Christian Sigg fac349a169
Reapply "[mlir] Mark isa/dyn_cast/cast/... member functions depreca… (#90406)
…ted. (#89998)" (#90250)

This partially reverts commit 7aedd7dc754c74a49fe84ed2640e269c25414087.

This change removes calls to the deprecated member functions. It does
not mark the functions deprecated yet and does not disable the
deprecation warning in TypeSwitch. This seems to cause problems with
MSVC.
2024-04-28 22:01:42 +02:00

950 lines
44 KiB
C++

//===- BufferizeHLFIR.cpp - Bufferize HLFIR ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file defines a pass that bufferize hlfir.expr. It translates operations
// producing or consuming hlfir.expr into operations operating on memory.
// An hlfir.expr is translated to a tuple<variable address, cleanupflag>
// where cleanupflag is set to true if storage for the expression was allocated
// on the heap.
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/MutableBox.h"
#include "flang/Optimizer/Builder/Runtime/Allocatable.h"
#include "flang/Optimizer/Builder/Runtime/Derived.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/HLFIR/HLFIRDialect.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "flang/Optimizer/HLFIR/Passes.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/TypeSwitch.h"
namespace hlfir {
#define GEN_PASS_DEF_BUFFERIZEHLFIR
#include "flang/Optimizer/HLFIR/Passes.h.inc"
} // namespace hlfir
namespace {
/// Helper to create tuple from a bufferized expr storage and clean up
/// instruction flag. The storage is an HLFIR variable so that it can
/// be manipulated as a variable later (all shape and length information
/// cam be retrieved from it).
static mlir::Value packageBufferizedExpr(mlir::Location loc,
fir::FirOpBuilder &builder,
hlfir::Entity storage,
mlir::Value mustFree) {
auto tupleType = mlir::TupleType::get(
builder.getContext(),
mlir::TypeRange{storage.getType(), mustFree.getType()});
auto undef = builder.create<fir::UndefOp>(loc, tupleType);
auto insert = builder.create<fir::InsertValueOp>(
loc, tupleType, undef, mustFree,
builder.getArrayAttr(
{builder.getIntegerAttr(builder.getIndexType(), 1)}));
return builder.create<fir::InsertValueOp>(
loc, tupleType, insert, storage,
builder.getArrayAttr(
{builder.getIntegerAttr(builder.getIndexType(), 0)}));
}
/// Helper to create tuple from a bufferized expr storage and constant
/// boolean clean-up flag.
static mlir::Value packageBufferizedExpr(mlir::Location loc,
fir::FirOpBuilder &builder,
hlfir::Entity storage, bool mustFree) {
mlir::Value mustFreeValue = builder.createBool(loc, mustFree);
return packageBufferizedExpr(loc, builder, storage, mustFreeValue);
}
/// Helper to extract the storage from a tuple created by packageBufferizedExpr.
/// It assumes no tuples are used as HLFIR operation operands, which is
/// currently enforced by the verifiers that only accept HLFIR value or
/// variable types which do not include tuples.
static hlfir::Entity getBufferizedExprStorage(mlir::Value bufferizedExpr) {
auto tupleType = mlir::dyn_cast<mlir::TupleType>(bufferizedExpr.getType());
if (!tupleType)
return hlfir::Entity{bufferizedExpr};
assert(tupleType.size() == 2 && "unexpected tuple type");
if (auto insert = bufferizedExpr.getDefiningOp<fir::InsertValueOp>())
if (insert.getVal().getType() == tupleType.getType(0))
return hlfir::Entity{insert.getVal()};
TODO(bufferizedExpr.getLoc(), "general extract storage case");
}
/// Helper to extract the clean-up flag from a tuple created by
/// packageBufferizedExpr.
static mlir::Value getBufferizedExprMustFreeFlag(mlir::Value bufferizedExpr) {
auto tupleType = mlir::dyn_cast<mlir::TupleType>(bufferizedExpr.getType());
if (!tupleType)
return bufferizedExpr;
assert(tupleType.size() == 2 && "unexpected tuple type");
if (auto insert = bufferizedExpr.getDefiningOp<fir::InsertValueOp>())
if (auto insert0 = insert.getAdt().getDefiningOp<fir::InsertValueOp>())
if (insert0.getVal().getType() == tupleType.getType(1))
return insert0.getVal();
TODO(bufferizedExpr.getLoc(), "general extract storage case");
}
static std::pair<hlfir::Entity, mlir::Value>
createArrayTemp(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Type exprType, mlir::Value shape,
mlir::ValueRange extents, mlir::ValueRange lenParams,
std::optional<hlfir::Entity> polymorphicMold) {
mlir::Type sequenceType = hlfir::getFortranElementOrSequenceType(exprType);
llvm::StringRef tmpName{".tmp.array"};
if (polymorphicMold) {
// Create *allocated* polymorphic temporary using the dynamic type
// of the mold and the provided shape/extents. The created temporary
// array will be written element per element, that is why it has to be
// allocated.
