llvm-project/clang/lib/Lex/PPMacroExpansion.cpp
Argyrios Kyrtzidis 1cb0de1d4c Fix diagnostic pragmas.
Diagnostic pragmas are broken because we don't keep track of the diagnostic state changes and we only check the current/latest state.
Problems manifest if a diagnostic is emitted for a source line that has different diagnostic state than the current state; this can affect
a lot of places, like C++ inline methods, template instantiations, the lexer, etc.

Fix the issue by having the Diagnostic object keep track of the source location of the pragmas so that it is able to know what is the diagnostic state at any given source location.

Fixes rdar://8365684.

llvm-svn: 121873
2010-12-15 18:44:22 +00:00

880 lines
32 KiB
C++

//===--- MacroExpansion.cpp - Top level Macro Expansion -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the top level handling of macro expasion for the
// preprocessor.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/Preprocessor.h"
#include "MacroArgs.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/LexDiagnostic.h"
#include "clang/Lex/CodeCompletionHandler.h"
#include "clang/Lex/ExternalPreprocessorSource.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Config/config.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdio>
#include <ctime>
using namespace clang;
MacroInfo *Preprocessor::getInfoForMacro(IdentifierInfo *II) const {
assert(II->hasMacroDefinition() && "Identifier is not a macro!");
llvm::DenseMap<IdentifierInfo*, MacroInfo*>::const_iterator Pos
= Macros.find(II);
if (Pos == Macros.end()) {
// Load this macro from the external source.
getExternalSource()->LoadMacroDefinition(II);
Pos = Macros.find(II);
}
assert(Pos != Macros.end() && "Identifier macro info is missing!");
return Pos->second;
}
/// setMacroInfo - Specify a macro for this identifier.
///
void Preprocessor::setMacroInfo(IdentifierInfo *II, MacroInfo *MI) {
if (MI) {
Macros[II] = MI;
II->setHasMacroDefinition(true);
} else if (II->hasMacroDefinition()) {
Macros.erase(II);
II->setHasMacroDefinition(false);
}
}
/// RegisterBuiltinMacro - Register the specified identifier in the identifier
/// table and mark it as a builtin macro to be expanded.
static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){
// Get the identifier.
IdentifierInfo *Id = PP.getIdentifierInfo(Name);
// Mark it as being a macro that is builtin.
MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation());
MI->setIsBuiltinMacro();
PP.setMacroInfo(Id, MI);
return Id;
}
/// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
/// identifier table.
void Preprocessor::RegisterBuiltinMacros() {
Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__");
Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__");
Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__");
Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__");
Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__");
Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma");
// GCC Extensions.
Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__");
Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__");
// Clang Extensions.
Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature");
Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin");
Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute");
Ident__has_include = RegisterBuiltinMacro(*this, "__has_include");
Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next");
// Microsoft Extensions.
if (Features.Microsoft)
Ident__pragma = RegisterBuiltinMacro(*this, "__pragma");
else
Ident__pragma = 0;
}
/// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
/// in its expansion, currently expands to that token literally.
static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
const IdentifierInfo *MacroIdent,
Preprocessor &PP) {
IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
// If the token isn't an identifier, it's always literally expanded.
if (II == 0) return true;
// If the identifier is a macro, and if that macro is enabled, it may be
// expanded so it's not a trivial expansion.
if (II->hasMacroDefinition() && PP.getMacroInfo(II)->isEnabled() &&
// Fast expanding "#define X X" is ok, because X would be disabled.
II != MacroIdent)
return false;
// If this is an object-like macro invocation, it is safe to trivially expand
// it.
if (MI->isObjectLike()) return true;
// If this is a function-like macro invocation, it's safe to trivially expand
// as long as the identifier is not a macro argument.
for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end();
I != E; ++I)
if (*I == II)
return false; // Identifier is a macro argument.
return true;
}
/// isNextPPTokenLParen - Determine whether the next preprocessor token to be
/// lexed is a '('. If so, consume the token and return true, if not, this
/// method should have no observable side-effect on the lexed tokens.
bool Preprocessor::isNextPPTokenLParen() {
// Do some quick tests for rejection cases.
unsigned Val;
if (CurLexer)
Val = CurLexer->isNextPPTokenLParen();
else if (CurPTHLexer)
Val = CurPTHLexer->isNextPPTokenLParen();
else
Val = CurTokenLexer->isNextTokenLParen();
if (Val == 2) {
// We have run off the end. If it's a source file we don't
// examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the
// macro stack.
