
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand: - the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context. - Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline. This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled. To adjust to this change, stop using the existing dialect registration: the global registry will be removed soon. 1) For passes, you need to override the method: virtual void getDependentDialects(DialectRegistry ®istry) const {} and registery on the provided registry any dialect that this pass can produce. Passes defined in TableGen can provide this list in the dependentDialects list field. 2) For dialects, on construction you can register dependent dialects using the provided MLIRContext: `context.getOrLoadDialect<DialectName>()` This is useful if a dialect may canonicalize or have interfaces involving another dialect. 3) For loading IR, dialect that can be in the input file must be explicitly registered with the context. `MlirOptMain()` is taking an explicit registry for this purpose. See how the standalone-opt.cpp example is setup: mlir::DialectRegistry registry; registry.insert<mlir::standalone::StandaloneDialect>(); registry.insert<mlir::StandardOpsDialect>(); Only operations from these two dialects can be in the input file. To include all of the dialects in MLIR Core, you can populate the registry this way: mlir::registerAllDialects(registry); 4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in the context before emitting the IR: context.getOrLoadDialect<ToyDialect>() Differential Revision: https://reviews.llvm.org/D85622
508 lines
21 KiB
C++
508 lines
21 KiB
C++
//===- TestLinalgTransforms.cpp - Test Linalg transformation patterns -----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements logic for testing Linalg transformations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/GPU/GPUDialect.h"
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/Dialect/Vector/VectorOps.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
|
|
#include "llvm/ADT/SetVector.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::linalg;
|
|
|
|
namespace {
|
|
struct TestLinalgTransforms
|
|
: public PassWrapper<TestLinalgTransforms, FunctionPass> {
|
|
TestLinalgTransforms() = default;
|
|
TestLinalgTransforms(const TestLinalgTransforms &pass) {}
|
|
|
|
void getDependentDialects(DialectRegistry ®istry) const override {
|
|
// clang-format off
|
|
registry.insert<AffineDialect,
|
|
scf::SCFDialect,
|
|
StandardOpsDialect,
|
|
vector::VectorDialect,
|
|
gpu::GPUDialect>();
|
|
// clang-format on
|
|
}
|
|
|
|
void runOnFunction() override;
|
|
|
|
Option<bool> testPatterns{*this, "test-patterns",
|
|
llvm::cl::desc("Test a mixed set of patterns"),
|
|
llvm::cl::init(false)};
|
|
Option<bool> testMatmulToVectorPatterns1dTiling{
|
|
*this, "test-matmul-to-vector-patterns-tile-1d",
|
|
llvm::cl::desc(
|
|
"Test a fused pass that applies patterns from matmul to vectors via "
|
|
"1-d tiling"),
|
|
llvm::cl::init(false)};
|
|
Option<bool> testMatmulToVectorPatterns2dTiling{
|
|
*this, "test-matmul-to-vector-patterns-tile-2d",
|
|
llvm::cl::desc(
|
|
"Test a fused pass that applies patterns from matmul to vectors via "
|
|
"2-d tiling"),
|
|
llvm::cl::init(false)};
|
|
Option<bool> testPromotionOptions{*this, "test-linalg-promotion-options",
|
|
llvm::cl::desc("Test promotion options"),
|
|
llvm::cl::init(false)};
|
|
Option<bool> testTileAndDistributionOptions{
|
|
*this, "test-tile-and-distribute-options",
|
|
llvm::cl::desc("Test tile and distribute options"),
|
|
llvm::cl::init(false)};
|
|
Option<bool> testVectorTransferForwardingPatterns{
|
|
*this, "test-vector-transfer-forwarding-patterns",
|
|
llvm::cl::desc(
|
|
"Test a fused pass that forwards linalg.copy to vector.transfer"),
|
|
llvm::cl::init(false)};
|
|
Option<bool> testGenericToVectorPattern{
|
|
*this, "test-contraction-to-vector-patterns",
|
|
llvm::cl::desc("Test a set of patterns that rewrite a linalg contraction "
|
|
"in vector.contract form"),
|
|
llvm::cl::init(false)};
|
|
Option<bool> testAffineMinSCFCanonicalizationPatterns{
|
|
*this, "test-affine-min-scf-canonicalization-patterns",
|
|
llvm::cl::desc("Test affine-min + scf canonicalization patterns."),
|
|
llvm::cl::init(false)};
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static void applyPatterns(FuncOp funcOp) {
|
|
MLIRContext *ctx = funcOp.getContext();
|
|
OwningRewritePatternList patterns;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Linalg tiling patterns.