mlir::Type boxHeapType = fir::HeapType::get(sequenceType);
mlir::Value alloc = fir::factory::genNullBoxStorage(
builder, loc, fir::ClassType::get(boxHeapType));
mlir::Value isHeapAlloc = builder.createBool(loc, true);
fir::FortranVariableFlagsAttr declAttrs =
fir::FortranVariableFlagsAttr::get(
builder.getContext(), fir::FortranVariableFlagsEnum::allocatable);
auto declareOp = builder.create<hlfir::DeclareOp>(loc, alloc, tmpName,
/*shape=*/nullptr,
lenParams, declAttrs);
int rank = extents.size();
fir::runtime::genAllocatableApplyMold(builder, loc, alloc,
polymorphicMold->getFirBase(), rank);
if (!extents.empty()) {
mlir::Type idxTy = builder.getIndexType();
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
unsigned dim = 0;
for (mlir::Value extent : extents) {
mlir::Value dimIndex = builder.createIntegerConstant(loc, idxTy, dim++);
fir::runtime::genAllocatableSetBounds(builder, loc, alloc, dimIndex,
one, extent);
}
}
if (!lenParams.empty()) {
// We should call AllocatableSetDerivedLength() here.
// TODO: does the mold provide the length parameters or
// the operation itself or should they be in sync?
TODO(loc, "polymorphic type with length parameters in HLFIR");
}
fir::runtime::genAllocatableAllocate(builder, loc, alloc);
return {hlfir::Entity{declareOp.getBase()}, isHeapAlloc};
}
mlir::Value allocmem = builder.createHeapTemporary(loc, sequenceType, tmpName,
extents, lenParams);
auto declareOp =
builder.create<hlfir::DeclareOp>(loc, allocmem, tmpName, shape, lenParams,
fir::FortranVariableFlagsAttr{});
mlir::Value trueVal = builder.createBool(loc, true);
return {hlfir::Entity{declareOp.getBase()}, trueVal};
}
/// Copy \p source into a new temporary and package the temporary into a
/// <temp,cleanup> tuple. The temporary may be heap or stack allocated.
static mlir::Value copyInTempAndPackage(mlir::Location loc,
fir::FirOpBuilder &builder,
hlfir::Entity source) {
auto [temp, cleanup] = hlfir::createTempFromMold(loc, builder, source);
builder.create<hlfir::AssignOp>(loc, source, temp, temp.isAllocatable(),
/*keep_lhs_length_if_realloc=*/false,
/*temporary_lhs=*/true);
// Dereference allocatable temporary directly to simplify processing
// of its uses.
if (temp.isAllocatable())
temp = hlfir::derefPointersAndAllocatables(loc, builder, temp);
return packageBufferizedExpr(loc, builder, temp, cleanup);
}
struct AsExprOpConversion : public mlir::OpConversionPattern<hlfir::AsExprOp> {
using mlir::OpConversionPattern<hlfir::AsExprOp>::OpConversionPattern;
explicit AsExprOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::AsExprOp>{ctx} {}
mlir::LogicalResult
matchAndRewrite(hlfir::AsExprOp asExpr, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = asExpr->getLoc();
auto module = asExpr->getParentOfType<mlir::ModuleOp>();
fir::FirOpBuilder builder(rewriter, module);
if (asExpr.isMove()) {
// Move variable storage for the hlfir.expr buffer.
mlir::Value bufferizedExpr = packageBufferizedExpr(
loc, builder, hlfir::Entity{adaptor.getVar()}, adaptor.getMustFree());
rewriter.replaceOp(asExpr, bufferizedExpr);
return mlir::success();
}
// Otherwise, create a copy in a new buffer.
hlfir::Entity source = hlfir::Entity{adaptor.getVar()};
mlir::Value bufferizedExpr = copyInTempAndPackage(loc, builder, source);
rewriter.replaceOp(asExpr, bufferizedExpr);
return mlir::success();
}
};
struct ShapeOfOpConversion
: public mlir::OpConversionPattern<hlfir::ShapeOfOp> {
using mlir::OpConversionPattern<hlfir::ShapeOfOp>::OpConversionPattern;
mlir::LogicalResult
matchAndRewrite(hlfir::ShapeOfOp shapeOf, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = shapeOf.getLoc();
mlir::ModuleOp mod = shapeOf->getParentOfType<mlir::ModuleOp>();
fir::FirOpBuilder builder(rewriter, mod);
mlir::Value shape;
hlfir::Entity bufferizedExpr{getBufferizedExprStorage(adaptor.getExpr())};
if (bufferizedExpr.isVariable()) {
shape = hlfir::genShape(loc, builder, bufferizedExpr);
} else {
// everything else failed so try to create a shape from static type info
hlfir::ExprType exprTy =
mlir::dyn_cast_or_null<hlfir::ExprType>(adaptor.getExpr().getType());
if (exprTy)
shape = hlfir::genExprShape(builder, loc, exprTy);
}
// expected to never happen
if (!shape)
return emitError(loc,
"Unresolvable hlfir.shape_of where extents are unknown");
rewriter.replaceOp(shapeOf, shape);
return mlir::success();
}
};
struct ApplyOpConversion : public mlir::OpConversionPattern<hlfir::ApplyOp> {
using mlir::OpConversionPattern<hlfir::ApplyOp>::OpConversionPattern;
explicit ApplyOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::ApplyOp>{ctx} {}
mlir::LogicalResult
matchAndRewrite(hlfir::ApplyOp apply, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = apply->getLoc();
hlfir::Entity bufferizedExpr = getBufferizedExprStorage(adaptor.getExpr());
mlir::Type resultType = hlfir::getVariableElementType(bufferizedExpr);
mlir::Value result = rewriter.create<hlfir::DesignateOp>(
loc, resultType, bufferizedExpr, adaptor.getIndices(),
adaptor.getTypeparams());
if (fir::isa_trivial(apply.getType())) {