if (CurPPLexer)
return false;
for (unsigned i = IncludeMacroStack.size(); i != 0; --i) {
IncludeStackInfo &Entry = IncludeMacroStack[i-1];
if (Entry.TheLexer)
Val = Entry.TheLexer->isNextPPTokenLParen();
else if (Entry.ThePTHLexer)
Val = Entry.ThePTHLexer->isNextPPTokenLParen();
else
Val = Entry.TheTokenLexer->isNextTokenLParen();
if (Val != 2)
break;
// Ran off the end of a source file?
if (Entry.ThePPLexer)
return false;
}
}
// Okay, if we know that the token is a '(', lex it and return. Otherwise we
// have found something that isn't a '(' or we found the end of the
// translation unit. In either case, return false.
return Val == 1;
}
/// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
/// expanded as a macro, handle it and return the next token as 'Identifier'.
bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
MacroInfo *MI) {
if (Callbacks) Callbacks->MacroExpands(Identifier, MI);
// If this is a macro expansion in the "#if !defined(x)" line for the file,
// then the macro could expand to different things in other contexts, we need
// to disable the optimization in this case.
if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
// If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
if (MI->isBuiltinMacro()) {
ExpandBuiltinMacro(Identifier);
return false;
}
/// Args - If this is a function-like macro expansion, this contains,
/// for each macro argument, the list of tokens that were provided to the
/// invocation.
MacroArgs *Args = 0;
// Remember where the end of the instantiation occurred. For an object-like
// macro, this is the identifier. For a function-like macro, this is the ')'.
SourceLocation InstantiationEnd = Identifier.getLocation();
// If this is a function-like macro, read the arguments.
if (MI->isFunctionLike()) {
// C99 6.10.3p10: If the preprocessing token immediately after the the macro
// name isn't a '(', this macro should not be expanded.
if (!isNextPPTokenLParen())
return true;
// Remember that we are now parsing the arguments to a macro invocation.
// Preprocessor directives used inside macro arguments are not portable, and
// this enables the warning.
InMacroArgs = true;
Args = ReadFunctionLikeMacroArgs(Identifier, MI, InstantiationEnd);
// Finished parsing args.
InMacroArgs = false;
// If there was an error parsing the arguments, bail out.
if (Args == 0) return false;
++NumFnMacroExpanded;
} else {
++NumMacroExpanded;
}
// Notice that this macro has been used.
markMacroAsUsed(MI);
// If we started lexing a macro, enter the macro expansion body.
// If this macro expands to no tokens, don't bother to push it onto the
// expansion stack, only to take it right back off.
if (MI->getNumTokens() == 0) {
// No need for arg info.
if (Args) Args->destroy(*this);
// Ignore this macro use, just return the next token in the current
// buffer.
bool HadLeadingSpace = Identifier.hasLeadingSpace();
bool IsAtStartOfLine = Identifier.isAtStartOfLine();
Lex(Identifier);
// If the identifier isn't on some OTHER line, inherit the leading
// whitespace/first-on-a-line property of this token. This handles
// stuff like "! XX," -> "! ," and " XX," -> " ,", when XX is
// empty.
if (!Identifier.isAtStartOfLine()) {
if (IsAtStartOfLine) Identifier.setFlag(Token::StartOfLine);
if (HadLeadingSpace) Identifier.setFlag(Token::LeadingSpace);
}
Identifier.setFlag(Token::LeadingEmptyMacro);
++NumFastMacroExpanded;
return false;
} else if (MI->getNumTokens() == 1 &&
isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
*this)) {
// Otherwise, if this macro expands into a single trivially-expanded
// token: expand it now. This handles common cases like
// "#define VAL 42".
// No need for arg info.
if (Args) Args->destroy(*this);
// Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
// identifier to the expanded token.
bool isAtStartOfLine = Identifier.isAtStartOfLine();
bool hasLeadingSpace = Identifier.hasLeadingSpace();
// Remember where the token is instantiated.
SourceLocation InstantiateLoc = Identifier.getLocation();
// Replace the result token.
Identifier = MI->getReplacementToken(0);
// Restore the StartOfLine/LeadingSpace markers.
Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
// Update the tokens location to include both its instantiation and physical
// locations.
SourceLocation Loc =
SourceMgr.createInstantiationLoc(Identifier.getLocation(), InstantiateLoc,
InstantiationEnd,Identifier.getLength());
Identifier.setLocation(Loc);
// If this is a disabled macro or #define X X, we must mark the result as
// unexpandable.
if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
if (MacroInfo *NewMI = getMacroInfo(NewII))
if (!NewMI->isEnabled() || NewMI == MI)
Identifier.setFlag(Token::DisableExpand);
}
// Since this is not an identifier token, it can't be macro expanded, so
// we're done.
++NumFastMacroExpanded;
return false;
}
// Start expanding the macro.
EnterMacro(Identifier, InstantiationEnd, Args);
// Now that the macro is at the top of the include stack, ask the
// preprocessor to read the next token from it.
Lex(Identifier);
return false;
}
/// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
/// token is the '(' of the macro, this method is invoked to read all of the
/// actual arguments specified for the macro invocation. This returns null on
/// error.
MacroArgs *Preprocessor::ReadFunctionLikeMacroArgs(Token &MacroName,
MacroInfo *MI,
SourceLocation &MacroEnd) {
// The number of fixed arguments to parse.
unsigned NumFixedArgsLeft = MI->getNumArgs();
bool isVariadic = MI->isVariadic();
// Outer loop, while there are more arguments, keep reading them.
Token Tok;
// Read arguments as unexpanded tokens. This avoids issues, e.g., where
// an argument value in a macro could expand to ',' or '(' or ')'.
LexUnexpandedToken(Tok);
assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
// ArgTokens - Build up a list of tokens that make up each argument. Each
// argument is separated by an EOF token. Use a SmallVector so we can avoid
// heap allocations in the common case.
llvm::SmallVector<Token, 64> ArgTokens;
unsigned NumActuals = 0;
while (Tok.isNot(tok::r_paren)) {
assert((Tok.is(tok::l_paren) || Tok.is(tok::comma)) &&
"only expect argument separators here");
unsigned ArgTokenStart = ArgTokens.size();
SourceLocation ArgStartLoc = Tok.getLocation();
// C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note
// that we already consumed the first one.
unsigned NumParens = 0;
while (1) {
// Read arguments as unexpanded tokens. This avoids issues, e.g., where
// an argument value in a macro could expand to ',' or '(' or ')'.
LexUnexpandedToken(Tok);
if (Tok.is(tok::code_completion)) {
if (CodeComplete)
CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
MI, NumActuals);
LexUnexpandedToken(Tok);
}
if (Tok.is(tok::eof) || Tok.is(tok::eom)) { // "#if f(<eof>" & "#if f(\n"
Diag(MacroName, diag::err_unterm_macro_invoc);
// Do not lose the EOF/EOM. Return it to the client.
MacroName = Tok;
return 0;
} else if (Tok.is(tok::r_paren)) {
// If we found the ) token, the macro arg list is done.
if (NumParens-- == 0) {
MacroEnd = Tok.getLocation();
break;
}
} else if (Tok.is(tok::l_paren)) {
++NumParens;
} else if (Tok.is(tok::comma) && NumParens == 0) {
// Comma ends this argument if there are more fixed arguments expected.
// However, if this is a variadic macro, and this is part of the
// variadic part, then the comma is just an argument token.
if (!isVariadic) break;
if (NumFixedArgsLeft > 1)
break;
} else if (Tok.is(tok::comment) && !KeepMacroComments) {
// If this is a comment token in the argument list and we're just in
// -C mode (not -CC mode), discard the comment.
continue;
} else if (Tok.getIdentifierInfo() != 0) {
// Reading macro arguments can cause macros that we are currently
// expanding from to be popped off the expansion stack. Doing so causes
// them to be reenabled for expansion. Here we record whether any
// identifiers we lex as macro arguments correspond to disabled macros.
// If so, we mark the token as noexpand. This is a subtle aspect of
// C99 6.10.3.4p2.
if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
if (!MI->isEnabled())
Tok.setFlag(Token::DisableExpand);
}
ArgTokens.push_back(Tok);
}
// If this was an empty argument list foo(), don't add this as an empty
// argument.
if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
break;
// If this is not a variadic macro, and too many args were specified, emit
// an error.
if (!isVariadic && NumFixedArgsLeft == 0) {
if (ArgTokens.size() != ArgTokenStart)
ArgStartLoc = ArgTokens[ArgTokenStart].getLocation();
// Emit the diagnostic at the macro name in case there is a missing ).