|
|
//===--------------------------------------------------------------------===//
|
|
patterns.insert<LinalgTilingPattern<MatmulOp>>(
|
|
ctx, LinalgTilingOptions().setTileSizes({2000, 3000, 4000}),
|
|
LinalgMarker(Identifier::get("MEM", ctx), Identifier::get("L3", ctx)));
|
|
patterns.insert<LinalgTilingPattern<MatmulOp>>(
|
|
ctx, LinalgTilingOptions().setTileSizes({200, 300, 400}),
|
|
LinalgMarker(Identifier::get("L3", ctx), Identifier::get("L2", ctx)));
|
|
patterns.insert<LinalgTilingPattern<MatmulOp>>(
|
|
ctx, LinalgTilingOptions().setTileSizes({20, 30, 40}),
|
|
LinalgMarker(Identifier::get("L2", ctx), Identifier::get("L1", ctx)));
|
|
patterns.insert<LinalgTilingPattern<MatmulOp>>(
|
|
ctx, LinalgTilingOptions().setTileSizes({2, 3, 4}),
|
|
LinalgMarker(Identifier::get("L1", ctx), Identifier::get("REG", ctx)));
|
|
|
|
patterns.insert<LinalgTilingPattern<MatvecOp>>(
|
|
ctx,
|
|
LinalgTilingOptions().setTileSizes({5, 6}).setLoopType(
|
|
LinalgTilingLoopType::ParallelLoops),
|
|
LinalgMarker({}, Identifier::get("L1", ctx)));
|
|
|
|
patterns.insert<LinalgTilingPattern<DotOp>>(
|
|
ctx, LinalgTilingOptions().setTileSizes(8000),
|
|
LinalgMarker(ArrayRef<Identifier>{Identifier::get("MEM", ctx),
|
|
Identifier::get("L3", ctx),
|
|
Identifier::get("L2", ctx)},
|
|
Identifier::get("REG", ctx)));
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Linalg tiling and permutation patterns.
|
|
//===--------------------------------------------------------------------===//
|
|
patterns.insert<LinalgTilingPattern<MatmulOp>>(
|
|
ctx,
|
|
LinalgTilingOptions()
|
|
.setTileSizes({2000, 3000, 4000})
|
|
.setInterchange({1, 2, 0}),
|
|
LinalgMarker(Identifier::get("__with_perm__", ctx),
|
|
Identifier::get("L2__with_perm__", ctx)));
|
|
patterns.insert<LinalgTilingPattern<MatmulOp>>(
|
|
ctx,
|
|
LinalgTilingOptions()
|
|
.setTileSizes({200, 300, 400})
|
|
.setInterchange({1, 0, 2}),
|
|
LinalgMarker(Identifier::get("L2__with_perm__", ctx),
|
|
Identifier::get("L1__with_perm__", ctx)));
|
|
patterns.insert<LinalgTilingPattern<MatmulOp>>(
|
|
ctx, LinalgTilingOptions().setTileSizes({20, 30, 40}),
|
|
LinalgMarker(Identifier::get("L1__with_perm__", ctx),
|
|
Identifier::get("REG__with_perm__", ctx)));
|
|
|
|
patterns.insert<LinalgTilingPattern<MatvecOp>>(
|
|
ctx, LinalgTilingOptions().setTileSizes({5, 6}).setInterchange({1, 0}),
|
|
LinalgMarker(Identifier::get("__with_perm__", ctx),
|
|
Identifier::get("L1__with_perm__", ctx)));
|
|
|
|
patterns.insert<LinalgTilingPattern<MatmulOp>>(
|
|
ctx,
|
|
LinalgTilingOptions()
|
|
.setTileSizes({16, 8, 4})
|
|
.setInterchange({1, 2, 0})
|
|
.setLoopType(LinalgTilingLoopType::ParallelLoops),
|
|
LinalgMarker(Identifier::get("par__with_perm__", ctx),
|
|
Identifier::get("after_par__with_perm__", ctx)));
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Linalg to loops patterns.
|
|
//===--------------------------------------------------------------------===//
|
|
patterns.insert<LinalgLoweringPattern<DotOp>>(
|
|
ctx,
|
|
/*loweringType=*/LinalgLoweringType::Loops,
|
|
LinalgMarker(Identifier::get("REG", ctx)));
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Linalg distribution patterns.