result = rewriter.create<fir::LoadOp>(loc, result);
} else {
fir::FirOpBuilder builder(rewriter, apply.getOperation());
result =
packageBufferizedExpr(loc, builder, hlfir::Entity{result}, false);
}
rewriter.replaceOp(apply, result);
return mlir::success();
}
};
struct AssignOpConversion : public mlir::OpConversionPattern<hlfir::AssignOp> {
using mlir::OpConversionPattern<hlfir::AssignOp>::OpConversionPattern;
explicit AssignOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::AssignOp>{ctx} {}
mlir::LogicalResult
matchAndRewrite(hlfir::AssignOp assign, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
llvm::SmallVector<mlir::Value> newOperands;
for (mlir::Value operand : adaptor.getOperands())
newOperands.push_back(getBufferizedExprStorage(operand));
rewriter.startOpModification(assign);
assign->setOperands(newOperands);
rewriter.finalizeOpModification(assign);
return mlir::success();
}
};
struct ConcatOpConversion : public mlir::OpConversionPattern<hlfir::ConcatOp> {
using mlir::OpConversionPattern<hlfir::ConcatOp>::OpConversionPattern;
explicit ConcatOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::ConcatOp>{ctx} {}
mlir::LogicalResult
matchAndRewrite(hlfir::ConcatOp concat, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = concat->getLoc();
fir::FirOpBuilder builder(rewriter, concat.getOperation());
assert(adaptor.getStrings().size() >= 2 &&
"must have at least two strings operands");
if (adaptor.getStrings().size() > 2)
TODO(loc, "codegen of optimized chained concatenation of more than two "
"strings");
hlfir::Entity lhs = getBufferizedExprStorage(adaptor.getStrings()[0]);
hlfir::Entity rhs = getBufferizedExprStorage(adaptor.getStrings()[1]);
auto [lhsExv, c1] = hlfir::translateToExtendedValue(loc, builder, lhs);
auto [rhsExv, c2] = hlfir::translateToExtendedValue(loc, builder, rhs);
assert(!c1 && !c2 && "expected variables");
fir::ExtendedValue res =
fir::factory::CharacterExprHelper{builder, loc}.createConcatenate(
*lhsExv.getCharBox(), *rhsExv.getCharBox());
// Ensure the memory type is the same as the result type.
mlir::Type addrType = fir::ReferenceType::get(
hlfir::getFortranElementType(concat.getResult().getType()));
mlir::Value cast = builder.createConvert(loc, addrType, fir::getBase(res));
res = fir::substBase(res, cast);
hlfir::Entity hlfirTempRes =
hlfir::Entity{hlfir::genDeclare(loc, builder, res, "tmp",
fir::FortranVariableFlagsAttr{})
.getBase()};
mlir::Value bufferizedExpr =
packageBufferizedExpr(loc, builder, hlfirTempRes, false);
rewriter.replaceOp(concat, bufferizedExpr);
return mlir::success();
}
};
struct SetLengthOpConversion
: public mlir::OpConversionPattern<hlfir::SetLengthOp> {
using mlir::OpConversionPattern<hlfir::SetLengthOp>::OpConversionPattern;
explicit SetLengthOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::SetLengthOp>{ctx} {}
mlir::LogicalResult
matchAndRewrite(hlfir::SetLengthOp setLength, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = setLength->getLoc();
fir::FirOpBuilder builder(rewriter, setLength.getOperation());
// Create a temp with the new length.
hlfir::Entity string = getBufferizedExprStorage(adaptor.getString());
auto charType = hlfir::getFortranElementType(setLength.getType());
llvm::StringRef tmpName{".tmp"};
llvm::SmallVector<mlir::Value, 1> lenParams{adaptor.getLength()};
auto alloca = builder.createTemporary(loc, charType, tmpName,
/*shape=*/std::nullopt, lenParams);
auto declareOp = builder.create<hlfir::DeclareOp>(
loc, alloca, tmpName, /*shape=*/mlir::Value{}, lenParams,
fir::FortranVariableFlagsAttr{});
hlfir::Entity temp{declareOp.getBase()};
// Assign string value to the created temp.
builder.create<hlfir::AssignOp>(loc, string, temp,
/*realloc=*/false,
/*keep_lhs_length_if_realloc=*/false,
/*temporary_lhs=*/true);
mlir::Value bufferizedExpr =
packageBufferizedExpr(loc, builder, temp, false);
rewriter.replaceOp(setLength, bufferizedExpr);
return mlir::success();
}
};
struct GetLengthOpConversion
: public mlir::OpConversionPattern<hlfir::GetLengthOp> {
using mlir::OpConversionPattern<hlfir::GetLengthOp>::OpConversionPattern;
explicit GetLengthOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::GetLengthOp>{ctx} {}
mlir::LogicalResult
matchAndRewrite(hlfir::GetLengthOp getLength, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = getLength->getLoc();
fir::FirOpBuilder builder(rewriter, getLength.getOperation());
hlfir::Entity bufferizedExpr = getBufferizedExprStorage(adaptor.getExpr());
mlir::Value length = hlfir::genCharLength(loc, builder, bufferizedExpr);
if (!length)
return rewriter.notifyMatchFailure(
getLength, "could not deduce length from GetLengthOp operand");
rewriter.replaceOp(getLength, length);
return mlir::success();
}
};
/// The current hlfir.associate lowering does not handle multiple uses of a
/// non-trivial expression value because it generates the cleanup for the
/// expression bufferization at hlfir.end_associate. If there was more than one
/// hlfir.end_associate, it would be cleaned up multiple times, perhaps before
/// one of the other uses.
