode);
} else if (const auto *PN = dyn_cast<PHINode>(V)) {
unsigned Count = PN->getNumIncomingValues();
if (Count == 0)
return std::nullopt;
auto Acc = aggregatePossibleConstantValuesImpl(
PN->getIncomingValue(0), EvalMode, recursionDepth + 1);
for (unsigned I = 1; Acc && I < Count; ++I) {
auto Tmp = aggregatePossibleConstantValuesImpl(
PN->getIncomingValue(I), EvalMode, recursionDepth + 1);
Acc = combinePossibleConstantValues(Acc, Tmp, EvalMode);
}
return Acc;
}
return std::nullopt;
}
static std::optional<APInt>
aggregatePossibleConstantValues(const Value *V, ObjectSizeOpts::Mode EvalMode) {
if (auto *CI = dyn_cast<ConstantInt>(V))
return CI->getValue();
if (EvalMode != ObjectSizeOpts::Mode::Min &&
EvalMode != ObjectSizeOpts::Mode::Max)
return std::nullopt;
// Not using computeConstantRange here because we cannot guarantee it's not
// doing optimization based on UB which we want to avoid when expanding
// __builtin_object_size.
return aggregatePossibleConstantValuesImpl(V, EvalMode, 0u);
}
/// Align \p Size according to \p Alignment. If \p Size is greater than
/// getSignedMaxValue(), set it as unknown as we can only represent signed value
/// in OffsetSpan.
APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) {
if (Options.RoundToAlign && Alignment)
Size = APInt(IntTyBits, alignTo(Size.getZExtValue(), *Alignment));
return Size.isNegative() ? APInt() : Size;
}
ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
const TargetLibraryInfo *TLI,
LLVMContext &Context,
ObjectSizeOpts Options)
: DL(DL), TLI(TLI), Options(Options) {
// Pointer size must be rechecked for each object visited since it could have
// a different address space.
}
SizeOffsetAPInt ObjectSizeOffsetVisitor::compute(Value *V) {
InstructionsVisited = 0;
OffsetSpan Span = computeImpl(V);
// In ExactSizeFromOffset mode, we don't care about the Before Field, so allow
// us to overwrite it if needs be.
if (Span.knownAfter() && !Span.knownBefore() &&
Options.EvalMode == ObjectSizeOpts::Mode::ExactSizeFromOffset)
Span.Before = APInt::getZero(Span.After.getBitWidth());
if (!Span.bothKnown())
return {};
return {Span.Before + Span.After, Span.Before};
}
OffsetSpan ObjectSizeOffsetVisitor::computeImpl(Value *V) {
unsigned InitialIntTyBits = DL.getIndexTypeSizeInBits(V->getType());
// Stripping pointer casts can strip address space casts which can change the
// index type size. The invariant is that we use the value type to determine
// the index type size and if we stripped address space casts we have to
// readjust the APInt as we pass it upwards in order for the APInt to match
// the type the caller passed in.
APInt Offset(InitialIntTyBits, 0);
V = V->stripAndAccumulateConstantOffsets(
DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true);
// Give it another try with approximated analysis. We don't start with this
// one because stripAndAccumulateConstantOffsets behaves differently wrt.
// overflows if we provide an external Analysis.
if ((Options.EvalMode == ObjectSizeOpts::Mode::Min ||
Options.EvalMode == ObjectSizeOpts::Mode::Max) &&
isa<GEPOperator>(V)) {
// External Analysis used to compute the Min/Max value of individual Offsets
// within a GEP.
ObjectSizeOpts::Mode EvalMode =
Options.EvalMode == ObjectSizeOpts::Mode::Min
? ObjectSizeOpts::Mode::Max
: ObjectSizeOpts::Mode::Min;
auto OffsetRangeAnalysis = [EvalMode](Value &VOffset, APInt &Offset) {
if (auto PossibleOffset =
aggregatePossibleConstantValues(&VOffset, EvalMode)) {
Offset = *PossibleOffset;
return true;
}
return false;
};
V = V->stripAndAccumulateConstantOffsets(
DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true,
/*ExternalAnalysis=*/OffsetRangeAnalysis);
}
// Later we use the index type size and zero but it will match the type of the
// value that is passed to computeImpl.
IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
Zero = APInt::getZero(IntTyBits);
OffsetSpan ORT = computeValue(V);
bool IndexTypeSizeChanged = InitialIntTyBits != IntTyBits;
if (!IndexTypeSizeChanged && Offset.isZero())
return ORT;
// We stripped an address space cast that changed the index type size or we
// accumulated some constant offset (or both). Readjust the bit width to match
// the argument index type size and apply the offset, as required.
if (IndexTypeSizeChanged) {
if (ORT.knownBefore() &&
!::CheckedZextOrTrunc(ORT.Before, InitialIntTyBits))
ORT.Before = APInt();
if (ORT.knownAfter() && !::CheckedZextOrTrunc(ORT.After, InitialIntTyBits))
ORT.After = APInt();
}
// If the computed bound is "unknown" we cannot add the stripped offset.
if (ORT.knownBefore()) {
bool Overflow;
ORT.Before = ORT.Before.sadd_ov(Offset, Overflow);
if (Overflow)
ORT.Before = APInt();
}
if (ORT.knownAfter()) {
bool Overflow;
ORT.After = ORT.After.ssub_ov(Offset, Overflow);
if (Overflow)
ORT.After = APInt();
}
// We end up pointing on a location that's outside of the original object.
if (ORT.knownBefore() && ORT.Before.isNegative()) {
// This is UB, and we'd rather return an empty location then.
if (Options.EvalMode == ObjectSizeOpts::Mode::Min ||
Options.EvalMode == ObjectSizeOpts::Mode::Max) {
ORT.Before = APInt::getZero(ORT.Before.getBitWidth());
ORT.After = APInt::getZero(ORT.Before.getBitWidth());
}
// Otherwise it's fine, caller can handle negative offset.
}
return ORT;
}
OffsetSpan ObjectSizeOffsetVisitor::computeValue(Value *V) {
if (Instruction *I = dyn_cast<Instruction>(V)) {
// If we have already seen this instruction, bail out. Cycles can happen in
// unreachable code after constant propagation.
auto P = SeenInsts.try_emplace(I, ObjectSizeOffsetVisitor::unknown());
if (!P.second)
return P.first->second;
++InstructionsVisited;
if (InstructionsVisited > ObjectSizeOffsetVisitorMaxVisitInstructions)
return ObjectSizeOffsetVisitor::unknown();
OffsetSpan Res = visit(*I);
// Cache the result for later visits. If we happened to visit this during
// the above recursion, we would consider it unknown until now.
SeenInsts[I] = Res;
return Res;
}
if (Argument *A = dyn_cast<Argument>(V))
return visitArgument(*A);
if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
return visitConstantPointerNull(*P);
if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
return visitGlobalAlias(*GA);
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
return visitGlobalVariable(*GV);
if (UndefValue *UV = dyn_cast<UndefValue>(V))
return visitUndefValue(*UV);
LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
<< *V << '\n');
return ObjectSizeOffsetVisitor::unknown();
}
bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
return ::CheckedZextOrTrunc(I, IntTyBits);
}
OffsetSpan ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
TypeSize ElemSize = DL.getTypeAllocSize(I.getAllocatedType());
if (ElemSize.isScalable() && Options.EvalMode != ObjectSizeOpts::Mode::Min)
return ObjectSizeOffsetVisitor::unknown();
if (!isUIntN(IntTyBits, ElemSize.getKnownMinValue()))
return ObjectSizeOffsetVisitor::unknown();
APInt Size(IntTyBits, ElemSize.getKnownMinValue());
if (!I.isArrayAllocation())
return OffsetSpan(Zero, align(Size, I.getAlign()));
Value *ArraySize = I.getArraySize();
if (auto PossibleSize =
aggregatePossibleConstantValues(ArraySize, Options.EvalMode)) {
APInt NumElems = *PossibleSize;
if (!CheckedZextOrTrunc(NumElems))
return ObjectSizeOffsetVisitor::unknown();
bool Overflow;
Size = Size.umul_ov(NumElems, Overflow);
return Overflow ? ObjectSizeOffsetVisitor::unknown()
: OffsetSpan(Zero, align(Size, I.getAlign()));
}
return ObjectSizeOffsetVisitor::unknown();
}
OffsetSpan ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
Type *MemoryTy = A.getPointeeInMemoryValueType();
// No interprocedural analysis is done at the moment.