// Emitting it at the , could be far away from the macro name.
Diag(ArgStartLoc, diag::err_too_many_args_in_macro_invoc);
return 0;
}
// Empty arguments are standard in C99 and supported as an extension in
// other modes.
if (ArgTokens.size() == ArgTokenStart && !Features.C99)
Diag(Tok, diag::ext_empty_fnmacro_arg);
// Add a marker EOF token to the end of the token list for this argument.
Token EOFTok;
EOFTok.startToken();
EOFTok.setKind(tok::eof);
EOFTok.setLocation(Tok.getLocation());
EOFTok.setLength(0);
ArgTokens.push_back(EOFTok);
++NumActuals;
assert(NumFixedArgsLeft != 0 && "Too many arguments parsed");
--NumFixedArgsLeft;
}
// Okay, we either found the r_paren. Check to see if we parsed too few
// arguments.
unsigned MinArgsExpected = MI->getNumArgs();
// See MacroArgs instance var for description of this.
bool isVarargsElided = false;
if (NumActuals < MinArgsExpected) {
// There are several cases where too few arguments is ok, handle them now.
if (NumActuals == 0 && MinArgsExpected == 1) {
// #define A(X) or #define A(...) ---> A()
// If there is exactly one argument, and that argument is missing,
// then we have an empty "()" argument empty list. This is fine, even if
// the macro expects one argument (the argument is just empty).
isVarargsElided = MI->isVariadic();
} else if (MI->isVariadic() &&
(NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X)
(NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
// Varargs where the named vararg parameter is missing: ok as extension.
// #define A(x, ...)
// A("blah")
Diag(Tok, diag::ext_missing_varargs_arg);
// Remember this occurred, allowing us to elide the comma when used for
// cases like:
// #define A(x, foo...) blah(a, ## foo)
// #define B(x, ...) blah(a, ## __VA_ARGS__)
// #define C(...) blah(a, ## __VA_ARGS__)
// A(x) B(x) C()
isVarargsElided = true;
} else {
// Otherwise, emit the error.
Diag(Tok, diag::err_too_few_args_in_macro_invoc);
return 0;
}
// Add a marker EOF token to the end of the token list for this argument.
SourceLocation EndLoc = Tok.getLocation();
Tok.startToken();
Tok.setKind(tok::eof);
Tok.setLocation(EndLoc);
Tok.setLength(0);
ArgTokens.push_back(Tok);
// If we expect two arguments, add both as empty.
if (NumActuals == 0 && MinArgsExpected == 2)
ArgTokens.push_back(Tok);
} else if (NumActuals > MinArgsExpected && !MI->isVariadic()) {
// Emit the diagnostic at the macro name in case there is a missing ).
// Emitting it at the , could be far away from the macro name.
Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
return 0;
}
return MacroArgs::create(MI, ArgTokens.data(), ArgTokens.size(),
isVarargsElided, *this);
}
/// ComputeDATE_TIME - Compute the current time, enter it into the specified
/// scratch buffer, then return DATELoc/TIMELoc locations with the position of
/// the identifier tokens inserted.
static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
Preprocessor &PP) {
time_t TT = time(0);
struct tm *TM = localtime(&TT);
static const char * const Months[] = {
"Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
};
char TmpBuffer[32];
#ifdef LLVM_ON_WIN32
sprintf(TmpBuffer, "\"%s %2d %4d\"", Months[TM->tm_mon], TM->tm_mday,
TM->tm_year+1900);
#else
snprintf(TmpBuffer, sizeof(TmpBuffer), "\"%s %2d %4d\"", Months[TM->tm_mon], TM->tm_mday,
TM->tm_year+1900);
#endif
Token TmpTok;
TmpTok.startToken();
PP.CreateString(TmpBuffer, strlen(TmpBuffer), TmpTok);
DATELoc = TmpTok.getLocation();
#ifdef LLVM_ON_WIN32
sprintf(TmpBuffer, "\"%02d:%02d:%02d\"", TM->tm_hour, TM->tm_min, TM->tm_sec);
#else
snprintf(TmpBuffer, sizeof(TmpBuffer), "\"%02d:%02d:%02d\"", TM->tm_hour, TM->tm_min, TM->tm_sec);
#endif
PP.CreateString(TmpBuffer, strlen(TmpBuffer), TmpTok);
TIMELoc = TmpTok.getLocation();
}
/// HasFeature - Return true if we recognize and implement the specified feature
/// specified by the identifier.