/// Note that we have to be careful about expressions used by a single
/// hlfir.end_associate that may be executed more times than the producer
/// of the expression value. This may also cause multiple clean-ups
/// for the same memory (e.g. cause double-free errors). For example,
/// hlfir.end_associate inside hlfir.elemental may cause such issues
/// for expressions produced outside of hlfir.elemental.
static bool allOtherUsesAreSafeForAssociate(mlir::Value value,
mlir::Operation *currentUse,
mlir::Operation *endAssociate) {
// If value producer is from a different region than
// hlfir.associate/end_associate, then conservatively assume
// that the hlfir.end_associate may execute more times than
// the value producer.
// TODO: this may be improved for operations that cannot
// result in multiple executions (e.g. ifOp).
if (value.getParentRegion() != currentUse->getParentRegion() ||
(endAssociate &&
value.getParentRegion() != endAssociate->getParentRegion()))
return false;
for (mlir::Operation *useOp : value.getUsers()) {
// Ignore DestroyOp's that do not imply finalization.
// If finalization is implied, then we must delegate
// the finalization to the correspoding EndAssociateOp,
// but we currently do not; so we disable the buffer
// reuse in this case.
if (auto destroy = mlir::dyn_cast<hlfir::DestroyOp>(useOp)) {
if (destroy.mustFinalizeExpr())
return false;
else
continue;
}
if (useOp != currentUse) {
// hlfir.shape_of and hlfir.get_length will not disrupt cleanup so it is
// safe for hlfir.associate. These operations might read from the box and
// so they need to come before the hflir.end_associate (which may
// deallocate).
if (mlir::isa<hlfir::ShapeOfOp>(useOp) ||
mlir::isa<hlfir::GetLengthOp>(useOp)) {
if (!endAssociate)
continue;
// If useOp dominates the endAssociate, then it is definitely safe.
if (useOp->getBlock() != endAssociate->getBlock())
if (mlir::DominanceInfo{}.dominates(useOp, endAssociate))
continue;
if (useOp->isBeforeInBlock(endAssociate))
continue;
}
return false;
}
}
return true;
}
static void eraseAllUsesInDestroys(mlir::Value value,
mlir::ConversionPatternRewriter &rewriter) {
for (mlir::Operation *useOp : value.getUsers())
if (auto destroy = mlir::dyn_cast<hlfir::DestroyOp>(useOp)) {
assert(!destroy.mustFinalizeExpr() &&
"deleting DestroyOp with finalize attribute");
rewriter.eraseOp(destroy);
}
}
struct AssociateOpConversion
: public mlir::OpConversionPattern<hlfir::AssociateOp> {
using mlir::OpConversionPattern<hlfir::AssociateOp>::OpConversionPattern;
explicit AssociateOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::AssociateOp>{ctx} {}
mlir::LogicalResult
matchAndRewrite(hlfir::AssociateOp associate, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = associate->getLoc();
fir::FirOpBuilder builder(rewriter, associate.getOperation());
mlir::Value bufferizedExpr = getBufferizedExprStorage(adaptor.getSource());
const bool isTrivialValue = fir::isa_trivial(bufferizedExpr.getType());
auto getEndAssociate =
[](hlfir::AssociateOp associate) -> mlir::Operation * {
for (mlir::Operation *useOp : associate->getUsers())
if (mlir::isa<hlfir::EndAssociateOp>(useOp))
return useOp;
// happens in some hand coded mlir in tests
return nullptr;
};
auto replaceWith = [&](mlir::Value hlfirVar, mlir::Value firVar,
mlir::Value flag) {
// 0-dim variables may need special handling:
// %0 = hlfir.as_expr %x move %true :
// (!fir.box<!fir.heap<!fir.type<_T{y:i32}>>>, i1) ->
// !hlfir.expr<!fir.type<_T{y:i32}>>
// %1:3 = hlfir.associate %0 {adapt.valuebyref} :
// (!hlfir.expr<!fir.type<_T{y:i32}>>) ->
// (!fir.ref<!fir.type<_T{y:i32}>>,
// !fir.ref<!fir.type<_T{y:i32}>>,
// i1)
//
// !fir.box<!fir.heap<!fir.type<_T{y:i32}>>> value must be
// propagated as the box address !fir.ref<!fir.type<_T{y:i32}>>.
auto adjustVar = [&](mlir::Value sourceVar, mlir::Type assocType) {
if (mlir::isa<fir::ReferenceType>(sourceVar.getType()) &&
mlir::isa<fir::ClassType>(
fir::unwrapRefType(sourceVar.getType()))) {
// Association of a polymorphic value.