|
|
//===--------------------------------------------------------------------===//
|
|
LinalgLoopDistributionOptions distributionOptions;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Linalg to vector contraction patterns.
|
|
//===--------------------------------------------------------------------===//
|
|
patterns.insert<LinalgVectorizationPattern<MatmulOp>,
|
|
LinalgVectorizationPattern<FillOp>,
|
|
LinalgVectorizationPattern<CopyOp>,
|
|
LinalgVectorizationPattern<GenericOp>>(
|
|
ctx, LinalgMarker(Identifier::get("VECTORIZE", ctx)));
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Linalg generic permutation patterns.
|
|
//===--------------------------------------------------------------------===//
|
|
patterns.insert<LinalgInterchangePattern<GenericOp>>(
|
|
ctx,
|
|
/*interchangeVector=*/ArrayRef<unsigned>{1, 2, 0},
|
|
LinalgMarker({}, Identifier::get("PERMUTED", ctx)));
|
|
patterns.insert<LinalgInterchangePattern<IndexedGenericOp>>(
|
|
ctx,
|
|
/*interchangeVector=*/ArrayRef<unsigned>{1, 2, 0},
|
|
LinalgMarker({}, Identifier::get("PERMUTED", ctx)));
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Linalg subview operands promotion.
|
|
//===--------------------------------------------------------------------===//
|
|
patterns.insert<LinalgPromotionPattern<MatmulOp>>(
|
|
ctx, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
|
|
LinalgMarker(Identifier::get("_promote_views_", ctx),
|
|
Identifier::get("_views_promoted_", ctx)));
|
|
patterns.insert<LinalgPromotionPattern<MatmulOp>>(
|
|
ctx,
|
|
LinalgPromotionOptions()
|
|
.setOperandsToPromote({0})
|
|
.setUseFullTileBuffersByDefault(true),
|
|
LinalgMarker(Identifier::get("_promote_first_view_", ctx),
|
|
Identifier::get("_first_view_promoted_", ctx)));
|
|
patterns.insert<LinalgPromotionPattern<FillOp>>(
|
|
ctx,
|
|
LinalgPromotionOptions()
|
|
.setOperandsToPromote({0})
|
|
.setUseFullTileBuffers({true})
|
|
.setAlignment(32),
|
|
LinalgMarker(Identifier::get("_promote_views_aligned_", ctx),
|
|
Identifier::get("_views_aligned_promoted_", ctx)));
|
|
|
|
applyPatternsAndFoldGreedily(funcOp, patterns);
|
|
|
|
// Drop the marker.
|
|
funcOp.walk([](LinalgOp op) {
|
|
op.removeAttr(LinalgTransforms::kLinalgTransformMarker);
|
|
});
|
|
}
|
|
|
|
static void fillL1TilingAndMatmulToVectorPatterns(
|
|
FuncOp funcOp, StringRef startMarker,
|
|
SmallVectorImpl<OwningRewritePatternList> &patternsVector) {
|
|
MLIRContext *ctx = funcOp.getContext();
|
|
patternsVector.emplace_back(LinalgTilingPattern<MatmulOp>(
|
|
ctx,
|
|
LinalgTilingOptions().setTileSizes({8, 12, 16}).setInterchange({1, 0, 2}),
|
|
LinalgMarker(Identifier::get(startMarker, ctx),
|
|
Identifier::get("L1", ctx))));
|
|
|
|
patternsVector.emplace_back(LinalgPromotionPattern<MatmulOp>(
|
|
ctx, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
|
|
LinalgMarker(Identifier::get("L1", ctx), Identifier::get("VEC", ctx))));
|
|
|
|
patternsVector.emplace_back(LinalgVectorizationPattern<MatmulOp>(
|
|
ctx, LinalgMarker(Identifier::get("VEC", ctx))));
|
|
patternsVector.back()
|
|
.insert<LinalgVectorizationPattern<FillOp>,
|
|
LinalgVectorizationPattern<CopyOp>>(ctx);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Test promotion callbacks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Allocation call back
|
|
static Optional<Value> allocCallBackFn(OpBuilder &b, SubViewOp subView,