if (!MemoryTy|| !MemoryTy->isSized()) {
++ObjectVisitorArgument;
return ObjectSizeOffsetVisitor::unknown();
}
APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
return OffsetSpan(Zero, align(Size, A.getParamAlign()));
}
OffsetSpan ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
auto Mapper = [this](const Value *V) -> const Value * {
if (!V->getType()->isIntegerTy())
return V;
if (auto PossibleBound =
aggregatePossibleConstantValues(V, Options.EvalMode))
return ConstantInt::get(V->getType(), *PossibleBound);
return V;
};
if (std::optional<APInt> Size = getAllocSize(&CB, TLI, Mapper)) {
// Very large unsigned value cannot be represented as OffsetSpan.
if (Size->isNegative())
return ObjectSizeOffsetVisitor::unknown();
return OffsetSpan(Zero, *Size);
}
return ObjectSizeOffsetVisitor::unknown();
}
OffsetSpan
ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull &CPN) {
// If null is unknown, there's nothing we can do. Additionally, non-zero
// address spaces can make use of null, so we don't presume to know anything
// about that.
//
// TODO: How should this work with address space casts? We currently just drop
// them on the floor, but it's unclear what we should do when a NULL from
// addrspace(1) gets casted to addrspace(0) (or vice-versa).
if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
return ObjectSizeOffsetVisitor::unknown();
return OffsetSpan(Zero, Zero);
}
OffsetSpan
ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst &) {
return ObjectSizeOffsetVisitor::unknown();
}
OffsetSpan ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst &) {
// Easy cases were already folded by previous passes.
return ObjectSizeOffsetVisitor::unknown();
}
OffsetSpan ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
if (GA.isInterposable())
return ObjectSizeOffsetVisitor::unknown();
return computeImpl(GA.getAliasee());
}
OffsetSpan ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV) {
if (!GV.getValueType()->isSized() || GV.hasExternalWeakLinkage() ||
((!GV.hasInitializer() || GV.isInterposable()) &&
Options.EvalMode != ObjectSizeOpts::Mode::Min))
return ObjectSizeOffsetVisitor::unknown();
APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
return OffsetSpan(Zero, align(Size, GV.getAlign()));
}
OffsetSpan ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst &) {
// clueless
return ObjectSizeOffsetVisitor::unknown();
}
OffsetSpan ObjectSizeOffsetVisitor::findLoadOffsetRange(
LoadInst &Load, BasicBlock &BB, BasicBlock::iterator From,
SmallDenseMap<BasicBlock *, OffsetSpan, 8> &VisitedBlocks,
unsigned &ScannedInstCount) {
constexpr unsigned MaxInstsToScan = 128;
auto Where = VisitedBlocks.find(&BB);
if (Where != VisitedBlocks.end())
return Where->second;
auto Unknown = [&BB, &VisitedBlocks]() {
return VisitedBlocks[&BB] = ObjectSizeOffsetVisitor::unknown();
};
auto Known = [&BB, &VisitedBlocks](OffsetSpan SO) {
return VisitedBlocks[&BB] = SO;
};
do {
Instruction &I = *From;
if (I.isDebugOrPseudoInst())
continue;
if (++ScannedInstCount > MaxInstsToScan)
return Unknown();
if (!I.mayWriteToMemory())
continue;
if (auto *SI = dyn_cast<StoreInst>(&I)) {
AliasResult AR =
Options.AA->alias(SI->getPointerOperand(), Load.getPointerOperand());
switch ((AliasResult::Kind)AR) {
case AliasResult::NoAlias:
continue;
case AliasResult::MustAlias:
if (SI->getValueOperand()->getType()->isPointerTy())
return Known(computeImpl(SI->getValueOperand()));
else
return Unknown(); // No handling of non-pointer values by `compute`.
default:
return Unknown();
}
}
if (auto *CB = dyn_cast<CallBase>(&I)) {
Function *Callee = CB->getCalledFunction();
// Bail out on indirect call.
if (!Callee)
return Unknown();
LibFunc TLIFn;
if (!TLI || !TLI->getLibFunc(*CB->getCalledFunction(), TLIFn) ||
!TLI->has(TLIFn))
return Unknown();
// TODO: There's probably more interesting case to support here.