sourceVar = builder.create<fir::LoadOp>(loc, sourceVar);
assert(mlir::isa<fir::ClassType>(sourceVar.getType()) &&
fir::isAllocatableType(sourceVar.getType()));
assert(sourceVar.getType() == assocType);
} else if ((mlir::isa<fir::BaseBoxType>(sourceVar.getType()) &&
!mlir::isa<fir::BaseBoxType>(assocType)) ||
((mlir::isa<fir::BoxCharType>(sourceVar.getType()) &&
!mlir::isa<fir::BoxCharType>(assocType)))) {
sourceVar = builder.create<fir::BoxAddrOp>(loc, assocType, sourceVar);
} else {
sourceVar = builder.createConvert(loc, assocType, sourceVar);
}
return sourceVar;
};
mlir::Type associateHlfirVarType = associate.getResultTypes()[0];
hlfirVar = adjustVar(hlfirVar, associateHlfirVarType);
associate.getResult(0).replaceAllUsesWith(hlfirVar);
mlir::Type associateFirVarType = associate.getResultTypes()[1];
firVar = adjustVar(firVar, associateFirVarType);
associate.getResult(1).replaceAllUsesWith(firVar);
associate.getResult(2).replaceAllUsesWith(flag);
// FIXME: note that the AssociateOp that is being erased
// here will continue to be a user of the original Source
// operand (e.g. a result of hlfir.elemental), because
// the erasure is not immediate in the rewriter.
// In case there are multiple uses of the Source operand,
// the allOtherUsesAreSafeForAssociate() below will always
// see them, so there is no way to reuse the buffer.
// I think we have to run this analysis before doing
// the conversions, so that we can analyze HLFIR in its
// original form and decide which of the AssociateOp
// users of hlfir.expr can reuse the buffer (if it can).
rewriter.eraseOp(associate);
};
// If this is the last use of the expression value and this is an hlfir.expr
// that was bufferized, re-use the storage.
// Otherwise, create a temp and assign the storage to it.
//
// WARNING: it is important to use the original Source operand
// of the AssociateOp to look for the users, because its replacement
// has zero materialized users at this point.
// So allOtherUsesAreSafeForAssociate() may incorrectly return
// true here.
if (!isTrivialValue && allOtherUsesAreSafeForAssociate(
associate.getSource(), associate.getOperation(),
getEndAssociate(associate))) {
// Re-use hlfir.expr buffer if this is the only use of the hlfir.expr
// outside of the hlfir.destroy. Take on the cleaning-up responsibility
// for the related hlfir.end_associate, and erase the hlfir.destroy (if
// any).
mlir::Value mustFree = getBufferizedExprMustFreeFlag(adaptor.getSource());
mlir::Value firBase = hlfir::Entity{bufferizedExpr}.getFirBase();
replaceWith(bufferizedExpr, firBase, mustFree);
eraseAllUsesInDestroys(associate.getSource(), rewriter);
return mlir::success();
}
if (isTrivialValue) {
llvm::SmallVector<mlir::NamedAttribute, 1> attrs;
if (associate->hasAttr(fir::getAdaptToByRefAttrName())) {
attrs.push_back(fir::getAdaptToByRefAttr(builder));
}
llvm::StringRef name = "";
if (associate.getUniqName())
name = *associate.getUniqName();
auto temp =
builder.createTemporary(loc, bufferizedExpr.getType(), name, attrs);
builder.create<fir::StoreOp>(loc, bufferizedExpr, temp);
mlir::Value mustFree = builder.createBool(loc, false);
replaceWith(temp, temp, mustFree);
return mlir::success();
}
// non-trivial value with more than one use. We will have to make a copy and
// use that
hlfir::Entity source = hlfir::Entity{bufferizedExpr};
mlir::Value bufferTuple = copyInTempAndPackage(loc, builder, source);
bufferizedExpr = getBufferizedExprStorage(bufferTuple);
replaceWith(bufferizedExpr, hlfir::Entity{bufferizedExpr}.getFirBase(),
getBufferizedExprMustFreeFlag(bufferTuple));
return mlir::success();
}
};
static void genBufferDestruction(mlir::Location loc, fir::FirOpBuilder &builder,
mlir::Value var, mlir::Value mustFree,
bool mustFinalize) {
auto genFreeOrFinalize = [&](bool doFree, bool deallocComponents,
bool doFinalize) {
if (!doFree && !deallocComponents && !doFinalize)
return;
mlir::Value addr = var;
// fir::FreeMemOp operand type must be a fir::HeapType.
mlir::Type heapType = fir::HeapType::get(
hlfir::getFortranElementOrSequenceType(var.getType()));
if (mlir::isa<fir::ReferenceType>(var.getType()) &&
mlir::isa<fir::ClassType>(fir::unwrapRefType(var.getType()))) {
// A temporary for a polymorphic expression is represented
// via an allocatable. Variable type in this case
// is !fir.ref<!fir.class<!fir.heap<!fir.type<>>>>.
