Christian Sigg fac349a169
Reapply "[mlir] Mark isa/dyn_cast/cast/... member functions depreca… (#90406)
…ted. (#89998)" (#90250)

This partially reverts commit 7aedd7dc754c74a49fe84ed2640e269c25414087.

This change removes calls to the deprecated member functions. It does
not mark the functions deprecated yet and does not disable the
deprecation warning in TypeSwitch. This seems to cause problems with
MSVC.
2024-04-28 22:01:42 +02:00

559 lines
22 KiB
C++

//===- LoopVersioning.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// \file
/// This pass looks for loops iterating over assumed-shape arrays, that can
/// be optimized by "guessing" that the stride is element-sized.
///
/// This is done by creating two versions of the same loop: one which assumes
/// that the elements are contiguous (stride == size of element), and one that
/// is the original generic loop.
///
/// As a side-effect of the assumed element size stride, the array is also
/// flattened to make it a 1D array - this is because the internal array
/// structure must be either 1D or have known sizes in all dimensions - and at
/// least one of the dimensions here is already unknown.
///
/// There are two distinct benefits here:
/// 1. The loop that iterates over the elements is somewhat simplified by the
/// constant stride calculation.
/// 2. Since the compiler can understand the size of the stride, it can use
/// vector instructions, where an unknown (at compile time) stride does often
/// prevent vector operations from being used.
///
/// A known drawback is that the code-size is increased, in some cases that can
/// be quite substantial - 3-4x is quite plausible (this includes that the loop
/// gets vectorized, which in itself often more than doubles the size of the
/// code, because unless the loop size is known, there will be a modulo
/// vector-size remainder to deal with.
///
/// TODO: Do we need some size limit where loops no longer get duplicated?
// Maybe some sort of cost analysis.
/// TODO: Should some loop content - for example calls to functions and
/// subroutines inhibit the versioning of the loops. Plausibly, this
/// could be part of the cost analysis above.
//===----------------------------------------------------------------------===//
#include "flang/ISO_Fortran_binding_wrapper.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Runtime/Inquiry.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/Dialect/Support/KindMapping.h"
#include "flang/Optimizer/Support/DataLayout.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
namespace fir {
#define GEN_PASS_DEF_LOOPVERSIONING
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir
#define DEBUG_TYPE "flang-loop-versioning"
namespace {
class LoopVersioningPass
: public fir::impl::LoopVersioningBase<LoopVersioningPass> {
public:
void runOnOperation() override;
};
/// @struct ArgInfo
/// A structure to hold an argument, the size of the argument and dimension
/// information.
struct ArgInfo {
mlir::Value arg;
size_t size;
unsigned rank;
fir::BoxDimsOp dims[CFI_MAX_RANK];
};
/// @struct ArgsUsageInLoop
/// A structure providing information about the function arguments
/// usage by the instructions immediately nested in a loop.
struct ArgsUsageInLoop {
/// Mapping between the memref operand of an array indexing
/// operation (e.g. fir.coordinate_of) and the argument information.
llvm::DenseMap<mlir::Value, ArgInfo> usageInfo;
/// Some array indexing operations inside a loop cannot be transformed.
/// This vector holds the memref operands of such operations.
/// The vector is used to make sure that we do not try to transform
/// any outer loop, since this will imply the operation rewrite
/// in this loop.
llvm::SetVector<mlir::Value> cannotTransform;
// Debug dump of the structure members assuming that
// the information has been collected for the given loop.
void dump(fir::DoLoopOp loop) const {
LLVM_DEBUG({
mlir::OpPrintingFlags printFlags;
printFlags.skipRegions();
llvm::dbgs() << "Arguments usage info for loop:\n";
loop.print(llvm::dbgs(), printFlags);
llvm::dbgs() << "\nUsed args:\n";
for (auto &use : usageInfo) {
mlir::Value v = use.first;
v.print(llvm::dbgs(), printFlags);
llvm::dbgs() << "\n";
}
llvm::dbgs() << "\nCannot transform args:\n";
for (mlir::Value arg : cannotTransform) {
arg.print(llvm::dbgs(), printFlags);