if (TLIFn != LibFunc_posix_memalign)
return Unknown();
AliasResult AR =
Options.AA->alias(CB->getOperand(0), Load.getPointerOperand());
switch ((AliasResult::Kind)AR) {
case AliasResult::NoAlias:
continue;
case AliasResult::MustAlias:
break;
default:
return Unknown();
}
// Is the error status of posix_memalign correctly checked? If not it
// would be incorrect to assume it succeeds and load doesn't see the
// previous value.
std::optional<bool> Checked = isImpliedByDomCondition(
ICmpInst::ICMP_EQ, CB, ConstantInt::get(CB->getType(), 0), &Load, DL);
if (!Checked || !*Checked)
return Unknown();
Value *Size = CB->getOperand(2);
auto *C = dyn_cast<ConstantInt>(Size);
if (!C)
return Unknown();
APInt CSize = C->getValue();
if (CSize.isNegative())
return Unknown();
return Known({APInt(CSize.getBitWidth(), 0), CSize});
}
return Unknown();
} while (From-- != BB.begin());
SmallVector<OffsetSpan> PredecessorSizeOffsets;
for (auto *PredBB : predecessors(&BB)) {
PredecessorSizeOffsets.push_back(findLoadOffsetRange(
Load, *PredBB, BasicBlock::iterator(PredBB->getTerminator()),
VisitedBlocks, ScannedInstCount));
if (!PredecessorSizeOffsets.back().bothKnown())
return Unknown();
}
if (PredecessorSizeOffsets.empty())
return Unknown();
return Known(std::accumulate(
PredecessorSizeOffsets.begin() + 1, PredecessorSizeOffsets.end(),
PredecessorSizeOffsets.front(), [this](OffsetSpan LHS, OffsetSpan RHS) {
return combineOffsetRange(LHS, RHS);
}));
}
OffsetSpan ObjectSizeOffsetVisitor::visitLoadInst(LoadInst &LI) {
if (!Options.AA) {
++ObjectVisitorLoad;
return ObjectSizeOffsetVisitor::unknown();
}
SmallDenseMap<BasicBlock *, OffsetSpan, 8> VisitedBlocks;
unsigned ScannedInstCount = 0;
OffsetSpan SO =
findLoadOffsetRange(LI, *LI.getParent(), BasicBlock::iterator(LI),
VisitedBlocks, ScannedInstCount);
if (!SO.bothKnown())
++ObjectVisitorLoad;
return SO;
}
OffsetSpan ObjectSizeOffsetVisitor::combineOffsetRange(OffsetSpan LHS,
OffsetSpan RHS) {
if (!LHS.bothKnown() || !RHS.bothKnown())
return ObjectSizeOffsetVisitor::unknown();
switch (Options.EvalMode) {
case ObjectSizeOpts::Mode::Min:
return {LHS.Before.slt(RHS.Before) ? LHS.Before : RHS.Before,
LHS.After.slt(RHS.After) ? LHS.After : RHS.After};
case ObjectSizeOpts::Mode::Max: {
return {LHS.Before.sgt(RHS.Before) ? LHS.Before : RHS.Before,
LHS.After.sgt(RHS.After) ? LHS.After : RHS.After};
}
case ObjectSizeOpts::Mode::ExactSizeFromOffset:
return {LHS.Before.eq(RHS.Before) ? LHS.Before : APInt(),
LHS.After.eq(RHS.After) ? LHS.After : APInt()};
case ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset:
return (LHS == RHS) ? LHS : ObjectSizeOffsetVisitor::unknown();
}
llvm_unreachable("missing an eval mode");
}
OffsetSpan ObjectSizeOffsetVisitor::visitPHINode(PHINode &PN) {
if (PN.getNumIncomingValues() == 0)
return ObjectSizeOffsetVisitor::unknown();
auto IncomingValues = PN.incoming_values();
return std::accumulate(IncomingValues.begin() + 1, IncomingValues.end(),
computeImpl(*IncomingValues.begin()),
[this](OffsetSpan LHS, Value *VRHS) {
return combineOffsetRange(LHS, computeImpl(VRHS));
});
}
OffsetSpan ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
return combineOffsetRange(computeImpl(I.getTrueValue()),
computeImpl(I.getFalseValue()));
}
OffsetSpan ObjectSizeOffsetVisitor::visitUndefValue(UndefValue &) {
return OffsetSpan(Zero, Zero);
}
OffsetSpan ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
<< '\n');
return ObjectSizeOffsetVisitor::unknown();
}
// Just set these right here...