|
|
ArrayRef<Value> boundingSubViewSize,
|
|
OperationFolder *folder) {
|
|
SmallVector<int64_t, 4> shape(boundingSubViewSize.size(), -1);
|
|
return b
|
|
.create<AllocOp>(subView.getLoc(),
|
|
MemRefType::get(shape,
|
|
subView.getType().getElementType(),
|
|
/*affineMapComposition =*/{}, 3),
|
|
boundingSubViewSize)
|
|
.getResult();
|
|
}
|
|
|
|
// Deallocation callback
|
|
static LogicalResult deallocCallBackFn(OpBuilder &b, Value buffer) {
|
|
b.create<DeallocOp>(buffer.getLoc(), buffer);
|
|
return success();
|
|
}
|
|
|
|
// Copy in call back
|
|
static LogicalResult copyCallBackFn(OpBuilder &b, Value src, Value dst,
|
|
bool isOutput) {
|
|
auto floatType = src.getType().cast<MemRefType>().getElementType();
|
|
if (!floatType.isa<FloatType>())
|
|
return failure();
|
|
if (!isOutput)
|
|
b.create<FillOp>(
|
|
src.getLoc(), dst,
|
|
b.create<ConstantOp>(src.getLoc(), FloatAttr::get(floatType, 42.0)));
|
|
b.create<CopyOp>(src.getLoc(), src, dst);
|
|
return success();
|
|
}
|
|
|
|
static void fillPromotionCallBackPatterns(MLIRContext *ctx,
|
|
OwningRewritePatternList &patterns) {
|
|
patterns.insert<LinalgTilingPattern<MatmulOp>>(
|
|
ctx, LinalgTilingOptions().setTileSizes({16, 16, 16}),
|
|
LinalgMarker(Identifier::get("START", ctx),
|
|
Identifier::get("PROMOTE", ctx)));
|
|
patterns.insert<LinalgPromotionPattern<MatmulOp>>(
|
|
ctx,
|
|
LinalgPromotionOptions()
|
|
.setOperandsToPromote({0, 2})
|
|
.setUseFullTileBuffers({false, false})
|
|
.setAllocationDeallocationFns(allocCallBackFn, deallocCallBackFn)
|
|
.setCopyInOutFns(
|
|
[](OpBuilder &b, Value src, Value dst) -> LogicalResult {
|
|
copyCallBackFn(b, src, dst, false);
|
|
return success();
|
|
},
|
|
[](OpBuilder &b, Value src, Value dst) -> LogicalResult {
|
|
copyCallBackFn(b, src, dst, true);
|
|
return success();
|
|
}),
|
|
LinalgMarker(Identifier::get("PROMOTE", ctx)));
|
|
}
|
|
|
|
template <typename IdOp, typename NProcsOp>
|
|
static SmallVector<ProcInfo, 2>
|
|
getGpuProcIds(OpBuilder &b, Location loc,
|
|
ArrayRef<SubViewOp::Range> parallelLoopRanges) {
|
|
Type indexType = b.getIndexType();
|
|
SmallVector<ProcInfo, 2> procInfo(2);
|
|
procInfo[0] = {b.create<IdOp>(loc, indexType, b.getStringAttr("y")),
|
|
b.create<NProcsOp>(loc, indexType, b.getStringAttr("y"))};
|
|
procInfo[1] = {b.create<IdOp>(loc, indexType, b.getStringAttr("x")),
|
|
b.create<NProcsOp>(loc, indexType, b.getStringAttr("x"))};
|
|
return procInfo;
|
|
}
|
|
|
|
static void fillTileAndDistributePatterns(MLIRContext *context,
|
|
OwningRewritePatternList &patterns) {
|
|
{
|
|
LinalgLoopDistributionOptions cyclicNprocsEqNiters;
|
|
cyclicNprocsEqNiters.distributionMethod.resize(
|
|
2, DistributionMethod::CyclicNumProcsEqNumIters);
|
|
cyclicNprocsEqNiters.procInfo =
|
|
getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
|
|
patterns.insert<LinalgTilingPattern<MatmulOp>>(
|
|
context,
|
|
LinalgTilingOptions()
|
|
.setTileSizes({8, 8, 4})
|
|
.setLoopType(LinalgTilingLoopType::ParallelLoops)
|
|
.setDistributionOptions(cyclicNprocsEqNiters),
|
|
LinalgMarker(Identifier::get("distribute1", context),
|
|
Identifier::get("after_distribute1", context)));
|
|
}
|
|
|
|
{
|
|
LinalgLoopDistributionOptions cyclicNprocsGeNiters;
|
|
cyclicNprocsGeNiters.distributionMethod.resize(
|
|
2, DistributionMethod::CyclicNumProcsGeNumIters);
|
|
