
…ted. (#89998)" (#90250) This partially reverts commit 7aedd7dc754c74a49fe84ed2640e269c25414087. This change removes calls to the deprecated member functions. It does not mark the functions deprecated yet and does not disable the deprecation warning in TypeSwitch. This seems to cause problems with MSVC.
429 lines
19 KiB
C++
429 lines
19 KiB
C++
//===-- VectorSubscripts.cpp -- Vector subscripts tools -------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Lower/VectorSubscripts.h"
|
|
#include "flang/Lower/AbstractConverter.h"
|
|
#include "flang/Lower/Support/Utils.h"
|
|
#include "flang/Optimizer/Builder/Character.h"
|
|
#include "flang/Optimizer/Builder/Complex.h"
|
|
#include "flang/Optimizer/Builder/FIRBuilder.h"
|
|
#include "flang/Optimizer/Builder/Todo.h"
|
|
#include "flang/Semantics/expression.h"
|
|
|
|
namespace {
|
|
/// Helper class to lower a designator containing vector subscripts into a
|
|
/// lowered representation that can be worked with.
|
|
class VectorSubscriptBoxBuilder {
|
|
public:
|
|
VectorSubscriptBoxBuilder(mlir::Location loc,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::StatementContext &stmtCtx)
|
|
: converter{converter}, stmtCtx{stmtCtx}, loc{loc} {}
|
|
|
|
Fortran::lower::VectorSubscriptBox gen(const Fortran::lower::SomeExpr &expr) {
|
|
elementType = genDesignator(expr);
|
|
return Fortran::lower::VectorSubscriptBox(
|
|
std::move(loweredBase), std::move(loweredSubscripts),
|
|
std::move(componentPath), substringBounds, elementType);
|
|
}
|
|
|
|
private:
|
|
using LoweredVectorSubscript =
|
|
Fortran::lower::VectorSubscriptBox::LoweredVectorSubscript;
|
|
using LoweredTriplet = Fortran::lower::VectorSubscriptBox::LoweredTriplet;
|
|
using LoweredSubscript = Fortran::lower::VectorSubscriptBox::LoweredSubscript;
|
|
using MaybeSubstring = Fortran::lower::VectorSubscriptBox::MaybeSubstring;
|
|
|
|
/// genDesignator unwraps a Designator<T> and calls `gen` on what the
|
|
/// designator actually contains.
|
|
template <typename A>
|
|
mlir::Type genDesignator(const A &) {
|
|
fir::emitFatalError(loc, "expr must contain a designator");
|
|
}
|
|
template <typename T>
|
|
mlir::Type genDesignator(const Fortran::evaluate::Expr<T> &expr) {
|
|
using ExprVariant = decltype(Fortran::evaluate::Expr<T>::u);
|
|
using Designator = Fortran::evaluate::Designator<T>;
|
|
if constexpr (Fortran::common::HasMember<Designator, ExprVariant>) {
|
|
const auto &designator = std::get<Designator>(expr.u);
|
|
return std::visit([&](const auto &x) { return gen(x); }, designator.u);
|
|
} else {
|
|
return std::visit([&](const auto &x) { return genDesignator(x); },
|
|
expr.u);
|
|
}
|
|
}
|
|
|
|
// The gen(X) methods visit X to lower its base and subscripts and return the
|
|
// type of X elements.
|
|
|
|
mlir::Type gen(const Fortran::evaluate::DataRef &dataRef) {
|
|
return std::visit([&](const auto &ref) -> mlir::Type { return gen(ref); },
|
|
dataRef.u);
|
|
}
|
|
|
|
mlir::Type gen(const Fortran::evaluate::SymbolRef &symRef) {
|
|
// Never visited because expr lowering is used to lowered the ranked
|
|
// ArrayRef.
|
|
fir::emitFatalError(
|
|
loc, "expected at least one ArrayRef with vector susbcripts");
|
|
}
|
|
|
|
mlir::Type gen(const Fortran::evaluate::Substring &substring) {
|
|
// StaticDataObject::Pointer bases are constants and cannot be
|
|
// subscripted, so the base must be a DataRef here.
