llvm-project/flang/lib/Lower/ConvertArrayConstructor.cpp
Christian Sigg fac349a169
Reapply "[mlir] Mark isa/dyn_cast/cast/... member functions depreca… (#90406)
…ted. (#89998)" (#90250)

This partially reverts commit 7aedd7dc754c74a49fe84ed2640e269c25414087.

This change removes calls to the deprecated member functions. It does
not mark the functions deprecated yet and does not disable the
deprecation warning in TypeSwitch. This seems to cause problems with
MSVC.
2024-04-28 22:01:42 +02:00

806 lines
36 KiB
C++

//===- ConvertArrayConstructor.cpp -- Array Constructor ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/ConvertArrayConstructor.h"
#include "flang/Evaluate/expression.h"
#include "flang/Lower/AbstractConverter.h"
#include "flang/Lower/ConvertExprToHLFIR.h"
#include "flang/Lower/ConvertType.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/SymbolMap.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/Runtime/ArrayConstructor.h"
#include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
#include "flang/Optimizer/Builder/TemporaryStorage.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
// Array constructors are lowered with three different strategies.
// All strategies are not possible with all array constructors.
//
// - Strategy 1: runtime approach (RuntimeTempStrategy).
// This strategy works will all array constructors, but will create more
// complex code that is harder to optimize. An allocatable temp is created,
// it may be unallocated if the array constructor length parameters or extent
// could not be computed. Then, the runtime is called to push lowered
// ac-value (array constructor elements) into the allocatable. The runtime
// will allocate or reallocate as needed while values are being pushed.
// In the end, the allocatable contain a temporary with all the array
// constructor evaluated elements.
//
// - Strategy 2: inlined temporary approach (InlinedTempStrategyImpl)
// This strategy can only be used if the array constructor extent and length
// parameters can be pre-computed without evaluating any ac-value, and if all
// of the ac-value are scalars (at least for now).
// A temporary is allocated inline in one go, and an index pointing at the
// current ac-value position in the array constructor element sequence is
// maintained and used to store ac-value as they are being lowered.
//
// - Strategy 3: "function of the indices" approach (AsElementalStrategy)
// This strategy can only be used if the array constructor extent and length
// parameters can be pre-computed and, if the array constructor is of the
// form "[(scalar_expr, ac-implied-do-control)]". In this case, it is lowered
// into an hlfir.elemental without creating any temporary in lowering. This
// form should maximize the chance of array temporary elision when assigning
// the array constructor, potentially reshaped, to an array variable.
//
// The array constructor lowering looks like:
// ```
// strategy = selectArrayCtorLoweringStrategy(array-ctor-expr);
// for (ac-value : array-ctor-expr)
// if (ac-value is expression) {
// strategy.pushValue(ac-value);
// } else if (ac-value is implied-do) {
// strategy.startImpliedDo(lower, upper, stride);
// strategy.startImpliedDoScope();
// // lower nested values
// ...
// strategy.endImpliedDoScope();
// }
// result = strategy.finishArrayCtorLowering();
// ```
//===----------------------------------------------------------------------===//
// Definition of the lowering strategies. Each lowering strategy is defined
// as a class that implements "pushValue", "startImpliedDo" and
// "finishArrayCtorLowering". A strategy may optionally override
// "startImpliedDoScope" and "endImpliedDoScope" virtual methods
// of its base class StrategyBase.
//===----------------------------------------------------------------------===//
namespace {
/// Class provides common implementation of scope push/pop methods
/// that update StatementContext scopes and SymMap bindings.
/// They might be overridden by the lowering strategies, e.g.
