
This diff implements minimal block coverage instrumentation. When the `-pgo-block-coverage` option is used, basic blocks will be instrumented for block coverage using single byte booleans. The coverage of some basic blocks can be inferred from others, so not every basic block is instrumented. In fact, we found that only ~60% of basic blocks need to be instrumented. These differences lead to less size overhead when compared to instrumenting block counts. For example, block coverage on the clang binary has an overhead of 20 Mi (17%) compared to 56 Mi (47%) with block counts. Even though block coverage profiles have less precision than block count profiles, they can still be used to guide optimizations. In `PGOUseFunc` we use block coverage to populate edge weights such that BFI gives nonzero counts to only covered blocks. We do this by 1) setting the entry count of covered functions to a large value, i.e., 10000 and 2) populating edge weights using block coverage. In the next diff https://reviews.llvm.org/D125743 we use BFI to guide the machine outliner to avoid outlining covered blocks. This `-pgo-block-coverage` option provides a trade off of generating less precise profiles for faster and smaller instrumented binaries. The `BlockCoverageInference` class defines the algorithm to find the minimal set of basic blocks that need to be instrumented for coverage. This is different from the Kirchhoff circuit law optimization that is used for edge **counts** because that does not work for block **coverage**. The reason for this is that edge counts can be added together to find a missing count while block coverage cannot since they store boolean values. So we need a new algorithm to find which blocks must be instrumented. The details on this algorithm can be found in this paper titled "Minimum Coverage Instrumentation": https://arxiv.org/abs/2208.13907 Special thanks to Julian Mestre for creating this block coverage inference algorithm. Binary size of `clang` using `-O2`: * Base * `.text`: 65.8 Mi * Total: 119 Mi * IRPGO (`-fprofile-generate -mllvm -disable-vp -mllvm -debug-info-correlate`) * `.text`: 93.0 Mi * `__llvm_prf_cnts`: 14.5 Mi * Total: 175 Mi * Minimal Block Coverage (`-fprofile-generate -mllvm -disable-vp -mllvm -debug-info-correlate -mllvm -pgo-block-coverage`) * `.text`: 82.1 Mi * `__llvm_prf_cnts`: 1.38 Mi * Total: 139 Mi Reviewed By: spupyrev, kyulee Differential Revision: https://reviews.llvm.org/D124490
369 lines
13 KiB
C++
369 lines
13 KiB
C++
//===-- BlockCoverageInference.cpp - Minimal Execution Coverage -*- C++ -*-===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// Our algorithm works by first identifying a subset of nodes that must always
|
||
// be instrumented. We call these nodes ambiguous because knowing the coverage
|
||
// of all remaining nodes is not enough to infer their coverage status.
|
||
//
|
||
// In general a node v is ambiguous if there exists two entry-to-terminal paths
|
||
// P_1 and P_2 such that:
|
||
// 1. v not in P_1 but P_1 visits a predecessor of v, and
|
||
// 2. v not in P_2 but P_2 visits a successor of v.
|
||
//
|
||
// If a node v is not ambiguous, then if condition 1 fails, we can infer v’s
|
||
// coverage from the coverage of its predecessors, or if condition 2 fails, we
|
||
// can infer v’s coverage from the coverage of its successors.
|
||
//
|
||
// Sadly, there are example CFGs where it is not possible to infer all nodes
|
||
// from the ambiguous nodes alone. Our algorithm selects a minimum number of
|
||
// extra nodes to add to the ambiguous nodes to form a valid instrumentation S.