|
|
mlir::Type baseElementType =
|
|
gen(std::get<Fortran::evaluate::DataRef>(substring.parent()));
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Type idxTy = builder.getIndexType();
|
|
mlir::Value lb = genScalarValue(substring.lower());
|
|
substringBounds.emplace_back(builder.createConvert(loc, idxTy, lb));
|
|
if (const auto &ubExpr = substring.upper()) {
|
|
mlir::Value ub = genScalarValue(*ubExpr);
|
|
substringBounds.emplace_back(builder.createConvert(loc, idxTy, ub));
|
|
}
|
|
return baseElementType;
|
|
}
|
|
|
|
mlir::Type gen(const Fortran::evaluate::ComplexPart &complexPart) {
|
|
auto complexType = gen(complexPart.complex());
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Type i32Ty = builder.getI32Type(); // llvm's GEP requires i32
|
|
mlir::Value offset = builder.createIntegerConstant(
|
|
loc, i32Ty,
|
|
complexPart.part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 : 1);
|
|
componentPath.emplace_back(offset);
|
|
return fir::factory::Complex{builder, loc}.getComplexPartType(complexType);
|
|
}
|
|
|
|
mlir::Type gen(const Fortran::evaluate::Component &component) {
|
|
auto recTy = mlir::cast<fir::RecordType>(gen(component.base()));
|
|
const Fortran::semantics::Symbol &componentSymbol =
|
|
component.GetLastSymbol();
|
|
// Parent components will not be found here, they are not part
|
|
// of the FIR type and cannot be used in the path yet.
|
|
if (componentSymbol.test(Fortran::semantics::Symbol::Flag::ParentComp))
|
|
TODO(loc, "reference to parent component");
|
|
mlir::Type fldTy = fir::FieldType::get(&converter.getMLIRContext());
|
|
llvm::StringRef componentName = toStringRef(componentSymbol.name());
|
|
// Parameters threading in field_index is not yet very clear. We only
|
|
// have the ones of the ranked array ref at hand, but it looks like
|
|
// the fir.field_index expects the one of the direct base.
|
|
if (recTy.getNumLenParams() != 0)
|
|
TODO(loc, "threading length parameters in field index op");
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
componentPath.emplace_back(builder.create<fir::FieldIndexOp>(
|
|
loc, fldTy, componentName, recTy, /*typeParams*/ std::nullopt));
|
|
return fir::unwrapSequenceType(recTy.getType(componentName));
|
|
}
|
|
|
|
mlir::Type gen(const Fortran::evaluate::ArrayRef &arrayRef) {
|
|
auto isTripletOrVector =
|
|
[](const Fortran::evaluate::Subscript &subscript) -> bool {
|
|
return std::visit(
|
|
Fortran::common::visitors{
|
|
[](const Fortran::evaluate::IndirectSubscriptIntegerExpr &expr) {
|
|
return expr.value().Rank() != 0;
|
|
},
|
|
[&](const Fortran::evaluate::Triplet &) { return true; }},
|
|
subscript.u);
|
|
};
|
|
if (llvm::any_of(arrayRef.subscript(), isTripletOrVector))
|
|
return genRankedArrayRefSubscriptAndBase(arrayRef);
|
|
|
|
// This is a scalar ArrayRef (only scalar indexes), collect the indexes and
|
|
// visit the base that must contain another arrayRef with the vector
|
|
// subscript.
|
|
mlir::Type elementType = gen(namedEntityToDataRef(arrayRef.base()));
|
|
for (const Fortran::evaluate::Subscript &subscript : arrayRef.subscript()) {
|
|
const auto &expr =
|
|
std::get<Fortran::evaluate::IndirectSubscriptIntegerExpr>(
|
|
subscript.u);
|
|
componentPath.emplace_back(genScalarValue(expr.value()));
|
|
}
|
|
return elementType;
|
|
}
|
|
|
|
/// Lower the subscripts and base of the ArrayRef that is an array (there must
|
|
/// be one since there is a vector subscript, and there can only be one
|
|
/// according to C925).
|
|
mlir::Type genRankedArrayRefSubscriptAndBase(
|
|
const Fortran::evaluate::ArrayRef &arrayRef) {
|
|
// Lower the save the base
|
|
Fortran::lower::SomeExpr baseExpr = namedEntityToExpr(arrayRef.base());
|
|
loweredBase = converter.genExprAddr(baseExpr, stmtCtx);
|
|
// Lower and save the subscripts
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Type idxTy = builder.getIndexType();
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
for (const auto &subscript : llvm::enumerate(arrayRef.subscript())) {
|
|
std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::evaluate::IndirectSubscriptIntegerExpr &expr) {
|
|
if (expr.value().Rank() == 0) {
|
|
// Simple scalar subscript
|
|
loweredSubscripts.emplace_back(genScalarValue(expr.value()));
|
|
} else {
|
|
// Vector subscript.