/// see AsElementalStrategy.
class StrategyBase {
public:
StrategyBase(Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::SymMap &symMap)
: stmtCtx{stmtCtx}, symMap{symMap} {};
virtual ~StrategyBase() = default;
virtual void startImpliedDoScope(llvm::StringRef doName,
mlir::Value indexValue) {
symMap.pushImpliedDoBinding(doName, indexValue);
stmtCtx.pushScope();
}
virtual void endImpliedDoScope() {
stmtCtx.finalizeAndPop();
symMap.popImpliedDoBinding();
}
protected:
Fortran::lower::StatementContext &stmtCtx;
Fortran::lower::SymMap &symMap;
};
/// Class that implements the "inlined temp strategy" to lower array
/// constructors. It must be provided a boolean to indicate if the array
/// constructor has any implied-do-loop.
template <bool hasLoops>
class InlinedTempStrategyImpl : public StrategyBase,
public fir::factory::HomogeneousScalarStack {
/// Name that will be given to the temporary allocation and hlfir.declare in
/// the IR.
static constexpr char tempName[] = ".tmp.arrayctor";
public:
/// Start lowering an array constructor according to the inline strategy.
/// The temporary is created right away.
InlinedTempStrategyImpl(mlir::Location loc, fir::FirOpBuilder &builder,
Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::SymMap &symMap,
fir::SequenceType declaredType, mlir::Value extent,
llvm::ArrayRef<mlir::Value> lengths)
: StrategyBase{stmtCtx, symMap},
fir::factory::HomogeneousScalarStack{
loc, builder, declaredType,
extent, lengths, /*allocateOnHeap=*/true,
hasLoops, tempName} {}
/// Push a lowered ac-value into the current insertion point and
/// increment the insertion point.
using fir::factory::HomogeneousScalarStack::pushValue;
/// Start a fir.do_loop with the control from an implied-do and return
/// the loop induction variable that is the ac-do-variable value.
/// Only usable if the counter is able to track the position through loops.
mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Value lower, mlir::Value upper,
mlir::Value stride) {
if constexpr (!hasLoops)
fir::emitFatalError(loc, "array constructor lowering is inconsistent");
auto loop = builder.create<fir::DoLoopOp>(loc, lower, upper, stride,
/*unordered=*/false,
/*finalCount=*/false);
builder.setInsertionPointToStart(loop.getBody());
return loop.getInductionVar();
}
/// Move the temporary to an hlfir.expr value (array constructors are not
/// variables and cannot be further modified).
hlfir::Entity finishArrayCtorLowering(mlir::Location loc,
fir::FirOpBuilder &builder) {
return moveStackAsArrayExpr(loc, builder);
}
};
/// Semantic analysis expression rewrites unroll implied do loop with
/// compile time constant bounds (even if huge). So using a minimalistic
/// counter greatly reduces the generated IR for simple but big array
/// constructors [(i,i=1,constant-expr)] that are expected to be quite
/// common.
using LooplessInlinedTempStrategy = InlinedTempStrategyImpl</*hasLoops=*/false>;
/// A generic memory based counter that can deal with all cases of
/// "inlined temp strategy". The counter value is stored in a temp
/// from which it is loaded, incremented, and stored every time an
/// ac-value is pushed.
using InlinedTempStrategy = InlinedTempStrategyImpl</*hasLoops=*/true>;
/// Class that implements the "as function of the indices" lowering strategy.
/// It will lower [(scalar_expr(i), i=l,u,s)] to:
/// ```
/// %extent = max((%u-%l+1)/%s, 0)
/// %shape = fir.shape %extent
/// %elem = hlfir.elemental %shape {
/// ^bb0(%pos:index):
/// %i = %l+(%i-1)*%s
/// %value = scalar_expr(%i)
/// hlfir.yield_element %value
/// }
/// ```
/// That way, no temporary is created in lowering, and if the array constructor
/// is part of a more complex elemental expression, or an assignment, it will be
/// trivial to "inline" it in the expression or assignment loops if allowed by
/// alias analysis.
/// This lowering is however only possible for the form of array constructors as
/// in the illustration above. It could be extended to deeper independent
/// implied-do nest and wrapped in an hlfir.reshape to a rank 1 array. But this
/// op does not exist yet, so this is left for the future if it appears
/// profitable.
class AsElementalStrategy : public StrategyBase {
public:
/// The constructor only gathers the operands to create the hlfir.elemental.