static bool HasFeature(const Preprocessor &PP, const IdentifierInfo *II) {
const LangOptions &LangOpts = PP.getLangOptions();
return llvm::StringSwitch<bool>(II->getName())
.Case("attribute_analyzer_noreturn", true)
.Case("attribute_cf_returns_not_retained", true)
.Case("attribute_cf_returns_retained", true)
.Case("attribute_deprecated_with_message", true)
.Case("attribute_ext_vector_type", true)
.Case("attribute_ns_returns_not_retained", true)
.Case("attribute_ns_returns_retained", true)
.Case("attribute_objc_ivar_unused", true)
.Case("attribute_overloadable", true)
.Case("attribute_unavailable_with_message", true)
.Case("blocks", LangOpts.Blocks)
.Case("cxx_attributes", LangOpts.CPlusPlus0x)
.Case("cxx_auto_type", LangOpts.CPlusPlus0x)
.Case("cxx_decltype", LangOpts.CPlusPlus0x)
.Case("cxx_deleted_functions", true) // Accepted as an extension.
.Case("cxx_exceptions", LangOpts.Exceptions)
.Case("cxx_rtti", LangOpts.RTTI)
.Case("cxx_strong_enums", LangOpts.CPlusPlus0x)
.Case("cxx_static_assert", LangOpts.CPlusPlus0x)
.Case("cxx_trailing_return", LangOpts.CPlusPlus0x)
.Case("enumerator_attributes", true)
.Case("objc_nonfragile_abi", LangOpts.ObjCNonFragileABI)
.Case("objc_weak_class", LangOpts.ObjCNonFragileABI)
.Case("ownership_holds", true)
.Case("ownership_returns", true)
.Case("ownership_takes", true)
.Case("cxx_inline_namespaces", true)
//.Case("cxx_concepts", false)
//.Case("cxx_lambdas", false)
//.Case("cxx_nullptr", false)
//.Case("cxx_rvalue_references", false)
//.Case("cxx_variadic_templates", false)
.Case("tls", PP.getTargetInfo().isTLSSupported())
.Default(false);
}
/// HasAttribute - Return true if we recognize and implement the attribute
/// specified by the given identifier.
static bool HasAttribute(const IdentifierInfo *II) {
return llvm::StringSwitch<bool>(II->getName())
#include "clang/Lex/AttrSpellings.inc"
.Default(false);
}
/// EvaluateHasIncludeCommon - Process a '__has_include("path")'
/// or '__has_include_next("path")' expression.
/// Returns true if successful.
static bool EvaluateHasIncludeCommon(bool &Result, Token &Tok,
IdentifierInfo *II, Preprocessor &PP,
const DirectoryLookup *LookupFrom) {
SourceLocation LParenLoc;
// Get '('.
PP.LexNonComment(Tok);
// Ensure we have a '('.
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok.getLocation(), diag::err_pp_missing_lparen) << II->getName();
return false;
}
// Save '(' location for possible missing ')' message.
LParenLoc = Tok.getLocation();
// Get the file name.
PP.getCurrentLexer()->LexIncludeFilename(Tok);
// Reserve a buffer to get the spelling.
llvm::SmallString<128> FilenameBuffer;
llvm::StringRef Filename;
SourceLocation EndLoc;
switch (Tok.getKind()) {
case tok::eom:
// If the token kind is EOM, the error has already been diagnosed.
return false;
case tok::angle_string_literal:
case tok::string_literal: {
bool Invalid = false;
Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
if (Invalid)
return false;
break;
}
case tok::less:
// This could be a <foo/bar.h> file coming from a macro expansion. In this
// case, glue the tokens together into FilenameBuffer and interpret those.
FilenameBuffer.push_back('<');
if (PP.ConcatenateIncludeName(FilenameBuffer, EndLoc))
return false; // Found <eom> but no ">"? Diagnostic already emitted.