SizeOffsetValue::SizeOffsetValue(const SizeOffsetWeakTrackingVH &SOT)
: SizeOffsetType(SOT.Size, SOT.Offset) {}
ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
ObjectSizeOpts EvalOpts)
: DL(DL), TLI(TLI), Context(Context),
Builder(Context, TargetFolder(DL),
IRBuilderCallbackInserter(
[&](Instruction *I) { InsertedInstructions.insert(I); })),
EvalOpts(EvalOpts) {
// IntTy and Zero must be set for each compute() since the address space may
// be different for later objects.
}
SizeOffsetValue ObjectSizeOffsetEvaluator::compute(Value *V) {
// XXX - Are vectors of pointers possible here?
IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
Zero = ConstantInt::get(IntTy, 0);
SizeOffsetValue Result = compute_(V);
if (!Result.bothKnown()) {
// Erase everything that was computed in this iteration from the cache, so
// that no dangling references are left behind. We could be a bit smarter if
// we kept a dependency graph. It's probably not worth the complexity.
for (const Value *SeenVal : SeenVals) {
CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
// non-computable results can be safely cached
if (CacheIt != CacheMap.end() && CacheIt->second.anyKnown())
CacheMap.erase(CacheIt);
}
// Erase any instructions we inserted as part of the traversal.
for (Instruction *I : InsertedInstructions) {
I->replaceAllUsesWith(PoisonValue::get(I->getType()));
I->eraseFromParent();
}
}
SeenVals.clear();
InsertedInstructions.clear();
return Result;
}
SizeOffsetValue ObjectSizeOffsetEvaluator::compute_(Value *V) {
// Only trust ObjectSizeOffsetVisitor in exact mode, otherwise fallback on
// dynamic computation.
ObjectSizeOpts VisitorEvalOpts(EvalOpts);
VisitorEvalOpts.EvalMode = ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset;
ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, VisitorEvalOpts);
SizeOffsetAPInt Const = Visitor.compute(V);
if (Const.bothKnown())
return SizeOffsetValue(ConstantInt::get(Context, Const.Size),
ConstantInt::get(Context, Const.Offset));
V = V->stripPointerCasts();
// Check cache.
CacheMapTy::iterator CacheIt = CacheMap.find(V);
if (CacheIt != CacheMap.end())
return CacheIt->second;
// Always generate code immediately before the instruction being
// processed, so that the generated code dominates the same BBs.
BuilderTy::InsertPointGuard Guard(Builder);
if (Instruction *I = dyn_cast<Instruction>(V))
Builder.SetInsertPoint(I);
// Now compute the size and offset.
SizeOffsetValue Result;
// Record the pointers that were handled in this run, so that they can be
// cleaned later if something fails. We also use this set to break cycles that
// can occur in dead code.
if (!SeenVals.insert(V).second) {
Result = ObjectSizeOffsetEvaluator::unknown();
} else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Result = visitGEPOperator(*GEP);
} else if (Instruction *I = dyn_cast<Instruction>(V)) {
Result = visit(*I);
} else if (isa<Argument>(V) ||
(isa<ConstantExpr>(V) &&
cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
isa<GlobalAlias>(V) ||
isa<GlobalVariable>(V)) {
// Ignore values where we cannot do more than ObjectSizeVisitor.
Result = ObjectSizeOffsetEvaluator::unknown();
} else {
LLVM_DEBUG(
dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
<< '\n');
Result = ObjectSizeOffsetEvaluator::unknown();
}
// Don't reuse CacheIt since it may be invalid at this point.
CacheMap[V] = SizeOffsetWeakTrackingVH(Result);
return Result;
}
SizeOffsetValue ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
if (!I.getAllocatedType()->isSized())
return ObjectSizeOffsetEvaluator::unknown();
// must be a VLA or vscale.
assert(I.isArrayAllocation() || I.getAllocatedType()->isScalableTy());
// If needed, adjust the alloca's operand size to match the pointer indexing
// size. Subsequent math operations expect the types to match.