AsElementalStrategy(mlir::Location loc, fir::FirOpBuilder &builder,
Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::SymMap &symMap,
fir::SequenceType declaredType, mlir::Value extent,
llvm::ArrayRef<mlir::Value> lengths)
: StrategyBase{stmtCtx, symMap}, shape{builder.genShape(loc, {extent})},
lengthParams{lengths.begin(), lengths.end()},
exprType{getExprType(declaredType)} {}
static hlfir::ExprType getExprType(fir::SequenceType declaredType) {
// Note: 7.8 point 4: the dynamic type of an array constructor is its static
// type, it is not polymorphic.
return hlfir::ExprType::get(declaredType.getContext(),
declaredType.getShape(),
declaredType.getEleTy(),
/*isPolymorphic=*/false);
}
/// Create the hlfir.elemental and compute the ac-implied-do-index value
/// given the lower bound and stride (compute "%i" in the illustration above).
mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Value lower, mlir::Value upper,
mlir::Value stride) {
assert(!elementalOp && "expected only one implied-do");
mlir::Value one =
builder.createIntegerConstant(loc, builder.getIndexType(), 1);
elementalOp = builder.create<hlfir::ElementalOp>(
loc, exprType, shape,
/*mold=*/nullptr, lengthParams, /*isUnordered=*/true);
builder.setInsertionPointToStart(elementalOp.getBody());
// implied-do-index = lower+((i-1)*stride)
mlir::Value diff = builder.create<mlir::arith::SubIOp>(
loc, elementalOp.getIndices()[0], one);
mlir::Value mul = builder.create<mlir::arith::MulIOp>(loc, diff, stride);
mlir::Value add = builder.create<mlir::arith::AddIOp>(loc, lower, mul);
return add;
}
/// Create the elemental hlfir.yield_element with the scalar ac-value.
void pushValue(mlir::Location loc, fir::FirOpBuilder &builder,
hlfir::Entity value) {
assert(value.isScalar() && "cannot use hlfir.elemental with array values");
assert(elementalOp && "array constructor must contain an outer implied-do");
mlir::Value elementResult = value;
if (fir::isa_trivial(elementResult.getType()))
elementResult =
builder.createConvert(loc, exprType.getElementType(), elementResult);
// The clean-ups associated with the implied-do body operations
// must be initiated before the YieldElementOp, so we have to pop the scope
// right now.
stmtCtx.finalizeAndPop();
// This is a hacky way to get rid of the DestroyOp clean-up
// associated with the final ac-value result if it is hlfir.expr.
// Example:
// ... = (/(REPEAT(REPEAT(CHAR(i),2),2),i=1,n)/)
// Each intrinsic call lowering will produce hlfir.expr result
// with the associated clean-up, but only the last of them
// is wrong. It is wrong because the value is used in hlfir.yield_element,
// so it cannot be destroyed.
mlir::Operation *destroyOp = nullptr;
for (mlir::Operation *useOp : elementResult.getUsers())
if (mlir::isa<hlfir::DestroyOp>(useOp)) {
if (destroyOp)
fir::emitFatalError(loc,
"multiple DestroyOp's for ac-value expression");
destroyOp = useOp;
}
if (destroyOp)
destroyOp->erase();
builder.create<hlfir::YieldElementOp>(loc, elementResult);
}
// Override the default, because the context scope must be popped in
// pushValue().
virtual void endImpliedDoScope() override { symMap.popImpliedDoBinding(); }
/// Return the created hlfir.elemental.
hlfir::Entity finishArrayCtorLowering(mlir::Location loc,
fir::FirOpBuilder &builder) {
return hlfir::Entity{elementalOp};
}
private:
mlir::Value shape;
llvm::SmallVector<mlir::Value> lengthParams;
hlfir::ExprType exprType;
hlfir::ElementalOp elementalOp{};
};
/// Class that implements the "runtime temp strategy" to lower array
/// constructors.
class RuntimeTempStrategy : public StrategyBase {
/// Name that will be given to the temporary allocation and hlfir.declare in
/// the IR.
static constexpr char tempName[] = ".tmp.arrayctor";
public:
/// Start lowering an array constructor according to the runtime strategy.
/// The temporary is only created if the extents and length parameters are
/// already known. Otherwise, the handling of the allocation (and
/// reallocation) is left up to the runtime.
/// \p extent is the pre-computed extent of the array constructor, if it could
/// be pre-computed. It is std::nullopt otherwise.