|
|
// Remove conversion if any to avoid temp creation that may
|
|
// have been added by the front-end to avoid the creation of a
|
|
// temp array value.
|
|
auto vector = converter.genExprAddr(
|
|
ignoreEvConvert(expr.value()), stmtCtx);
|
|
mlir::Value size =
|
|
fir::factory::readExtent(builder, loc, vector, /*dim=*/0);
|
|
size = builder.createConvert(loc, idxTy, size);
|
|
loweredSubscripts.emplace_back(
|
|
LoweredVectorSubscript{std::move(vector), size});
|
|
}
|
|
},
|
|
[&](const Fortran::evaluate::Triplet &triplet) {
|
|
mlir::Value lb, ub;
|
|
if (const auto &lbExpr = triplet.lower())
|
|
lb = genScalarValue(*lbExpr);
|
|
else
|
|
lb = fir::factory::readLowerBound(builder, loc, loweredBase,
|
|
subscript.index(), one);
|
|
if (const auto &ubExpr = triplet.upper())
|
|
ub = genScalarValue(*ubExpr);
|
|
else
|
|
ub = fir::factory::readExtent(builder, loc, loweredBase,
|
|
subscript.index());
|
|
lb = builder.createConvert(loc, idxTy, lb);
|
|
ub = builder.createConvert(loc, idxTy, ub);
|
|
mlir::Value stride = genScalarValue(triplet.stride());
|
|
stride = builder.createConvert(loc, idxTy, stride);
|
|
loweredSubscripts.emplace_back(LoweredTriplet{lb, ub, stride});
|
|
},
|
|
},
|
|
subscript.value().u);
|
|
}
|
|
return fir::unwrapSequenceType(
|
|
fir::unwrapPassByRefType(fir::getBase(loweredBase).getType()));
|
|
}
|
|
|
|
mlir::Type gen(const Fortran::evaluate::CoarrayRef &) {
|
|
// Is this possible/legal ?
|
|
TODO(loc, "coarray: reference to coarray object with vector subscript in "
|
|
"IO input");
|
|
}
|
|
|
|
template <typename A>
|
|
mlir::Value genScalarValue(const A &expr) {
|
|
return fir::getBase(converter.genExprValue(toEvExpr(expr), stmtCtx));
|
|
}
|
|
|
|
Fortran::evaluate::DataRef
|
|
namedEntityToDataRef(const Fortran::evaluate::NamedEntity &namedEntity) {
|
|
if (namedEntity.IsSymbol())
|
|
return Fortran::evaluate::DataRef{namedEntity.GetFirstSymbol()};
|
|
return Fortran::evaluate::DataRef{namedEntity.GetComponent()};
|
|
}
|
|
|
|
Fortran::lower::SomeExpr
|
|
namedEntityToExpr(const Fortran::evaluate::NamedEntity &namedEntity) {
|
|
return Fortran::evaluate::AsGenericExpr(namedEntityToDataRef(namedEntity))
|
|
.value();
|
|
}
|
|
|
|
Fortran::lower::AbstractConverter &converter;
|
|
Fortran::lower::StatementContext &stmtCtx;
|
|
mlir::Location loc;
|
|
/// Elements of VectorSubscriptBox being built.
|
|
fir::ExtendedValue loweredBase;
|
|
llvm::SmallVector<LoweredSubscript, 16> loweredSubscripts;
|
|
llvm::SmallVector<mlir::Value> componentPath;
|
|
MaybeSubstring substringBounds;
|
|
mlir::Type elementType;
|
|
};
|
|
} // namespace
|
|
|
|
Fortran::lower::VectorSubscriptBox Fortran::lower::genVectorSubscriptBox(
|
|
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::lower::SomeExpr &expr) {
|
|
return VectorSubscriptBoxBuilder(loc, converter, stmtCtx).gen(expr);
|
|
}
|
|
|
|
template <typename LoopType, typename Generator>
|
|
mlir::Value Fortran::lower::VectorSubscriptBox::loopOverElementsBase(
|
|
fir::FirOpBuilder &builder, mlir::Location loc,
|
|
const Generator &elementalGenerator,
|
|
[[maybe_unused]] mlir::Value initialCondition) {
|
|
mlir::Value shape = builder.createShape(loc, loweredBase);
|
|
mlir::Value slice = createSlice(builder, loc);
|
|
|
|
// Create loop nest for triplets and vector subscripts in column
|
|
// major order.