cyclicNprocsGeNiters.procInfo =
|
|
getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
|
|
patterns.insert<LinalgTilingPattern<MatmulOp>>(
|
|
context,
|
|
LinalgTilingOptions()
|
|
.setTileSizes({8, 8, 4})
|
|
.setLoopType(LinalgTilingLoopType::ParallelLoops)
|
|
.setDistributionOptions(cyclicNprocsGeNiters),
|
|
LinalgMarker(Identifier::get("distribute2", context),
|
|
Identifier::get("after_distribute2", context)));
|
|
}
|
|
|
|
{
|
|
LinalgLoopDistributionOptions cyclicNprocsDefault;
|
|
cyclicNprocsDefault.distributionMethod.resize(2,
|
|
DistributionMethod::Cyclic);
|
|
cyclicNprocsDefault.procInfo =
|
|
getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
|
|
patterns.insert<LinalgTilingPattern<MatmulOp>>(
|
|
context,
|
|
LinalgTilingOptions()
|
|
.setTileSizes({8, 8, 4})
|
|
.setLoopType(LinalgTilingLoopType::ParallelLoops)
|
|
.setDistributionOptions(cyclicNprocsDefault),
|
|
LinalgMarker(Identifier::get("distribute3", context),
|
|
Identifier::get("after_distribute3", context)));
|
|
}
|
|
|
|
{
|
|
LinalgLoopDistributionOptions cyclicNprocsMixed1;
|
|
cyclicNprocsMixed1.distributionMethod = {
|
|
DistributionMethod::CyclicNumProcsEqNumIters,
|
|
DistributionMethod::CyclicNumProcsGeNumIters};
|
|
cyclicNprocsMixed1.procInfo = getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
|
|
patterns.insert<LinalgTilingPattern<MatmulOp>>(
|
|
context,
|
|
LinalgTilingOptions()
|
|
.setTileSizes({8, 8, 4})
|
|
.setLoopType(LinalgTilingLoopType::ParallelLoops)
|
|
.setDistributionOptions(cyclicNprocsMixed1),
|
|
LinalgMarker(Identifier::get("distribute4", context),
|
|
Identifier::get("after_distribute4", context)));
|
|
}
|
|
|
|
{
|
|
LinalgLoopDistributionOptions cyclicNprocsMixed2;
|
|
cyclicNprocsMixed2.distributionMethod = {
|
|
DistributionMethod::CyclicNumProcsGeNumIters,
|
|
DistributionMethod::Cyclic};
|
|
cyclicNprocsMixed2.procInfo = getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
|
|
patterns.insert<LinalgTilingPattern<MatmulOp>>(
|
|
context,
|
|
LinalgTilingOptions()
|
|
.setTileSizes({8, 8, 4})
|
|
.setLoopType(LinalgTilingLoopType::ParallelLoops)
|
|
.setDistributionOptions(cyclicNprocsMixed2),
|
|
LinalgMarker(Identifier::get("distribute5", context),
|
|
Identifier::get("after_distribute5", context)));
|
|
}
|
|
|
|
{
|
|
LinalgLoopDistributionOptions cyclicNprocsMixed3;
|
|
cyclicNprocsMixed3.distributionMethod = {
|
|
DistributionMethod::Cyclic,
|
|
DistributionMethod::CyclicNumProcsEqNumIters};
|
|
cyclicNprocsMixed3.procInfo = getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
|
|
|
|
patterns.insert<LinalgTilingPattern<MatmulOp>>(
|
|
context,
|
|
LinalgTilingOptions()
|
|
.setTileSizes({8, 8, 4})
|
|
.setLoopType(LinalgTilingLoopType::ParallelLoops)
|
|
.setDistributionOptions(cyclicNprocsMixed3),
|
|
LinalgMarker(Identifier::get("distribute6", context),
|
|
Identifier::get("after_distribute6", context)));
|
|
}
|
|
}
|
|
|
|
static void
|
|
applyMatmulToVectorPatterns(FuncOp funcOp,
|
|
bool testMatmulToVectorPatterns1dTiling,
|
|
bool testMatmulToVectorPatterns2dTiling) {
|
|
MLIRContext *ctx = funcOp.getContext();
|
|
SmallVector<OwningRewritePatternList, 4> stage1Patterns;
|
|
if (testMatmulToVectorPatterns1dTiling) {
|
|
fillL1TilingAndMatmulToVectorPatterns(funcOp, Identifier::get("START", ctx),
|
|
stage1Patterns);
|
|
} else if (testMatmulToVectorPatterns2dTiling) {