/// \p lengths are the pre-computed length parameters of the array
/// constructor, if they could be precomputed. \p missingLengthParameters is
/// set to true if the length parameters could not be precomputed.
RuntimeTempStrategy(mlir::Location loc, fir::FirOpBuilder &builder,
Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::SymMap &symMap,
fir::SequenceType declaredType,
std::optional<mlir::Value> extent,
llvm::ArrayRef<mlir::Value> lengths,
bool missingLengthParameters)
: StrategyBase{stmtCtx, symMap},
arrayConstructorElementType{declaredType.getEleTy()} {
mlir::Type heapType = fir::HeapType::get(declaredType);
mlir::Type boxType = fir::BoxType::get(heapType);
allocatableTemp = builder.createTemporary(loc, boxType, tempName);
mlir::Value initialBoxValue;
if (extent && !missingLengthParameters) {
llvm::SmallVector<mlir::Value, 1> extents{*extent};
mlir::Value tempStorage = builder.createHeapTemporary(
loc, declaredType, tempName, extents, lengths);
mlir::Value shape = builder.genShape(loc, extents);
declare = builder.create<hlfir::DeclareOp>(
loc, tempStorage, tempName, shape, lengths,
fir::FortranVariableFlagsAttr{});
initialBoxValue =
builder.createBox(loc, boxType, declare->getOriginalBase(), shape,
/*slice=*/mlir::Value{}, lengths, /*tdesc=*/{});
} else {
// The runtime will have to do the initial allocation.
// The declare operation cannot be emitted in this case since the final
// array constructor has not yet been allocated. Instead, the resulting
// temporary variable will be extracted from the allocatable descriptor
// after all the API calls.
// Prepare the initial state of the allocatable descriptor with a
// deallocated status and all the available knowledge about the extent
// and length parameters.
llvm::SmallVector<mlir::Value> emboxLengths(lengths.begin(),
lengths.end());
if (!extent)
extent = builder.createIntegerConstant(loc, builder.getIndexType(), 0);
if (missingLengthParameters) {
if (mlir::isa<fir::CharacterType>(declaredType.getEleTy()))
emboxLengths.push_back(builder.createIntegerConstant(
loc, builder.getCharacterLengthType(), 0));
else
TODO(loc,
"parametrized derived type array constructor without type-spec");
}
mlir::Value nullAddr = builder.createNullConstant(loc, heapType);
mlir::Value shape = builder.genShape(loc, {*extent});
initialBoxValue = builder.createBox(loc, boxType, nullAddr, shape,
/*slice=*/mlir::Value{}, emboxLengths,
/*tdesc=*/{});
}
builder.create<fir::StoreOp>(loc, initialBoxValue, allocatableTemp);
arrayConstructorVector = fir::runtime::genInitArrayConstructorVector(
loc, builder, allocatableTemp,
builder.createBool(loc, missingLengthParameters));
}
bool useSimplePushRuntime(hlfir::Entity value) {
return value.isScalar() &&
!mlir::isa<fir::CharacterType>(arrayConstructorElementType) &&
!fir::isRecordWithAllocatableMember(arrayConstructorElementType) &&
!fir::isRecordWithTypeParameters(arrayConstructorElementType);
}
/// Push a lowered ac-value into the array constructor vector using
/// the runtime API.
void pushValue(mlir::Location loc, fir::FirOpBuilder &builder,
hlfir::Entity value) {
if (useSimplePushRuntime(value)) {
auto [addrExv, cleanUp] = hlfir::convertToAddress(
loc, builder, value, arrayConstructorElementType);
mlir::Value addr = fir::getBase(addrExv);
if (mlir::isa<fir::BaseBoxType>(addr.getType()))
addr = builder.create<fir::BoxAddrOp>(loc, addr);
fir::runtime::genPushArrayConstructorSimpleScalar(
loc, builder, arrayConstructorVector, addr);
if (cleanUp)
(*cleanUp)();
return;
}
auto [boxExv, cleanUp] =
hlfir::convertToBox(loc, builder, value, arrayConstructorElementType);
fir::runtime::genPushArrayConstructorValue(
loc, builder, arrayConstructorVector, fir::getBase(boxExv));
if (cleanUp)
(*cleanUp)();
}
/// Start a fir.do_loop with the control from an implied-do and return
/// the loop induction variable that is the ac-do-variable value.
mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Value lower, mlir::Value upper,
mlir::Value stride) {
auto loop = builder.create<fir::DoLoopOp>(loc, lower, upper, stride,
/*unordered=*/false,
/*finalCount=*/false);
builder.setInsertionPointToStart(loop.getBody());
return loop.getInductionVar();
}
/// Move the temporary to an hlfir.expr value (array constructors are not
/// variables and cannot be further modified).
hlfir::Entity finishArrayCtorLowering(mlir::Location loc,
fir::FirOpBuilder &builder) {
// Temp is created using createHeapTemporary, or allocated on the heap
// by the runtime.
mlir::Value mustFree = builder.createBool(loc, true);
mlir::Value temp;
if (declare)
temp = declare->getBase();
else
temp = hlfir::derefPointersAndAllocatables(
loc, builder, hlfir::Entity{allocatableTemp});
auto hlfirExpr = builder.create<hlfir::AsExprOp>(loc, temp, mustFree);
return hlfir::Entity{hlfirExpr};
}
private:
/// Element type of the array constructor being built.
mlir::Type arrayConstructorElementType;
/// Allocatable descriptor for the storage of the array constructor being
/// built.
mlir::Value allocatableTemp;
/// Structure that allows the runtime API to maintain the status of
/// of the array constructor being built between two API calls.
mlir::Value arrayConstructorVector;
/// DeclareOp for the array constructor storage, if it was possible to
/// allocate it before any API calls.
std::optional<hlfir::DeclareOp> declare;
};
/// Wrapper class that dispatch to the selected array constructor lowering
/// strategy and does nothing else.
class ArrayCtorLoweringStrategy {
public:
template <typename A>
ArrayCtorLoweringStrategy(A &&impl) : implVariant{std::forward<A>(impl)} {}
void pushValue(mlir::Location loc, fir::FirOpBuilder &builder,
hlfir::Entity value) {
return std::visit(
[&](auto &impl) { return impl.pushValue(loc, builder, value); },
implVariant);
}
mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Value lower, mlir::Value upper,
mlir::Value stride) {
return std::visit(
[&](auto &impl) {
return impl.startImpliedDo(loc, builder, lower, upper, stride);
},
implVariant);
}
hlfir::Entity finishArrayCtorLowering(mlir::Location loc,
fir::FirOpBuilder &builder) {
return std::visit(
[&](auto &impl) { return impl.finishArrayCtorLowering(loc, builder); },
implVariant);
}
void startImpliedDoScope(llvm::StringRef doName, mlir::Value indexValue) {
std::visit(
[&](auto &impl) {
return impl.startImpliedDoScope(doName, indexValue);
},
implVariant);
}
void endImpliedDoScope() {
std::visit([&](auto &impl) { return impl.endImpliedDoScope(); },
implVariant);
}
private:
std::variant<InlinedTempStrategy, LooplessInlinedTempStrategy,
AsElementalStrategy, RuntimeTempStrategy>
implVariant;
};
} // namespace
//===----------------------------------------------------------------------===//
// Definition of selectArrayCtorLoweringStrategy and its helpers.
// This is the code that analyses the evaluate::ArrayConstructor<T>,
// pre-lowers the array constructor extent and length parameters if it can,
// and chooses the lowering strategy.
//===----------------------------------------------------------------------===//
/// Helper to lower a scalar extent expression (like implied-do bounds).
static mlir::Value lowerExtentExpr(mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx,
const Fortran::evaluate::ExtentExpr &expr) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::IndexType idxTy = builder.getIndexType();
hlfir::Entity value = Fortran::lower::convertExprToHLFIR(
loc, converter, toEvExpr(expr), symMap, stmtCtx);
value = hlfir::loadTrivialScalar(loc, builder, value);
return builder.createConvert(loc, idxTy, value);
}
namespace {
/// Helper class to lower the array constructor type and its length parameters.
