Teresa Johnson 245e6070da
[LoopSink] Exit loop finding BBs to sink into early when possible (NFC) (#101115)
As noted in the comments, findBBsToSinkInto is
   O(UseBBs.size() * ColdLoopBBs.size())

A very large function with a huge loop was incurring a high compile time
in this code. The size of the ColdLoopBBs set was over 14K. There is a
limit on the size of the UseBBs set, but not the ColdLoopBBs (and adding
a limit for the latter actually slowed down some later passes).

This change exits the loop early once we detect that there is no further
refinement possible for the BBsToSinkInto set. This is possible because
the ColdLoopBBs set is sorted in ascending magnitude of frequency.

This cut down the LoopSinkPass time by around 33% (78s to just over
50s).
2024-07-30 13:08:56 -07:00

407 lines
16 KiB
C++

//===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass does the inverse transformation of what LICM does.
// It traverses all of the instructions in the loop's preheader and sinks
// them to the loop body where frequency is lower than the loop's preheader.
// This pass is a reverse-transformation of LICM. It differs from the Sink
// pass in the following ways:
//
// * It only handles sinking of instructions from the loop's preheader to the
// loop's body
// * It uses alias set tracker to get more accurate alias info
// * It uses block frequency info to find the optimal sinking locations
//
// Overall algorithm:
//
// For I in Preheader:
// InsertBBs = BBs that uses I
// For BB in sorted(LoopBBs):
// DomBBs = BBs in InsertBBs that are dominated by BB
// if freq(DomBBs) > freq(BB)
// InsertBBs = UseBBs - DomBBs + BB
// For BB in InsertBBs:
// Insert I at BB's beginning
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopSink.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
using namespace llvm;
#define DEBUG_TYPE "loopsink"
STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
static cl::opt<unsigned> SinkFrequencyPercentThreshold(
"sink-freq-percent-threshold", cl::Hidden, cl::init(90),
cl::desc("Do not sink instructions that require cloning unless they "
"execute less than this percent of the time."));
static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
"max-uses-for-sinking", cl::Hidden, cl::init(30),
cl::desc("Do not sink instructions that have too many uses."));
/// Return adjusted total frequency of \p BBs.
///
/// * If there is only one BB, sinking instruction will not introduce code
/// size increase. Thus there is no need to adjust the frequency.
/// * If there are more than one BB, sinking would lead to code size increase.
/// In this case, we add some "tax" to the total frequency to make it harder
/// to sink. E.g.
/// Freq(Preheader) = 100
/// Freq(BBs) = sum(50, 49) = 99
/// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
/// BBs as the difference is too small to justify the code size increase.
/// To model this, The adjusted Freq(BBs) will be:
/// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
BlockFrequencyInfo &BFI) {
BlockFrequency T(0);
for (BasicBlock *B : BBs)
T += BFI.getBlockFreq(B);
if (BBs.size() > 1)
T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
return T;
}
/// Return a set of basic blocks to insert sinked instructions.
///
/// The returned set of basic blocks (BBsToSinkInto) should satisfy:
///
/// * Inside the loop \p L
/// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
/// that domintates the UseBB
/// * Has minimum total frequency that is no greater than preheader frequency
///
/// The purpose of the function is to find the optimal sinking points to
/// minimize execution cost, which is defined as "sum of frequency of
/// BBsToSinkInto".
/// As a result, the returned BBsToSinkInto needs to have minimum total
/// frequency.
/// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
/// frequency, the optimal solution is not sinking (return empty set).
///
/// \p ColdLoopBBs is used to help find the optimal sinking locations.
/// It stores a list of BBs that is:
///
/// * Inside the loop \p L
/// * Has a frequency no larger than the loop's preheader
/// * Sorted by BB frequency
///
/// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
/// To avoid expensive computation, we cap the maximum UseBBs.size() in its
/// caller.
static SmallPtrSet<BasicBlock *, 2>
findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
DominatorTree &DT, BlockFrequencyInfo &BFI) {
SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
if (UseBBs.size() == 0)
return BBsToSinkInto;
BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
// For every iteration:
// * Pick the ColdestBB from ColdLoopBBs
// * Find the set BBsDominatedByColdestBB that satisfy:
// - BBsDominatedByColdestBB is a subset of BBsToSinkInto
// - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
// * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
// BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
// BBsToSinkInto
for (BasicBlock *ColdestBB : ColdLoopBBs) {
BBsDominatedByColdestBB.clear();
for (BasicBlock *SinkedBB : BBsToSinkInto)
if (DT.dominates(ColdestBB, SinkedBB))
BBsDominatedByColdestBB.insert(SinkedBB);
if (BBsDominatedByColdestBB.size() == 0)
continue;
if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
BFI.getBlockFreq(ColdestBB)) {
for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
BBsToSinkInto.erase(DominatedBB);
}
BBsToSinkInto.insert(ColdestBB);
continue;
}
// Otherwise, see if we can stop the search through the cold BBs early.
// Since the ColdLoopBBs list is sorted in increasing magnitude of
// frequency the cold BB frequencies can only get larger. The
// BBsToSinkInto set can only get smaller and have a smaller
// adjustedSumFreq, due to the earlier checking. So once we find a cold BB
// with a frequency at least as large as the adjustedSumFreq of the
// current BBsToSinkInto set, the earlier frequency check can never be
// true for a future iteration. Note we could do check this more
// aggressively earlier, but in practice this ended up being more
// expensive overall (added checking to the critical path through the loop
// that often ended up continuing early due to an empty
// BBsDominatedByColdestBB set, and the frequency check there was false
// most of the time anyway).
if (adjustedSumFreq(BBsToSinkInto, BFI) <= BFI.getBlockFreq(ColdestBB))
break;
}
// Can't sink into blocks that have no valid insertion point.
for (BasicBlock *BB : BBsToSinkInto) {
if (BB->getFirstInsertionPt() == BB->end()) {
BBsToSinkInto.clear();
break;
}
}
// If the total frequency of BBsToSinkInto is larger than preheader frequency,
// do not sink.
if (adjustedSumFreq(BBsToSinkInto, BFI) >
BFI.getBlockFreq(L.getLoopPreheader()))
BBsToSinkInto.clear();
return BBsToSinkInto;
}
// Sinks \p I from the loop \p L's preheader to its uses. Returns true if
// sinking is successful.
// \p LoopBlockNumber is used to sort the insertion blocks to ensure
// determinism.
static bool sinkInstruction(
Loop &L, Instruction &I, const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber, LoopInfo &LI,
DominatorTree &DT, BlockFrequencyInfo &BFI, MemorySSAUpdater *MSSAU) {
// Compute the set of blocks in loop L which contain a use of I.
SmallPtrSet<BasicBlock *, 2> BBs;
for (auto &U : I.uses()) {
Instruction *UI = cast<Instruction>(U.getUser());
// We cannot sink I if it has uses outside of the loop.
if (!L.contains(LI.getLoopFor(UI->getParent())))
return false;
if (!isa<PHINode>(UI)) {
BBs.insert(UI->getParent());
continue;
}
// We cannot sink I to PHI-uses, try to look through PHI to find the incoming
// block of the value being used.
PHINode *PN = dyn_cast<PHINode>(UI);
BasicBlock *PhiBB = PN->getIncomingBlock(U);
// If value's incoming block is from loop preheader directly, there's no
// place to sink to, bailout.
if (L.getLoopPreheader() == PhiBB)
return false;
BBs.insert(PhiBB);
}
// findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
// BBs.size() to avoid expensive computation.
// FIXME: Handle code size growth for min_size and opt_size.
if (BBs.size() > MaxNumberOfUseBBsForSinking)
return false;
// Find the set of BBs that we should insert a copy of I.
SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
if (BBsToSinkInto.empty())
return false;
// Return if any of the candidate blocks to sink into is non-cold.
if (BBsToSinkInto.size() > 1 &&
!llvm::set_is_subset(BBsToSinkInto, LoopBlockNumber))
return false;
// Copy the final BBs into a vector and sort them using the total ordering
// of the loop block numbers as iterating the set doesn't give a useful
// order. No need to stable sort as the block numbers are a total ordering.
SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
llvm::append_range(SortedBBsToSinkInto, BBsToSinkInto);
if (SortedBBsToSinkInto.size() > 1) {
llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) {
return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second;
});
}
BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
// FIXME: Optimize the efficiency for cloned value replacement. The current
// implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
for (BasicBlock *N : ArrayRef(SortedBBsToSinkInto).drop_front(1)) {
assert(LoopBlockNumber.find(N)->second >
LoopBlockNumber.find(MoveBB)->second &&
"BBs not sorted!");
// Clone I and replace its uses.
Instruction *IC = I.clone();
IC->setName(I.getName());
IC->insertBefore(&*N->getFirstInsertionPt());
if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
// Create a new MemoryAccess and let MemorySSA set its defining access.