Filename = FilenameBuffer.str();
break;
default:
PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
return false;
}
bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
// If GetIncludeFilenameSpelling set the start ptr to null, there was an
// error.
if (Filename.empty())
return false;
// Search include directories.
const DirectoryLookup *CurDir;
const FileEntry *File = PP.LookupFile(Filename, isAngled, LookupFrom, CurDir);
// Get the result value. Result = true means the file exists.
Result = File != 0;
// Get ')'.
PP.LexNonComment(Tok);
// Ensure we have a trailing ).
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::err_pp_missing_rparen) << II->getName();
PP.Diag(LParenLoc, diag::note_matching) << "(";
return false;
}
return true;
}
/// EvaluateHasInclude - Process a '__has_include("path")' expression.
/// Returns true if successful.
static bool EvaluateHasInclude(bool &Result, Token &Tok, IdentifierInfo *II,
Preprocessor &PP) {
return(EvaluateHasIncludeCommon(Result, Tok, II, PP, NULL));
}
/// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression.
/// Returns true if successful.
static bool EvaluateHasIncludeNext(bool &Result, Token &Tok,
IdentifierInfo *II, Preprocessor &PP) {
// __has_include_next is like __has_include, except that we start
// searching after the current found directory. If we can't do this,
// issue a diagnostic.
const DirectoryLookup *Lookup = PP.GetCurDirLookup();
if (PP.isInPrimaryFile()) {
Lookup = 0;
PP.Diag(Tok, diag::pp_include_next_in_primary);
} else if (Lookup == 0) {
PP.Diag(Tok, diag::pp_include_next_absolute_path);
} else {
// Start looking up in the next directory.
++Lookup;
}
return(EvaluateHasIncludeCommon(Result, Tok, II, PP, Lookup));
}
/// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
/// as a builtin macro, handle it and return the next token as 'Tok'.
void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
// Figure out which token this is.
IdentifierInfo *II = Tok.getIdentifierInfo();
assert(II && "Can't be a macro without id info!");
// If this is an _Pragma or Microsoft __pragma directive, expand it,
// invoke the pragma handler, then lex the token after it.
if (II == Ident_Pragma)
return Handle_Pragma(Tok);
else if (II == Ident__pragma) // in non-MS mode this is null
return HandleMicrosoft__pragma(Tok);
++NumBuiltinMacroExpanded;
llvm::SmallString<128> TmpBuffer;
llvm::raw_svector_ostream OS(TmpBuffer);
// Set up the return result.
Tok.setIdentifierInfo(0);
Tok.clearFlag(Token::NeedsCleaning);
if (II == Ident__LINE__) {
// C99 6.10.8: "__LINE__: The presumed line number (within the current
// source file) of the current source line (an integer constant)". This can
// be affected by #line.
SourceLocation Loc = Tok.getLocation();
// Advance to the location of the first _, this might not be the first byte
// of the token if it starts with an escaped newline.
Loc = AdvanceToTokenCharacter(Loc, 0);
// One wrinkle here is that GCC expands __LINE__ to location of the *end* of
// a macro instantiation. This doesn't matter for object-like macros, but
// can matter for a function-like macro that expands to contain __LINE__.
// Skip down through instantiation points until we find a file loc for the
// end of the instantiation history.
Loc = SourceMgr.getInstantiationRange(Loc).second;
PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
// __LINE__ expands to a simple numeric value.
OS << (PLoc.isValid()? PLoc.getLine() : 1);
Tok.setKind(tok::numeric_constant);
} else if (II == Ident__FILE__ || II == Ident__BASE_FILE__) {
// C99 6.10.8: "__FILE__: The presumed name of the current source file (a
// character string literal)". This can be affected by #line.
PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
// __BASE_FILE__ is a GNU extension that returns the top of the presumed
// #include stack instead of the current file.