/// The length parameters, if any, are only lowered if this does not require
/// evaluating an ac-value.
template <typename T>
struct LengthAndTypeCollector {
static mlir::Type collect(mlir::Location,
Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ArrayConstructor<T> &,
Fortran::lower::SymMap &,
Fortran::lower::StatementContext &,
mlir::SmallVectorImpl<mlir::Value> &) {
// Numerical and Logical types.
return Fortran::lower::getFIRType(&converter.getMLIRContext(), T::category,
T::kind, /*lenParams*/ {});
}
};
template <>
struct LengthAndTypeCollector<Fortran::evaluate::SomeDerived> {
static mlir::Type collect(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ArrayConstructor<Fortran::evaluate::SomeDerived>
&arrayCtorExpr,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
mlir::SmallVectorImpl<mlir::Value> &lengths) {
// Array constructors cannot be unlimited polymorphic (C7113), so there must
// be a derived type spec available.
return Fortran::lower::translateDerivedTypeToFIRType(
converter, arrayCtorExpr.result().derivedTypeSpec());
}
};
template <int Kind>
using Character =
Fortran::evaluate::Type<Fortran::common::TypeCategory::Character, Kind>;
template <int Kind>
struct LengthAndTypeCollector<Character<Kind>> {
static mlir::Type collect(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ArrayConstructor<Character<Kind>> &arrayCtorExpr,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
mlir::SmallVectorImpl<mlir::Value> &lengths) {
llvm::SmallVector<Fortran::lower::LenParameterTy> typeLengths;
if (const Fortran::evaluate::ExtentExpr *lenExpr = arrayCtorExpr.LEN()) {
lengths.push_back(
lowerExtentExpr(loc, converter, symMap, stmtCtx, *lenExpr));
if (std::optional<std::int64_t> cstLen =
Fortran::evaluate::ToInt64(*lenExpr))
typeLengths.push_back(*cstLen);
}
return Fortran::lower::getFIRType(&converter.getMLIRContext(),
Fortran::common::TypeCategory::Character,
Kind, typeLengths);
}
};
} // namespace
/// Does the array constructor have length parameters that
/// LengthAndTypeCollector::collect could not lower because this requires
/// lowering an ac-value and must be delayed?
static bool missingLengthParameters(mlir::Type elementType,
llvm::ArrayRef<mlir::Value> lengths) {
return (mlir::isa<fir::CharacterType>(elementType) ||
fir::isRecordWithTypeParameters(elementType)) &&
lengths.empty();
}
namespace {
/// Structure that analyses the ac-value and implied-do of
/// evaluate::ArrayConstructor before they are lowered. It does not generate any
/// IR. The result of this analysis pass is used to select the lowering
/// strategy.
struct ArrayCtorAnalysis {
template <typename T>
ArrayCtorAnalysis(
Fortran::evaluate::FoldingContext &,
const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr);
// Can the array constructor easily be rewritten into an hlfir.elemental ?
bool isSingleImpliedDoWithOneScalarPureExpr() const {
return !anyArrayExpr && isPerfectLoopNest &&
innerNumberOfExprIfPrefectNest == 1 && depthIfPerfectLoopNest == 1 &&
innerExprIsPureIfPerfectNest;
}
bool anyImpliedDo = false;
bool anyArrayExpr = false;
bool isPerfectLoopNest = true;
bool innerExprIsPureIfPerfectNest = false;
std::int64_t innerNumberOfExprIfPrefectNest = 0;
std::int64_t depthIfPerfectLoopNest = 0;
};
} // namespace
template <typename T>
ArrayCtorAnalysis::ArrayCtorAnalysis(
Fortran::evaluate::FoldingContext &foldingContext,
const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr) {
llvm::SmallVector<const Fortran::evaluate::ArrayConstructorValues<T> *>
arrayValueListStack{&arrayCtorExpr};
// Loop through the ac-value-list(s) of the array constructor.
while (!arrayValueListStack.empty()) {
std::int64_t localNumberOfImpliedDo = 0;
std::int64_t localNumberOfExpr = 0;
// Loop though the ac-value of an ac-value list, and add any nested
// ac-value-list of ac-implied-do to the stack.