|
||
//
|
||
// Details on this algorithm can be found in https://arxiv.org/abs/2208.13907
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "llvm/Transforms/Instrumentation/BlockCoverageInference.h"
|
||
#include "llvm/ADT/DepthFirstIterator.h"
|
||
#include "llvm/ADT/Statistic.h"
|
||
#include "llvm/Support/CRC.h"
|
||
#include "llvm/Support/Debug.h"
|
||
#include "llvm/Support/GraphWriter.h"
|
||
#include "llvm/Support/raw_ostream.h"
|
||
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
||
|
||
using namespace llvm;
|
||
|
||
#define DEBUG_TYPE "pgo-block-coverage"
|
||
|
||
STATISTIC(NumFunctions, "Number of total functions that BCI has processed");
|
||
STATISTIC(NumIneligibleFunctions,
|
||
"Number of functions for which BCI cannot run on");
|
||
STATISTIC(NumBlocks, "Number of total basic blocks that BCI has processed");
|
||
STATISTIC(NumInstrumentedBlocks,
|
||
"Number of basic blocks instrumented for coverage");
|
||
|
||
BlockCoverageInference::BlockCoverageInference(const Function &F,
|
||
bool ForceInstrumentEntry)
|
||
: F(F), ForceInstrumentEntry(ForceInstrumentEntry) {
|
||
findDependencies();
|
||
assert(!ForceInstrumentEntry || shouldInstrumentBlock(F.getEntryBlock()));
|
||
|
||
++NumFunctions;
|
||
for (auto &BB : F) {
|
||
++NumBlocks;
|
||
if (shouldInstrumentBlock(BB))
|
||
++NumInstrumentedBlocks;
|
||
}
|
||
}
|
||
|
||
BlockCoverageInference::BlockSet
|
||
BlockCoverageInference::getDependencies(const BasicBlock &BB) const {
|
||
assert(BB.getParent() == &F);
|
||
BlockSet Dependencies;
|
||
auto It = PredecessorDependencies.find(&BB);
|
||
if (It != PredecessorDependencies.end())
|
||
Dependencies.set_union(It->second);
|
||
It = SuccessorDependencies.find(&BB);
|
||
if (It != SuccessorDependencies.end())
|
||
Dependencies.set_union(It->second);
|
||
return Dependencies;
|
||
}
|
||
|
||
uint64_t BlockCoverageInference::getInstrumentedBlocksHash() const {
|
||
JamCRC JC;
|
||
uint64_t Index = 0;
|
||
for (auto &BB : F) {
|
||
if (shouldInstrumentBlock(BB)) {
|
||
uint8_t Data[8];
|
||
support::endian::write64le(Data, Index);
|
||
JC.update(Data);
|
||
}
|
||
Index++;
|
||
}
|
||
return JC.getCRC();
|
||
}
|
||
|
||
bool BlockCoverageInference::shouldInstrumentBlock(const BasicBlock &BB) const {
|
||
assert(BB.getParent() == &F);
|
||
auto It = PredecessorDependencies.find(&BB);
|
||
if (It != PredecessorDependencies.end() && It->second.size())
|
||
return false;
|
||
It = SuccessorDependencies.find(&BB);
|
||
if (It != SuccessorDependencies.end() && It->second.size())
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
void BlockCoverageInference::findDependencies() {
|
||
assert(PredecessorDependencies.empty() && SuccessorDependencies.empty());
|
||
// Empirical analysis shows that this algorithm finishes within 5 seconds for
|
||
// functions with fewer than 1.5K blocks.
|
||
if (F.hasFnAttribute(Attribute::NoReturn) || F.size() > 1500) {
|
||
++NumIneligibleFunctions;
|
||
return;
|
||
}
|
||
|
||
SmallVector<const BasicBlock *, 4> TerminalBlocks;
|
||
for (auto &BB : F)
|
||
if (succ_empty(&BB))
|
||
TerminalBlocks.push_back(&BB);
|
||
|
||
// Traverse the CFG backwards from the terminal blocks to make sure every
|
||
// block can reach some terminal block. Otherwise this algorithm will not work
|
||
// and we must fall back to instrumenting every block.
|
||
df_iterator_default_set<const BasicBlock *> Visited;
|
||
for (auto *BB : TerminalBlocks)
|
||
for (auto *N : inverse_depth_first_ext(BB, Visited))
|
||
(void)N;
|
||
if (F.size() != Visited.size()) {
|
||
++NumIneligibleFunctions;
|
||
return;
|
||
}
|
||
|
||
// The current implementation for computing `PredecessorDependencies` and
|
||
// `SuccessorDependencies` runs in quadratic time with respect to the number
|
||
// of basic blocks. While we do have a more complicated linear time algorithm
|
||
// in https://arxiv.org/abs/2208.13907 we do not know if it will give a
|
||
// significant speedup in practice given that most functions tend to be
|
||
// relatively small in size for intended use cases.
|
||
auto &EntryBlock = F.getEntryBlock();
|
||
for (auto &BB : F) {
|
||
// The set of blocks that are reachable while avoiding BB.
|
||
BlockSet ReachableFromEntry, ReachableFromTerminal;
|
||
getReachableAvoiding(EntryBlock, BB, /*IsForward=*/true,
|
||
ReachableFromEntry);
|
||
for (auto *TerminalBlock : TerminalBlocks)
|
||
getReachableAvoiding(*TerminalBlock, BB, /*IsForward=*/false,
|
||
ReachableFromTerminal);
|
||
|
||
auto Preds = predecessors(&BB);
|
||
bool HasSuperReachablePred = llvm::any_of(Preds, [&](auto *Pred) {
|
||
return ReachableFromEntry.count(Pred) &&
|
||
ReachableFromTerminal.count(Pred);
|
||
});
|
||
if (!HasSuperReachablePred)
|
||
for (auto *Pred : Preds)
|
||
if (ReachableFromEntry.count(Pred))
|
||
PredecessorDependencies[&BB].insert(Pred);
|
||
|
||
auto Succs = successors(&BB);
|
||
bool HasSuperReachableSucc = llvm::any_of(Succs, [&](auto *Succ) {
|
||
return ReachableFromEntry.count(Succ) &&
|
||
ReachableFromTerminal.count(Succ);
|
||
});
|
||
if (!HasSuperReachableSucc)
|
||
for (auto *Succ : Succs)
|
||
if (ReachableFromTerminal.count(Succ))
|
||
SuccessorDependencies[&BB].insert(Succ);
|
||
}
|
||
|
||
if (ForceInstrumentEntry) {
|
||
// Force the entry block to be instrumented by clearing the blocks it can
|
||
// infer coverage from.