if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
SourceLocation NextLoc = PLoc.getIncludeLoc();
while (NextLoc.isValid()) {
PLoc = SourceMgr.getPresumedLoc(NextLoc);
if (PLoc.isInvalid())
break;
NextLoc = PLoc.getIncludeLoc();
}
}
// Escape this filename. Turn '\' -> '\\' '"' -> '\"'
llvm::SmallString<128> FN;
if (PLoc.isValid()) {
FN += PLoc.getFilename();
Lexer::Stringify(FN);
OS << '"' << FN.str() << '"';
}
Tok.setKind(tok::string_literal);
} else if (II == Ident__DATE__) {
if (!DATELoc.isValid())
ComputeDATE_TIME(DATELoc, TIMELoc, *this);
Tok.setKind(tok::string_literal);
Tok.setLength(strlen("\"Mmm dd yyyy\""));
Tok.setLocation(SourceMgr.createInstantiationLoc(DATELoc, Tok.getLocation(),
Tok.getLocation(),
Tok.getLength()));
return;
} else if (II == Ident__TIME__) {
if (!TIMELoc.isValid())
ComputeDATE_TIME(DATELoc, TIMELoc, *this);
Tok.setKind(tok::string_literal);
Tok.setLength(strlen("\"hh:mm:ss\""));
Tok.setLocation(SourceMgr.createInstantiationLoc(TIMELoc, Tok.getLocation(),
Tok.getLocation(),
Tok.getLength()));
return;
} else if (II == Ident__INCLUDE_LEVEL__) {
// Compute the presumed include depth of this token. This can be affected
// by GNU line markers.
unsigned Depth = 0;
PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
if (PLoc.isValid()) {
PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
for (; PLoc.isValid(); ++Depth)
PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
}
// __INCLUDE_LEVEL__ expands to a simple numeric value.
OS << Depth;
Tok.setKind(tok::numeric_constant);
} else if (II == Ident__TIMESTAMP__) {
// MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be
// of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
// Get the file that we are lexing out of. If we're currently lexing from
// a macro, dig into the include stack.
const FileEntry *CurFile = 0;
PreprocessorLexer *TheLexer = getCurrentFileLexer();
if (TheLexer)
CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
const char *Result;
if (CurFile) {
time_t TT = CurFile->getModificationTime();
struct tm *TM = localtime(&TT);
Result = asctime(TM);
} else {
Result = "??? ??? ?? ??:??:?? ????\n";
}
// Surround the string with " and strip the trailing newline.
OS << '"' << llvm::StringRef(Result, strlen(Result)-1) << '"';
Tok.setKind(tok::string_literal);
} else if (II == Ident__COUNTER__) {
// __COUNTER__ expands to a simple numeric value.
OS << CounterValue++;
Tok.setKind(tok::numeric_constant);
} else if (II == Ident__has_feature ||
II == Ident__has_builtin ||
II == Ident__has_attribute) {
// The argument to these two builtins should be a parenthesized identifier.
SourceLocation StartLoc = Tok.getLocation();
bool IsValid = false;
IdentifierInfo *FeatureII = 0;
// Read the '('.
Lex(Tok);
if (Tok.is(tok::l_paren)) {
// Read the identifier
Lex(Tok);
if (Tok.is(tok::identifier)) {
FeatureII = Tok.getIdentifierInfo();
// Read the ')'.
Lex(Tok);
if (Tok.is(tok::r_paren))
IsValid = true;
}
}
bool Value = false;
if (!IsValid)
Diag(StartLoc, diag::err_feature_check_malformed);
else if (II == Ident__has_builtin) {
// Check for a builtin is trivial.
Value = FeatureII->getBuiltinID() != 0;
} else if (II == Ident__has_attribute)
Value = HasAttribute(FeatureII);
else {
assert(II == Ident__has_feature && "Must be feature check");
Value = HasFeature(*this, FeatureII);
}
OS << (int)Value;
Tok.setKind(tok::numeric_constant);
} else if (II == Ident__has_include ||
II == Ident__has_include_next) {
// The argument to these two builtins should be a parenthesized
// file name string literal using angle brackets (<>) or
// double-quotes ("").
bool Value = false;
bool IsValid;
if (II == Ident__has_include)
IsValid = EvaluateHasInclude(Value, Tok, II, *this);
else
IsValid = EvaluateHasIncludeNext(Value, Tok, II, *this);
OS << (int)Value;
Tok.setKind(tok::numeric_constant);
} else {
assert(0 && "Unknown identifier!");
}
CreateString(OS.str().data(), OS.str().size(), Tok, Tok.getLocation());
}
void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
// If the 'used' status changed, and the macro requires 'unused' warning,
// remove its SourceLocation from the warn-for-unused-macro locations.
if (MI->isWarnIfUnused() && !MI->isUsed())
WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
MI->setIsUsed(true);
}