const Fortran::evaluate::ArrayConstructorValues<T> *currentArrayValueList =
arrayValueListStack.pop_back_val();
for (const Fortran::evaluate::ArrayConstructorValue<T> &acValue :
*currentArrayValueList)
std::visit(Fortran::common::visitors{
[&](const Fortran::evaluate::ImpliedDo<T> &impledDo) {
arrayValueListStack.push_back(&impledDo.values());
localNumberOfImpliedDo++;
},
[&](const Fortran::evaluate::Expr<T> &expr) {
localNumberOfExpr++;
anyArrayExpr = anyArrayExpr || expr.Rank() > 0;
}},
acValue.u);
anyImpliedDo = anyImpliedDo || localNumberOfImpliedDo > 0;
if (localNumberOfImpliedDo == 0) {
// Leaf ac-value-list in the array constructor ac-value tree.
if (isPerfectLoopNest) {
// This this the only leaf of the array-constructor (the array
// constructor is a nest of single implied-do with a list of expression
// in the last deeper implied do). e.g: "[((i+j, i=1,n)j=1,m)]".
innerNumberOfExprIfPrefectNest = localNumberOfExpr;
if (localNumberOfExpr == 1)
innerExprIsPureIfPerfectNest = !Fortran::evaluate::FindImpureCall(
foldingContext, toEvExpr(std::get<Fortran::evaluate::Expr<T>>(
currentArrayValueList->begin()->u)));
}
} else if (localNumberOfImpliedDo == 1 && localNumberOfExpr == 0) {
// Perfect implied-do nest new level.
++depthIfPerfectLoopNest;
} else {
// More than one implied-do, or at least one implied-do and an expr
// at that level. This will not form a perfect nest. Examples:
// "[a, (i, i=1,n)]" or "[(i, i=1,n), (j, j=1,m)]".
isPerfectLoopNest = false;
}
}
}
/// Does \p expr contain no calls to user function?
static bool isCallFreeExpr(const Fortran::evaluate::ExtentExpr &expr) {
for (const Fortran::semantics::Symbol &symbol :
Fortran::evaluate::CollectSymbols(expr))
if (Fortran::semantics::IsProcedure(symbol))
return false;
return true;
}
/// Core function that pre-lowers the extent and length parameters of
/// array constructors if it can, runs the ac-value analysis and
/// select the lowering strategy accordingly.
template <typename T>
static ArrayCtorLoweringStrategy selectArrayCtorLoweringStrategy(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Type idxType = builder.getIndexType();
// Try to gather the array constructor extent.
mlir::Value extent;
fir::SequenceType::Extent typeExtent = fir::SequenceType::getUnknownExtent();
auto shapeExpr = Fortran::evaluate::GetContextFreeShape(
converter.getFoldingContext(), arrayCtorExpr);
if (shapeExpr && shapeExpr->size() == 1 && (*shapeExpr)[0]) {
const Fortran::evaluate::ExtentExpr &extentExpr = *(*shapeExpr)[0];
if (auto constantExtent = Fortran::evaluate::ToInt64(extentExpr)) {
typeExtent = *constantExtent;
extent = builder.createIntegerConstant(loc, idxType, typeExtent);
} else if (isCallFreeExpr(extentExpr)) {
// The expression built by expression analysis for the array constructor
// extent does not contain procedure symbols. It is side effect free.
// This could be relaxed to allow pure procedure, but some care must
// be taken to not bring in "unmapped" symbols from callee scopes.
extent = lowerExtentExpr(loc, converter, symMap, stmtCtx, extentExpr);
}
// Otherwise, the temporary will have to be built step by step with
// reallocation and the extent will only be known at the end of the array
// constructor evaluation.
}
// Convert the array constructor type and try to gather its length parameter
// values, if any.
mlir::SmallVector<mlir::Value> lengths;
mlir::Type elementType = LengthAndTypeCollector<T>::collect(
loc, converter, arrayCtorExpr, symMap, stmtCtx, lengths);
// Run an analysis of the array constructor ac-value.