MemoryAccess *NewMemAcc =
MSSAU->createMemoryAccessInBB(IC, nullptr, N, MemorySSA::Beginning);
if (NewMemAcc) {
if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
MSSAU->insertDef(MemDef, /*RenameUses=*/true);
else {
auto *MemUse = cast<MemoryUse>(NewMemAcc);
MSSAU->insertUse(MemUse, /*RenameUses=*/true);
}
}
}
// Replaces uses of I with IC in N, except PHI-use which is being taken
// care of by defs in PHI's incoming blocks.
I.replaceUsesWithIf(IC, [N](Use &U) {
Instruction *UIToReplace = cast<Instruction>(U.getUser());
return UIToReplace->getParent() == N && !isa<PHINode>(UIToReplace);
});
// Replaces uses of I with IC in blocks dominated by N
replaceDominatedUsesWith(&I, IC, DT, N);
LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
<< '\n');
NumLoopSunkCloned++;
}
LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
NumLoopSunk++;
I.moveBefore(&*MoveBB->getFirstInsertionPt());
if (MSSAU)
if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
MSSAU->getMemorySSA()->getMemoryAccess(&I)))
MSSAU->moveToPlace(OldMemAcc, MoveBB, MemorySSA::Beginning);
return true;
}
/// Sinks instructions from loop's preheader to the loop body if the
/// sum frequency of inserted copy is smaller than preheader's frequency.
static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
DominatorTree &DT,
BlockFrequencyInfo &BFI,
MemorySSA &MSSA,
ScalarEvolution *SE) {
BasicBlock *Preheader = L.getLoopPreheader();
assert(Preheader && "Expected loop to have preheader");
assert(Preheader->getParent()->hasProfileData() &&
"Unexpected call when profile data unavailable.");
const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
// If there are no basic blocks with lower frequency than the preheader then
// we can avoid the detailed analysis as we will never find profitable sinking
// opportunities.
if (all_of(L.blocks(), [&](const BasicBlock *BB) {
return BFI.getBlockFreq(BB) > PreheaderFreq;
}))
return false;
MemorySSAUpdater MSSAU(&MSSA);
SinkAndHoistLICMFlags LICMFlags(/*IsSink=*/true, L, MSSA);
bool Changed = false;
// Sort loop's basic blocks by frequency
SmallVector<BasicBlock *, 10> ColdLoopBBs;
SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
int i = 0;
for (BasicBlock *B : L.blocks())
if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
ColdLoopBBs.push_back(B);
LoopBlockNumber[B] = ++i;
}
llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) {
return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
});
// Traverse preheader's instructions in reverse order because if A depends
// on B (A appears after B), A needs to be sunk first before B can be
// sinked.
for (Instruction &I : llvm::make_early_inc_range(llvm::reverse(*Preheader))) {
if (isa<PHINode>(&I))
continue;
// No need to check for instruction's operands are loop invariant.
assert(L.hasLoopInvariantOperands(&I) &&
"Insts in a loop's preheader should have loop invariant operands!");
if (!canSinkOrHoistInst(I, &AA, &DT, &L, MSSAU, false, LICMFlags))
continue;
if (sinkInstruction(L, I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI,
&MSSAU)) {
Changed = true;
if (SE)
SE->forgetBlockAndLoopDispositions(&I);
}
}
return Changed;
}
PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) {
// Enable LoopSink only when runtime profile is available.
// With static profile, the sinking decision may be sub-optimal.
if (!F.hasProfileData())
return PreservedAnalyses::all();
LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
// Nothing to do if there are no loops.
if (LI.empty())
return PreservedAnalyses::all();
AAResults &AA = FAM.getResult<AAManager>(F);
DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
MemorySSA &MSSA = FAM.getResult<MemorySSAAnalysis>(F).getMSSA();
// We want to do a postorder walk over the loops. Since loops are a tree this
// is equivalent to a reversed preorder walk and preorder is easy to compute
// without recursion. Since we reverse the preorder, we will visit siblings
// in reverse program order. This isn't expected to matter at all but is more
// consistent with sinking algorithms which generally work bottom-up.
SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder();
bool Changed = false;
do {
Loop &L = *PreorderLoops.pop_back_val();
BasicBlock *Preheader = L.getLoopPreheader();
if (!Preheader)
continue;
// Note that we don't pass SCEV here because it is only used to invalidate
// loops in SCEV and we don't preserve (or request) SCEV at all making that
// unnecessary.
Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI, MSSA,
/*ScalarEvolution*/ nullptr);
} while (!PreorderLoops.empty());
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
PA.preserve<MemorySSAAnalysis>();
if (VerifyMemorySSA)
MSSA.verifyMemorySSA();
return PA;
}