|
|
stage1Patterns.emplace_back(LinalgTilingPattern<MatmulOp>(
|
|
ctx,
|
|
LinalgTilingOptions()
|
|
.setTileSizes({768, 264, 768})
|
|
.setInterchange({1, 2, 0}),
|
|
LinalgMarker(Identifier::get("START", ctx),
|
|
Identifier::get("L2", ctx))));
|
|
fillL1TilingAndMatmulToVectorPatterns(funcOp, Identifier::get("L2", ctx),
|
|
stage1Patterns);
|
|
}
|
|
OwningRewritePatternList stage2Patterns =
|
|
getLinalgTilingCanonicalizationPatterns(ctx);
|
|
applyStagedPatterns(funcOp, stage1Patterns, stage2Patterns);
|
|
}
|
|
|
|
static void applyVectorTransferForwardingPatterns(FuncOp funcOp) {
|
|
OwningRewritePatternList forwardPattern;
|
|
forwardPattern.insert<LinalgCopyVTRForwardingPattern>(funcOp.getContext());
|
|
forwardPattern.insert<LinalgCopyVTWForwardingPattern>(funcOp.getContext());
|
|
applyPatternsAndFoldGreedily(funcOp, forwardPattern);
|
|
}
|
|
|
|
static void applyContractionToVectorPatterns(FuncOp funcOp) {
|
|
OwningRewritePatternList patterns;
|
|
patterns.insert<LinalgVectorizationPattern<BatchMatmulOp>,
|
|
LinalgVectorizationPattern<MatmulOp>,
|
|
LinalgVectorizationPattern<MatvecOp>,
|
|
LinalgVectorizationPattern<DotOp>,
|
|
LinalgVectorizationPattern<GenericOp>>(funcOp.getContext());
|
|
applyPatternsAndFoldGreedily(funcOp, patterns);
|
|
}
|
|
|
|
static void applyAffineMinSCFCanonicalizationPatterns(FuncOp funcOp) {
|
|
OwningRewritePatternList foldPattern;
|
|
foldPattern.insert<AffineMinSCFCanonicalizationPattern>(funcOp.getContext());
|
|
// Explicitly walk and apply the pattern locally to avoid more general folding
|
|
// on the rest of the IR.
|
|
funcOp.walk([&foldPattern](AffineMinOp minOp) {
|
|
applyOpPatternsAndFold(minOp, foldPattern);
|
|
});
|
|
}
|
|
/// Apply transformations specified as patterns.
|
|
void TestLinalgTransforms::runOnFunction() {
|
|
auto lambda = [&](void *) {
|
|
getFunction().walk([](LinalgOp op) {
|
|
op.removeAttr(LinalgTransforms::kLinalgTransformMarker);
|
|
});
|
|
};
|
|
std::unique_ptr<void, decltype(lambda)> cleanupGuard{(void *)1, lambda};
|
|
|
|
if (testPromotionOptions) {
|
|
OwningRewritePatternList patterns;
|
|
fillPromotionCallBackPatterns(&getContext(), patterns);
|
|
applyPatternsAndFoldGreedily(getFunction(), patterns);
|
|
return;
|
|
}
|
|
if (testTileAndDistributionOptions) {
|
|
OwningRewritePatternList patterns;
|
|
fillTileAndDistributePatterns(&getContext(), patterns);
|
|
applyPatternsAndFoldGreedily(getFunction(), patterns);
|
|
return;
|
|
}
|
|
if (testPatterns)
|
|
return applyPatterns(getFunction());
|
|
if (testMatmulToVectorPatterns1dTiling || testMatmulToVectorPatterns2dTiling)
|
|
return applyMatmulToVectorPatterns(getFunction(),
|
|
testMatmulToVectorPatterns1dTiling,
|
|
testMatmulToVectorPatterns2dTiling);
|
|
if (testVectorTransferForwardingPatterns)
|
|
return applyVectorTransferForwardingPatterns(getFunction());
|
|
if (testGenericToVectorPattern)
|
|
return applyContractionToVectorPatterns(getFunction());
|
|
if (testAffineMinSCFCanonicalizationPatterns)
|
|
return applyAffineMinSCFCanonicalizationPatterns(getFunction());
|
|
}
|
|
|
|
namespace mlir {
|
|
void registerTestLinalgTransforms() {
|
|
PassRegistration<TestLinalgTransforms> testTransformPatternsPass(
|
|
"test-linalg-transform-patterns",
|
|
"Test Linalg transformation patterns by applying them greedily.");
|
|
}
|
|
} // namespace mlir
|