ArrayCtorAnalysis analysis(converter.getFoldingContext(), arrayCtorExpr);
bool needToEvaluateOneExprToGetLengthParameters =
missingLengthParameters(elementType, lengths);
auto declaredType = fir::SequenceType::get({typeExtent}, elementType);
// Based on what was gathered and the result of the analysis, select and
// instantiate the right lowering strategy for the array constructor.
if (!extent || needToEvaluateOneExprToGetLengthParameters ||
analysis.anyArrayExpr ||
mlir::isa<fir::RecordType>(declaredType.getEleTy()))
return RuntimeTempStrategy(
loc, builder, stmtCtx, symMap, declaredType,
extent ? std::optional<mlir::Value>(extent) : std::nullopt, lengths,
needToEvaluateOneExprToGetLengthParameters);
// Note: the generated hlfir.elemental is always unordered, thus,
// AsElementalStrategy can only be used for array constructors without
// impure ac-value expressions. If/when this changes, make sure
// the 'unordered' attribute is set accordingly for the hlfir.elemental.
if (analysis.isSingleImpliedDoWithOneScalarPureExpr())
return AsElementalStrategy(loc, builder, stmtCtx, symMap, declaredType,
extent, lengths);
if (analysis.anyImpliedDo)
return InlinedTempStrategy(loc, builder, stmtCtx, symMap, declaredType,
extent, lengths);
return LooplessInlinedTempStrategy(loc, builder, stmtCtx, symMap,
declaredType, extent, lengths);
}
/// Lower an ac-value expression \p expr and forward it to the selected
/// lowering strategy \p arrayBuilder,
template <typename T>
static void genAcValue(mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::Expr<T> &expr,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx,
ArrayCtorLoweringStrategy &arrayBuilder) {
// TODO: get rid of the toEvExpr indirection.
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
hlfir::Entity value = Fortran::lower::convertExprToHLFIR(
loc, converter, toEvExpr(expr), symMap, stmtCtx);
value = hlfir::loadTrivialScalar(loc, builder, value);
arrayBuilder.pushValue(loc, builder, value);
}
/// Lowers an ac-value implied-do \p impledDo according to the selected
/// lowering strategy \p arrayBuilder.
template <typename T>
static void genAcValue(mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ImpliedDo<T> &impledDo,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx,
ArrayCtorLoweringStrategy &arrayBuilder) {
auto lowerIndex =
[&](const Fortran::evaluate::ExtentExpr expr) -> mlir::Value {
return lowerExtentExpr(loc, converter, symMap, stmtCtx, expr);
};
mlir::Value lower = lowerIndex(impledDo.lower());
mlir::Value upper = lowerIndex(impledDo.upper());
mlir::Value stride = lowerIndex(impledDo.stride());
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
mlir::Value impliedDoIndexValue =
arrayBuilder.startImpliedDo(loc, builder, lower, upper, stride);
arrayBuilder.startImpliedDoScope(toStringRef(impledDo.name()),
impliedDoIndexValue);
for (const auto &acValue : impledDo.values())
std::visit(
[&](const auto &x) {
genAcValue(loc, converter, x, symMap, stmtCtx, arrayBuilder);
},
acValue.u);
arrayBuilder.endImpliedDoScope();
builder.restoreInsertionPoint(insertPt);
}
/// Entry point for evaluate::ArrayConstructor lowering.
template <typename T>
hlfir::EntityWithAttributes Fortran::lower::ArrayConstructorBuilder<T>::gen(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
// Select the lowering strategy given the array constructor.
auto arrayBuilder = selectArrayCtorLoweringStrategy(
loc, converter, arrayCtorExpr, symMap, stmtCtx);
// Run the array lowering strategy through the ac-values.
for (const auto &acValue : arrayCtorExpr)
std::visit(
[&](const auto &x) {
genAcValue(loc, converter, x, symMap, stmtCtx, arrayBuilder);
},
acValue.u);
hlfir::Entity hlfirExpr = arrayBuilder.finishArrayCtorLowering(loc, builder);
// Insert the clean-up for the created hlfir.expr.
fir::FirOpBuilder *bldr = &builder;
stmtCtx.attachCleanup(
[=]() { bldr->create<hlfir::DestroyOp>(loc, hlfirExpr); });
return hlfir::EntityWithAttributes{hlfirExpr};
}
using namespace Fortran::evaluate;
using namespace Fortran::common;
FOR_EACH_SPECIFIC_TYPE(template class Fortran::lower::ArrayConstructorBuilder, )