|
||
PredecessorDependencies[&EntryBlock].clear();
|
||
SuccessorDependencies[&EntryBlock].clear();
|
||
}
|
||
|
||
// Construct a graph where blocks are connected if there is a mutual
|
||
// dependency between them. This graph has a special property that it contains
|
||
// only paths.
|
||
DenseMap<const BasicBlock *, BlockSet> AdjacencyList;
|
||
for (auto &BB : F) {
|
||
for (auto *Succ : successors(&BB)) {
|
||
if (SuccessorDependencies[&BB].count(Succ) &&
|
||
PredecessorDependencies[Succ].count(&BB)) {
|
||
AdjacencyList[&BB].insert(Succ);
|
||
AdjacencyList[Succ].insert(&BB);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Given a path with at least one node, return the next node on the path.
|
||
auto getNextOnPath = [&](BlockSet &Path) -> const BasicBlock * {
|
||
assert(Path.size());
|
||
auto &Neighbors = AdjacencyList[Path.back()];
|
||
if (Path.size() == 1) {
|
||
// This is the first node on the path, return its neighbor.
|
||
assert(Neighbors.size() == 1);
|
||
return Neighbors.front();
|
||
} else if (Neighbors.size() == 2) {
|
||
// This is the middle of the path, find the neighbor that is not on the
|
||
// path already.
|
||
assert(Path.size() >= 2);
|
||
return Path.count(Neighbors[0]) ? Neighbors[1] : Neighbors[0];
|
||
}
|
||
// This is the end of the path.
|
||
assert(Neighbors.size() == 1);
|
||
return nullptr;
|
||
};
|
||
|
||
// Remove all cycles in the inferencing graph.
|
||
for (auto &BB : F) {
|
||
if (AdjacencyList[&BB].size() == 1) {
|
||
// We found the head of some path.
|
||
BlockSet Path;
|
||
Path.insert(&BB);
|
||
while (const BasicBlock *Next = getNextOnPath(Path))
|
||
Path.insert(Next);
|
||
LLVM_DEBUG(dbgs() << "Found path: " << getBlockNames(Path) << "\n");
|
||
|
||
// Remove these nodes from the graph so we don't discover this path again.
|
||
for (auto *BB : Path)
|
||
AdjacencyList[BB].clear();
|
||
|
||
// Finally, remove the cycles.
|
||
if (PredecessorDependencies[Path.front()].size()) {
|
||
for (auto *BB : Path)
|
||
if (BB != Path.back())
|
||
SuccessorDependencies[BB].clear();
|
||
} else {
|
||
for (auto *BB : Path)
|
||
if (BB != Path.front())
|
||
PredecessorDependencies[BB].clear();
|
||
}
|
||
}
|
||
}
|
||
LLVM_DEBUG(dump(dbgs()));
|
||
}
|
||
|
||
void BlockCoverageInference::getReachableAvoiding(const BasicBlock &Start,
|
||
const BasicBlock &Avoid,
|
||
bool IsForward,
|
||
BlockSet &Reachable) const {
|
||
df_iterator_default_set<const BasicBlock *> Visited;
|
||
Visited.insert(&Avoid);
|
||
if (IsForward) {
|
||
auto Range = depth_first_ext(&Start, Visited);
|
||
Reachable.insert(Range.begin(), Range.end());
|
||
} else {
|
||
auto Range = inverse_depth_first_ext(&Start, Visited);
|
||
Reachable.insert(Range.begin(), Range.end());
|
||
}
|
||
}
|
||
|
||
namespace llvm {
|
||
class DotFuncBCIInfo {
|
||
private:
|
||
const BlockCoverageInference *BCI;
|
||
const DenseMap<const BasicBlock *, bool> *Coverage;
|
||
|
||
public:
|
||
DotFuncBCIInfo(const BlockCoverageInference *BCI,
|
||
const DenseMap<const BasicBlock *, bool> *Coverage)
|
||
: BCI(BCI), Coverage(Coverage) {}
|
||
|
||
const Function &getFunction() { return BCI->F; }
|
||
|
||
bool isInstrumented(const BasicBlock *BB) const {
|
||
return BCI->shouldInstrumentBlock(*BB);
|
||
}
|
||
|
||
bool isCovered(const BasicBlock *BB) const {
|
||
return Coverage && Coverage->lookup(BB);