Value *ArraySize = Builder.CreateZExtOrTrunc(
I.getArraySize(),
DL.getIndexType(I.getContext(), DL.getAllocaAddrSpace()));
assert(ArraySize->getType() == Zero->getType() &&
"Expected zero constant to have pointer index type");
Value *Size = Builder.CreateTypeSize(
ArraySize->getType(), DL.getTypeAllocSize(I.getAllocatedType()));
Size = Builder.CreateMul(Size, ArraySize);
return SizeOffsetValue(Size, Zero);
}
SizeOffsetValue ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
std::optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
if (!FnData)
return ObjectSizeOffsetEvaluator::unknown();
// Handle strdup-like functions separately.
if (FnData->AllocTy == StrDupLike) {
// TODO: implement evaluation of strdup/strndup
return ObjectSizeOffsetEvaluator::unknown();
}
Value *FirstArg = CB.getArgOperand(FnData->FstParam);
FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
if (FnData->SndParam < 0)
return SizeOffsetValue(FirstArg, Zero);
Value *SecondArg = CB.getArgOperand(FnData->SndParam);
SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
Value *Size = Builder.CreateMul(FirstArg, SecondArg);
return SizeOffsetValue(Size, Zero);
}
SizeOffsetValue
ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst &) {
return ObjectSizeOffsetEvaluator::unknown();
}
SizeOffsetValue
ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst &) {
return ObjectSizeOffsetEvaluator::unknown();
}
SizeOffsetValue ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
SizeOffsetValue PtrData = compute_(GEP.getPointerOperand());
if (!PtrData.bothKnown())
return ObjectSizeOffsetEvaluator::unknown();
Value *Offset = emitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
Offset = Builder.CreateAdd(PtrData.Offset, Offset);
return SizeOffsetValue(PtrData.Size, Offset);
}
SizeOffsetValue ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst &) {
// clueless
return ObjectSizeOffsetEvaluator::unknown();
}
SizeOffsetValue ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst &LI) {
return ObjectSizeOffsetEvaluator::unknown();
}
SizeOffsetValue ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
// Create 2 PHIs: one for size and another for offset.
PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
// Insert right away in the cache to handle recursive PHIs.
CacheMap[&PHI] = SizeOffsetWeakTrackingVH(SizePHI, OffsetPHI);
// Compute offset/size for each PHI incoming pointer.
for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
BasicBlock *IncomingBlock = PHI.getIncomingBlock(i);
Builder.SetInsertPoint(IncomingBlock, IncomingBlock->getFirstInsertionPt());
SizeOffsetValue EdgeData = compute_(PHI.getIncomingValue(i));
if (!EdgeData.bothKnown()) {
OffsetPHI->replaceAllUsesWith(PoisonValue::get(IntTy));
OffsetPHI->eraseFromParent();
InsertedInstructions.erase(OffsetPHI);
SizePHI->replaceAllUsesWith(PoisonValue::get(IntTy));
SizePHI->eraseFromParent();
InsertedInstructions.erase(SizePHI);
return ObjectSizeOffsetEvaluator::unknown();
}
SizePHI->addIncoming(EdgeData.Size, IncomingBlock);
OffsetPHI->addIncoming(EdgeData.Offset, IncomingBlock);
}
Value *Size = SizePHI, *Offset = OffsetPHI;
if (Value *Tmp = SizePHI->hasConstantValue()) {
Size = Tmp;
SizePHI->replaceAllUsesWith(Size);
SizePHI->eraseFromParent();
InsertedInstructions.erase(SizePHI);
}
if (Value *Tmp = OffsetPHI->hasConstantValue()) {
Offset = Tmp;
OffsetPHI->replaceAllUsesWith(Offset);
OffsetPHI->eraseFromParent();
InsertedInstructions.erase(OffsetPHI);
}
return SizeOffsetValue(Size, Offset);
}
SizeOffsetValue ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
SizeOffsetValue TrueSide = compute_(I.getTrueValue());
SizeOffsetValue FalseSide = compute_(I.getFalseValue());
if (!TrueSide.bothKnown() || !FalseSide.bothKnown())
return ObjectSizeOffsetEvaluator::unknown();
if (TrueSide == FalseSide)
return TrueSide;
Value *Size =
Builder.CreateSelect(I.getCondition(), TrueSide.Size, FalseSide.Size);
Value *Offset =
Builder.CreateSelect(I.getCondition(), TrueSide.Offset, FalseSide.Offset);
return SizeOffsetValue(Size, Offset);
}
SizeOffsetValue ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
<< '\n');
return ObjectSizeOffsetEvaluator::unknown();
}