// We need to free the allocatable data, not the box
// that is allocated on the stack.
var = builder.create<fir::LoadOp>(loc, var);
assert(mlir::isa<fir::ClassType>(var.getType()) &&
fir::isAllocatableType(var.getType()));
addr = builder.create<fir::BoxAddrOp>(loc, heapType, var);
// Lowering currently does not produce DestroyOp with 'finalize'
// for polymorphic temporaries. It will have to do so, for example,
// for MERGE with polymorphic results.
if (mustFinalize)
TODO(loc, "finalizing polymorphic temporary in HLFIR");
} else if (mlir::isa<fir::BaseBoxType, fir::BoxCharType>(var.getType())) {
if (mustFinalize && !mlir::isa<fir::BaseBoxType>(var.getType()))
fir::emitFatalError(loc, "non-finalizable variable");
addr = builder.create<fir::BoxAddrOp>(loc, heapType, var);
} else {
if (!mlir::isa<fir::HeapType>(var.getType()))
addr = builder.create<fir::ConvertOp>(loc, heapType, var);
if (mustFinalize || deallocComponents) {
// Embox the raw pointer using proper shape and type params
// (note that the shape might be visible via the array finalization
// routines).
if (!hlfir::isFortranEntity(var))
TODO(loc, "need a Fortran entity to create a box");
hlfir::Entity entity{var};
llvm::SmallVector<mlir::Value> lenParams;
hlfir::genLengthParameters(loc, builder, entity, lenParams);
mlir::Value shape;
if (entity.isArray())
shape = hlfir::genShape(loc, builder, entity);
mlir::Type boxType = fir::BoxType::get(heapType);
var = builder.createBox(loc, boxType, addr, shape, /*slice=*/nullptr,
lenParams, /*tdesc=*/nullptr);
}
}
if (mustFinalize)
fir::runtime::genDerivedTypeFinalize(builder, loc, var);
// If there are allocatable components, they need to be deallocated
// (regardless of the mustFree and mustFinalize settings).
if (deallocComponents)
fir::runtime::genDerivedTypeDestroyWithoutFinalization(builder, loc, var);
if (doFree)
builder.create<fir::FreeMemOp>(loc, addr);
};
bool deallocComponents = hlfir::mayHaveAllocatableComponent(var.getType());
auto genFree = [&]() {
genFreeOrFinalize(/*doFree=*/true, /*deallocComponents=*/false,
/*doFinalize=*/false);
};
if (auto cstMustFree = fir::getIntIfConstant(mustFree)) {
genFreeOrFinalize(*cstMustFree != 0 ? true : false, deallocComponents,
mustFinalize);
return;
}
// If mustFree is dynamic, first, deallocate any allocatable
// components and finalize.
genFreeOrFinalize(/*doFree=*/false, deallocComponents,
/*doFinalize=*/mustFinalize);
// Conditionally free the memory.
builder.genIfThen(loc, mustFree).genThen(genFree).end();
}
struct EndAssociateOpConversion
: public mlir::OpConversionPattern<hlfir::EndAssociateOp> {
using mlir::OpConversionPattern<hlfir::EndAssociateOp>::OpConversionPattern;
explicit EndAssociateOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::EndAssociateOp>{ctx} {}
mlir::LogicalResult
matchAndRewrite(hlfir::EndAssociateOp endAssociate, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = endAssociate->getLoc();
fir::FirOpBuilder builder(rewriter, endAssociate.getOperation());
genBufferDestruction(loc, builder, adaptor.getVar(), adaptor.getMustFree(),
/*mustFinalize=*/false);
rewriter.eraseOp(endAssociate);
return mlir::success();
}
};
struct DestroyOpConversion
: public mlir::OpConversionPattern<hlfir::DestroyOp> {
using mlir::OpConversionPattern<hlfir::DestroyOp>::OpConversionPattern;
explicit DestroyOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::DestroyOp>{ctx} {}
mlir::LogicalResult
matchAndRewrite(hlfir::DestroyOp destroy, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// If expr was bufferized on the heap, now is time to deallocate the buffer.
mlir::Location loc = destroy->getLoc();
hlfir::Entity bufferizedExpr = getBufferizedExprStorage(adaptor.getExpr());
if (!fir::isa_trivial(bufferizedExpr.getType())) {
fir::FirOpBuilder builder(rewriter, destroy.getOperation());
mlir::Value mustFree = getBufferizedExprMustFreeFlag(adaptor.getExpr());
// Passing FIR base might be enough for cases when
// component deallocation and finalization are not required.
// If extra BoxAddr operations become a performance problem,
// we may pass both bases and let genBufferDestruction decide
// which one to use.
mlir::Value base = bufferizedExpr.getBase();
genBufferDestruction(loc, builder, base, mustFree,
destroy.mustFinalizeExpr());
}
rewriter.eraseOp(destroy);
return mlir::success();
}
};
struct NoReassocOpConversion
: public mlir::OpConversionPattern<hlfir::NoReassocOp> {
using mlir::OpConversionPattern<hlfir::NoReassocOp>::OpConversionPattern;
explicit NoReassocOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::NoReassocOp>{ctx} {}
mlir::LogicalResult
matchAndRewrite(hlfir::NoReassocOp noreassoc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = noreassoc->getLoc();
fir::FirOpBuilder builder(rewriter, noreassoc.getOperation());
mlir::Value bufferizedExpr = getBufferizedExprStorage(adaptor.getVal());
mlir::Value result =
builder.create<hlfir::NoReassocOp>(loc, bufferizedExpr);
if (!fir::isa_trivial(bufferizedExpr.getType())) {
// NoReassocOp should not be needed on the mustFree path.
mlir::Value mustFree = getBufferizedExprMustFreeFlag(adaptor.getVal());
result =
packageBufferizedExpr(loc, builder, hlfir::Entity{result}, mustFree);
}
rewriter.replaceOp(noreassoc, result);
return mlir::success();
}
};
/// Was \p value created in the mlir block where \p builder is currently set ?