|
|
llvm::SmallVector<mlir::Value> inductionVariables;
|
|
LoopType outerLoop;
|
|
for (auto [lb, ub, step] : genLoopBounds(builder, loc)) {
|
|
LoopType loop;
|
|
if constexpr (std::is_same_v<LoopType, fir::IterWhileOp>) {
|
|
loop =
|
|
builder.create<fir::IterWhileOp>(loc, lb, ub, step, initialCondition);
|
|
initialCondition = loop.getIterateVar();
|
|
if (!outerLoop)
|
|
outerLoop = loop;
|
|
else
|
|
builder.create<fir::ResultOp>(loc, loop.getResult(0));
|
|
} else {
|
|
loop =
|
|
builder.create<fir::DoLoopOp>(loc, lb, ub, step, /*unordered=*/false);
|
|
if (!outerLoop)
|
|
outerLoop = loop;
|
|
}
|
|
builder.setInsertionPointToStart(loop.getBody());
|
|
inductionVariables.push_back(loop.getInductionVar());
|
|
}
|
|
assert(outerLoop && !inductionVariables.empty() &&
|
|
"at least one loop should be created");
|
|
|
|
fir::ExtendedValue elem =
|
|
getElementAt(builder, loc, shape, slice, inductionVariables);
|
|
|
|
if constexpr (std::is_same_v<LoopType, fir::IterWhileOp>) {
|
|
auto res = elementalGenerator(elem);
|
|
builder.create<fir::ResultOp>(loc, res);
|
|
builder.setInsertionPointAfter(outerLoop);
|
|
return outerLoop.getResult(0);
|
|
} else {
|
|
elementalGenerator(elem);
|
|
builder.setInsertionPointAfter(outerLoop);
|
|
return {};
|
|
}
|
|
}
|
|
|
|
void Fortran::lower::VectorSubscriptBox::loopOverElements(
|
|
fir::FirOpBuilder &builder, mlir::Location loc,
|
|
const ElementalGenerator &elementalGenerator) {
|
|
mlir::Value initialCondition;
|
|
loopOverElementsBase<fir::DoLoopOp, ElementalGenerator>(
|
|
builder, loc, elementalGenerator, initialCondition);
|
|
}
|
|
|
|
mlir::Value Fortran::lower::VectorSubscriptBox::loopOverElementsWhile(
|
|
fir::FirOpBuilder &builder, mlir::Location loc,
|
|
const ElementalGeneratorWithBoolReturn &elementalGenerator,
|
|
mlir::Value initialCondition) {
|
|
return loopOverElementsBase<fir::IterWhileOp,
|
|
ElementalGeneratorWithBoolReturn>(
|
|
builder, loc, elementalGenerator, initialCondition);
|
|
}
|
|
|
|
mlir::Value
|
|
Fortran::lower::VectorSubscriptBox::createSlice(fir::FirOpBuilder &builder,
|
|
mlir::Location loc) {
|
|
mlir::Type idxTy = builder.getIndexType();
|
|
llvm::SmallVector<mlir::Value> triples;
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
auto undef = builder.create<fir::UndefOp>(loc, idxTy);
|
|
for (const LoweredSubscript &subscript : loweredSubscripts)
|
|
std::visit(Fortran::common::visitors{
|
|
[&](const LoweredTriplet &triplet) {
|
|
triples.emplace_back(triplet.lb);
|
|
triples.emplace_back(triplet.ub);
|
|
triples.emplace_back(triplet.stride);
|
|
},
|
|
[&](const LoweredVectorSubscript &vector) {
|
|
triples.emplace_back(one);
|
|
triples.emplace_back(vector.size);
|
|
triples.emplace_back(one);
|
|
},
|
|
[&](const mlir::Value &i) {
|
|
triples.emplace_back(i);
|
|
triples.emplace_back(undef);
|
|
triples.emplace_back(undef);
|
|
},
|
|
},
|
|
subscript);
|
|
return builder.create<fir::SliceOp>(loc, triples, componentPath);
|
|
}
|
|
|
|
llvm::SmallVector<std::tuple<mlir::Value, mlir::Value, mlir::Value>>
|
|
Fortran::lower::VectorSubscriptBox::genLoopBounds(fir::FirOpBuilder &builder,
|
|
mlir::Location loc) {
|
|
mlir::Type idxTy = builder.getIndexType();