|
||
}
|
||
|
||
bool isDependent(const BasicBlock *Src, const BasicBlock *Dest) const {
|
||
return BCI->getDependencies(*Src).count(Dest);
|
||
}
|
||
};
|
||
|
||
template <>
|
||
struct GraphTraits<DotFuncBCIInfo *> : public GraphTraits<const BasicBlock *> {
|
||
static NodeRef getEntryNode(DotFuncBCIInfo *Info) {
|
||
return &(Info->getFunction().getEntryBlock());
|
||
}
|
||
|
||
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
|
||
using nodes_iterator = pointer_iterator<Function::const_iterator>;
|
||
|
||
static nodes_iterator nodes_begin(DotFuncBCIInfo *Info) {
|
||
return nodes_iterator(Info->getFunction().begin());
|
||
}
|
||
|
||
static nodes_iterator nodes_end(DotFuncBCIInfo *Info) {
|
||
return nodes_iterator(Info->getFunction().end());
|
||
}
|
||
|
||
static size_t size(DotFuncBCIInfo *Info) {
|
||
return Info->getFunction().size();
|
||
}
|
||
};
|
||
|
||
template <>
|
||
struct DOTGraphTraits<DotFuncBCIInfo *> : public DefaultDOTGraphTraits {
|
||
|
||
DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
|
||
|
||
static std::string getGraphName(DotFuncBCIInfo *Info) {
|
||
return "BCI CFG for " + Info->getFunction().getName().str();
|
||
}
|
||
|
||
std::string getNodeLabel(const BasicBlock *Node, DotFuncBCIInfo *Info) {
|
||
return Node->getName().str();
|
||
}
|
||
|
||
std::string getEdgeAttributes(const BasicBlock *Src, const_succ_iterator I,
|
||
DotFuncBCIInfo *Info) {
|
||
const BasicBlock *Dest = *I;
|
||
if (Info->isDependent(Src, Dest))
|
||
return "color=red";
|
||
if (Info->isDependent(Dest, Src))
|
||
return "color=blue";
|
||
return "";
|
||
}
|
||
|
||
std::string getNodeAttributes(const BasicBlock *Node, DotFuncBCIInfo *Info) {
|
||
std::string Result;
|
||
if (Info->isInstrumented(Node))
|
||
Result += "style=filled,fillcolor=gray";
|
||
if (Info->isCovered(Node))
|
||
Result += std::string(Result.empty() ? "" : ",") + "color=red";
|
||
return Result;
|
||
}
|
||
};
|
||
|
||
} // namespace llvm
|
||
|
||
void BlockCoverageInference::viewBlockCoverageGraph(
|
||
const DenseMap<const BasicBlock *, bool> *Coverage) const {
|
||
DotFuncBCIInfo Info(this, Coverage);
|
||
WriteGraph(&Info, "BCI", false,
|
||
"Block Coverage Inference for " + F.getName());
|
||
}
|
||
|
||
void BlockCoverageInference::dump(raw_ostream &OS) const {
|
||
OS << "Minimal block coverage for function \'" << F.getName()
|
||
<< "\' (Instrumented=*)\n";
|
||
for (auto &BB : F) {
|
||
OS << (shouldInstrumentBlock(BB) ? "* " : " ") << BB.getName() << "\n";
|
||
auto It = PredecessorDependencies.find(&BB);
|
||
if (It != PredecessorDependencies.end() && It->second.size())
|
||
OS << " PredDeps = " << getBlockNames(It->second) << "\n";
|
||
It = SuccessorDependencies.find(&BB);
|
||
if (It != SuccessorDependencies.end() && It->second.size())
|
||
OS << " SuccDeps = " << getBlockNames(It->second) << "\n";
|
||
}
|
||
OS << " Instrumented Blocks Hash = 0x"
|
||
<< Twine::utohexstr(getInstrumentedBlocksHash()) << "\n";
|
||
}
|
||
|
||
std::string
|
||
BlockCoverageInference::getBlockNames(ArrayRef<const BasicBlock *> BBs) {
|
||
std::string Result;
|
||
raw_string_ostream OS(Result);
|
||
OS << "[";
|
||
if (!BBs.empty()) {
|
||
OS << BBs.front()->getName();
|
||
BBs = BBs.drop_front();
|
||
}
|
||
for (auto *BB : BBs)
|
||
OS << ", " << BB->getName();
|
||
OS << "]";
|
||
return OS.str();
|
||
}
|