static bool wasCreatedInCurrentBlock(mlir::Value value,
fir::FirOpBuilder &builder) {
if (mlir::Operation *op = value.getDefiningOp())
return op->getBlock() == builder.getBlock();
return false;
}
/// This Listener allows setting both the builder and the rewriter as
/// listeners. This is required when a pattern uses a firBuilder helper that
/// may create illegal operations that will need to be translated and requires
/// notifying the rewriter.
struct HLFIRListener : public mlir::OpBuilder::Listener {
HLFIRListener(fir::FirOpBuilder &builder,
mlir::ConversionPatternRewriter &rewriter)
: builder{builder}, rewriter{rewriter} {}
void notifyOperationInserted(mlir::Operation *op,
mlir::OpBuilder::InsertPoint previous) override {
builder.notifyOperationInserted(op, previous);
rewriter.getListener()->notifyOperationInserted(op, previous);
}
virtual void notifyBlockInserted(mlir::Block *block, mlir::Region *previous,
mlir::Region::iterator previousIt) override {
builder.notifyBlockInserted(block, previous, previousIt);
rewriter.getListener()->notifyBlockInserted(block, previous, previousIt);
}
fir::FirOpBuilder &builder;
mlir::ConversionPatternRewriter &rewriter;
};
struct ElementalOpConversion
: public mlir::OpConversionPattern<hlfir::ElementalOp> {
using mlir::OpConversionPattern<hlfir::ElementalOp>::OpConversionPattern;
explicit ElementalOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::ElementalOp>{ctx} {
// This pattern recursively converts nested ElementalOp's
// by cloning and then converting them, so we have to allow
// for recursive pattern application. The recursion is bounded
// by the nesting level of ElementalOp's.
setHasBoundedRewriteRecursion();
}
mlir::LogicalResult
matchAndRewrite(hlfir::ElementalOp elemental, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = elemental->getLoc();
fir::FirOpBuilder builder(rewriter, elemental.getOperation());
// The body of the elemental op may contain operation that will require
// to be translated. Notify the rewriter about the cloned operations.
HLFIRListener listener{builder, rewriter};
builder.setListener(&listener);
mlir::Value shape = adaptor.getShape();
std::optional<hlfir::Entity> mold;
if (adaptor.getMold())
mold = getBufferizedExprStorage(adaptor.getMold());
auto extents = hlfir::getIndexExtents(loc, builder, shape);
auto [temp, cleanup] =
createArrayTemp(loc, builder, elemental.getType(), shape, extents,
adaptor.getTypeparams(), mold);
// If the box load is needed, we'd better place it outside
// of the loop nest.
temp = derefPointersAndAllocatables(loc, builder, temp);
// Generate a loop nest looping around the fir.elemental shape and clone
// fir.elemental region inside the inner loop.
hlfir::LoopNest loopNest =
hlfir::genLoopNest(loc, builder, extents, !elemental.isOrdered());
auto insPt = builder.saveInsertionPoint();
builder.setInsertionPointToStart(loopNest.innerLoop.getBody());
auto yield = hlfir::inlineElementalOp(loc, builder, elemental,
loopNest.oneBasedIndices);
hlfir::Entity elementValue(yield.getElementValue());
// Skip final AsExpr if any. It would create an element temporary,
// which is no needed since the element will be assigned right away in
// the array temporary. An hlfir.as_expr may have been added if the
// elemental is a "view" over a variable (e.g parentheses or transpose).
if (auto asExpr = elementValue.getDefiningOp<hlfir::AsExprOp>()) {
if (asExpr->hasOneUse() && !asExpr.isMove()) {
elementValue = hlfir::Entity{asExpr.getVar()};
rewriter.eraseOp(asExpr);
}
}
rewriter.eraseOp(yield);
// Assign the element value to the temp element for this iteration.
auto tempElement =
hlfir::getElementAt(loc, builder, temp, loopNest.oneBasedIndices);
// If the elemental result is a temporary of a derived type,
// we can avoid the deep copy implied by the AssignOp and just
// do the shallow copy with load/store. This helps avoiding the overhead
// of deallocating allocatable components of the temporary (if any)
// on each iteration of the elemental operation.
auto asExpr = elementValue.getDefiningOp<hlfir::AsExprOp>();
auto elemType = hlfir::getFortranElementType(elementValue.getType());
if (asExpr && asExpr.isMove() && mlir::isa<fir::RecordType>(elemType) &&
hlfir::mayHaveAllocatableComponent(elemType) &&
wasCreatedInCurrentBlock(elementValue, builder)) {
auto load = builder.create<fir::LoadOp>(loc, asExpr.getVar());
builder.create<fir::StoreOp>(loc, load, tempElement);
} else {
builder.create<hlfir::AssignOp>(loc, elementValue, tempElement,
/*realloc=*/false,
/*keep_lhs_length_if_realloc=*/false,
/*temporary_lhs=*/true);
// hlfir.yield_element implicitly marks the end-of-life its operand if
// it is an expression created in the hlfir.elemental (since it is its
// last use and an hlfir.destroy could not be created afterwards)
// Now that this node has been removed and the expression has been used in
// the assign, insert an hlfir.destroy to mark the expression end-of-life.