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
|
|
llvm::SmallVector<std::tuple<mlir::Value, mlir::Value, mlir::Value>> bounds;
|
|
size_t dimension = loweredSubscripts.size();
|
|
for (const LoweredSubscript &subscript : llvm::reverse(loweredSubscripts)) {
|
|
--dimension;
|
|
if (std::holds_alternative<mlir::Value>(subscript))
|
|
continue;
|
|
mlir::Value lb, ub, step;
|
|
if (const auto *triplet = std::get_if<LoweredTriplet>(&subscript)) {
|
|
mlir::Value extent = builder.genExtentFromTriplet(
|
|
loc, triplet->lb, triplet->ub, triplet->stride, idxTy);
|
|
mlir::Value baseLb = fir::factory::readLowerBound(
|
|
builder, loc, loweredBase, dimension, one);
|
|
baseLb = builder.createConvert(loc, idxTy, baseLb);
|
|
lb = baseLb;
|
|
ub = builder.create<mlir::arith::SubIOp>(loc, idxTy, extent, one);
|
|
ub = builder.create<mlir::arith::AddIOp>(loc, idxTy, ub, baseLb);
|
|
step = one;
|
|
} else {
|
|
const auto &vector = std::get<LoweredVectorSubscript>(subscript);
|
|
lb = zero;
|
|
ub = builder.create<mlir::arith::SubIOp>(loc, idxTy, vector.size, one);
|
|
step = one;
|
|
}
|
|
bounds.emplace_back(lb, ub, step);
|
|
}
|
|
return bounds;
|
|
}
|
|
|
|
fir::ExtendedValue Fortran::lower::VectorSubscriptBox::getElementAt(
|
|
fir::FirOpBuilder &builder, mlir::Location loc, mlir::Value shape,
|
|
mlir::Value slice, mlir::ValueRange inductionVariables) {
|
|
/// Generate the indexes for the array_coor inside the loops.
|
|
mlir::Type idxTy = builder.getIndexType();
|
|
llvm::SmallVector<mlir::Value> indexes;
|
|
size_t inductionIdx = inductionVariables.size() - 1;
|
|
for (const LoweredSubscript &subscript : loweredSubscripts)
|
|
std::visit(Fortran::common::visitors{
|
|
[&](const LoweredTriplet &triplet) {
|
|
indexes.emplace_back(inductionVariables[inductionIdx--]);
|
|
},
|
|
[&](const LoweredVectorSubscript &vector) {
|
|
mlir::Value vecIndex = inductionVariables[inductionIdx--];
|
|
mlir::Value vecBase = fir::getBase(vector.vector);
|
|
mlir::Type vecEleTy = fir::unwrapSequenceType(
|
|
fir::unwrapPassByRefType(vecBase.getType()));
|
|
mlir::Type refTy = builder.getRefType(vecEleTy);
|
|
auto vecEltRef = builder.create<fir::CoordinateOp>(
|
|
loc, refTy, vecBase, vecIndex);
|
|
auto vecElt =
|
|
builder.create<fir::LoadOp>(loc, vecEleTy, vecEltRef);
|
|
indexes.emplace_back(
|
|
builder.createConvert(loc, idxTy, vecElt));
|
|
},
|
|
[&](const mlir::Value &i) {
|
|
indexes.emplace_back(builder.createConvert(loc, idxTy, i));
|
|
},
|
|
},
|
|
subscript);
|
|
mlir::Type refTy = builder.getRefType(getElementType());
|
|
auto elementAddr = builder.create<fir::ArrayCoorOp>(
|
|
loc, refTy, fir::getBase(loweredBase), shape, slice, indexes,
|
|
fir::getTypeParams(loweredBase));
|
|
fir::ExtendedValue element = fir::factory::arraySectionElementToExtendedValue(
|
|
builder, loc, loweredBase, elementAddr, slice);
|
|
if (!substringBounds.empty()) {
|
|
const fir::CharBoxValue *charBox = element.getCharBox();
|
|
assert(charBox && "substring requires CharBox base");
|
|
fir::factory::CharacterExprHelper helper{builder, loc};
|
|
return helper.createSubstring(*charBox, substringBounds);
|
|
}
|
|
return element;
|
|
}
|