// If the expression creation allocated a buffer on the heap inside the
// loop, this will ensure the buffer properly deallocated.
if (mlir::isa<hlfir::ExprType>(elementValue.getType()) &&
wasCreatedInCurrentBlock(elementValue, builder))
builder.create<hlfir::DestroyOp>(loc, elementValue);
}
builder.restoreInsertionPoint(insPt);
mlir::Value bufferizedExpr =
packageBufferizedExpr(loc, builder, temp, cleanup);
// Explicitly delete the body of the elemental to get rid
// of any users of hlfir.expr values inside the body as early
// as possible.
rewriter.startOpModification(elemental);
rewriter.eraseBlock(elemental.getBody());
rewriter.finalizeOpModification(elemental);
rewriter.replaceOp(elemental, bufferizedExpr);
return mlir::success();
}
};
struct CharExtremumOpConversion
: public mlir::OpConversionPattern<hlfir::CharExtremumOp> {
using mlir::OpConversionPattern<hlfir::CharExtremumOp>::OpConversionPattern;
explicit CharExtremumOpConversion(mlir::MLIRContext *ctx)
: mlir::OpConversionPattern<hlfir::CharExtremumOp>{ctx} {}
mlir::LogicalResult
matchAndRewrite(hlfir::CharExtremumOp char_extremum, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = char_extremum->getLoc();
auto predicate = char_extremum.getPredicate();
bool predIsMin =
predicate == hlfir::CharExtremumPredicate::min ? true : false;
fir::FirOpBuilder builder(rewriter, char_extremum.getOperation());
assert(adaptor.getStrings().size() >= 2 &&
"must have at least two strings operands");
auto numOperands = adaptor.getStrings().size();
std::vector<hlfir::Entity> chars;
std::vector<
std::pair<fir::ExtendedValue, std::optional<hlfir::CleanupFunction>>>
pairs;
llvm::SmallVector<fir::CharBoxValue> opCBVs;
for (size_t i = 0; i < numOperands; ++i) {
chars.emplace_back(getBufferizedExprStorage(adaptor.getStrings()[i]));
pairs.emplace_back(
hlfir::translateToExtendedValue(loc, builder, chars[i]));
assert(!pairs[i].second && "expected variables");
opCBVs.emplace_back(*pairs[i].first.getCharBox());
}
fir::ExtendedValue res =
fir::factory::CharacterExprHelper{builder, loc}.createCharExtremum(
predIsMin, opCBVs);
mlir::Type addrType = fir::ReferenceType::get(
hlfir::getFortranElementType(char_extremum.getResult().getType()));
mlir::Value cast = builder.createConvert(loc, addrType, fir::getBase(res));
res = fir::substBase(res, cast);
hlfir::Entity hlfirTempRes =
hlfir::Entity{hlfir::genDeclare(loc, builder, res, ".tmp.char_extremum",
fir::FortranVariableFlagsAttr{})
.getBase()};
mlir::Value bufferizedExpr =
packageBufferizedExpr(loc, builder, hlfirTempRes, false);
rewriter.replaceOp(char_extremum, bufferizedExpr);
return mlir::success();
}
};
class BufferizeHLFIR : public hlfir::impl::BufferizeHLFIRBase<BufferizeHLFIR> {
public:
void runOnOperation() override {
// TODO: make this a pass operating on FuncOp. The issue is that
// FirOpBuilder helpers may generate new FuncOp because of runtime/llvm
// intrinsics calls creation. This may create race conflict if the pass is
// scheduled on FuncOp. A solution could be to provide an optional mutex
// when building a FirOpBuilder and locking around FuncOp and GlobalOp
// creation, but this needs a bit more thinking, so at this point the pass
// is scheduled on the moduleOp.
auto module = this->getOperation();
auto *context = &getContext();
mlir::RewritePatternSet patterns(context);
patterns.insert<ApplyOpConversion, AsExprOpConversion, AssignOpConversion,
AssociateOpConversion, CharExtremumOpConversion,
ConcatOpConversion, DestroyOpConversion,
ElementalOpConversion, EndAssociateOpConversion,
NoReassocOpConversion, SetLengthOpConversion,
ShapeOfOpConversion, GetLengthOpConversion>(context);
mlir::ConversionTarget target(*context);
// Note that YieldElementOp is not marked as an illegal operation.
// It must be erased by its parent converter and there is no explicit
// conversion pattern to YieldElementOp itself. If any YieldElementOp
// survives this pass, the verifier will detect it because it has to be
// a child of ElementalOp and ElementalOp's are explicitly illegal.
target.addIllegalOp<hlfir::ApplyOp, hlfir::AssociateOp, hlfir::ElementalOp,
hlfir::EndAssociateOp, hlfir::SetLengthOp>();
target.markUnknownOpDynamicallyLegal([](mlir::Operation *op) {
return llvm::all_of(op->getResultTypes(),
[](mlir::Type ty) {
return !mlir::isa<hlfir::ExprType>(ty);
}) &&
llvm::all_of(op->getOperandTypes(), [](mlir::Type ty) {
return !mlir::isa<hlfir::ExprType>(ty);
});
});
if (mlir::failed(
mlir::applyFullConversion(module, target, std::move(patterns)))) {
mlir::emitError(mlir::UnknownLoc::get(context),
"failure in HLFIR bufferization pass");
signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<mlir::Pass> hlfir::createBufferizeHLFIRPass() {
return std::make_unique<BufferizeHLFIR>();
}