llvm::dbgs() << "\n";
}
llvm::dbgs() << "====\n";
});
}
// Erase usageInfo and cannotTransform entries for a set
// of given arguments.
void eraseUsage(const llvm::SetVector<mlir::Value> &args) {
for (auto &arg : args)
usageInfo.erase(arg);
cannotTransform.set_subtract(args);
}
// Erase usageInfo and cannotTransform entries for a set
// of given arguments provided in the form of usageInfo map.
void eraseUsage(const llvm::DenseMap<mlir::Value, ArgInfo> &args) {
for (auto &arg : args) {
usageInfo.erase(arg.first);
cannotTransform.remove(arg.first);
}
}
};
} // namespace
static fir::SequenceType getAsSequenceType(mlir::Value *v) {
mlir::Type argTy = fir::unwrapPassByRefType(fir::unwrapRefType(v->getType()));
return mlir::dyn_cast<fir::SequenceType>(argTy);
}
/// if a value comes from a fir.declare, follow it to the original source,
/// otherwise return the value
static mlir::Value unwrapFirDeclare(mlir::Value val) {
// fir.declare is for source code variables. We don't have declares of
// declares
if (fir::DeclareOp declare = val.getDefiningOp<fir::DeclareOp>())
return declare.getMemref();
return val;
}
/// if a value comes from a fir.rebox, follow the rebox to the original source,
/// of the value, otherwise return the value
static mlir::Value unwrapReboxOp(mlir::Value val) {
// don't support reboxes of reboxes
if (fir::ReboxOp rebox = val.getDefiningOp<fir::ReboxOp>())
val = rebox.getBox();
return val;
}
/// normalize a value (removing fir.declare and fir.rebox) so that we can
/// more conveniently spot values which came from function arguments
static mlir::Value normaliseVal(mlir::Value val) {
return unwrapFirDeclare(unwrapReboxOp(val));
}
/// some FIR operations accept a fir.shape, a fir.shift or a fir.shapeshift.
/// fir.shift and fir.shapeshift allow us to extract lower bounds
/// if lowerbounds cannot be found, return nullptr
static mlir::Value tryGetLowerBoundsFromShapeLike(mlir::Value shapeLike,
unsigned dim) {
mlir::Value lowerBound{nullptr};
if (auto shift = shapeLike.getDefiningOp<fir::ShiftOp>())
lowerBound = shift.getOrigins()[dim];
if (auto shapeShift = shapeLike.getDefiningOp<fir::ShapeShiftOp>())
lowerBound = shapeShift.getOrigins()[dim];
return lowerBound;
}
/// attempt to get the array lower bounds of dimension dim of the memref
/// argument to a fir.array_coor op
/// 0 <= dim < rank
/// May return nullptr if no lower bounds can be determined
static mlir::Value getLowerBound(fir::ArrayCoorOp coop, unsigned dim) {
// 1) try to get from the shape argument to fir.array_coor
if (mlir::Value shapeLike = coop.getShape())
if (mlir::Value lb = tryGetLowerBoundsFromShapeLike(shapeLike, dim))
return lb;
// It is important not to try to read the lower bound from the box, because
// in the FIR lowering, boxes will sometimes contain incorrect lower bound
// information
// out of ideas
return {};
}
/// gets the i'th index from array coordinate operation op
/// dim should range between 0 and rank - 1
static mlir::Value getIndex(fir::FirOpBuilder &builder, mlir::Operation *op,
unsigned dim) {
if (fir::CoordinateOp coop = mlir::dyn_cast<fir::CoordinateOp>(op))
return coop.getCoor()[dim];
fir::ArrayCoorOp coop = mlir::dyn_cast<fir::ArrayCoorOp>(op);
assert(coop &&
"operation must be either fir.coordiante_of or fir.array_coor");
// fir.coordinate_of indices start at 0: adjust these indices to match by
// subtracting the lower bound
mlir::Value index = coop.getIndices()[dim];
mlir::Value lb = getLowerBound(coop, dim);
if (!lb)
// assume a default lower bound of one
lb = builder.createIntegerConstant(coop.getLoc(), index.getType(), 1);
// index_0 = index - lb;
if (lb.getType() != index.getType())
lb = builder.createConvert(coop.getLoc(), index.getType(), lb);
return builder.create<mlir::arith::SubIOp>(coop.getLoc(), index, lb);
}
void LoopVersioningPass::runOnOperation() {
LLVM_DEBUG(llvm::dbgs() << "=== Begin " DEBUG_TYPE " ===\n");
mlir::func::FuncOp func = getOperation();
// First look for arguments with assumed shape = unknown extent in the lowest
// dimension.
LLVM_DEBUG(llvm::dbgs() << "Func-name:" << func.getSymName() << "\n");
mlir::Block::BlockArgListType args = func.getArguments();
mlir::ModuleOp module = func->getParentOfType<mlir::ModuleOp>();
fir::KindMapping kindMap = fir::getKindMapping(module);
mlir::SmallVector<ArgInfo, 4> argsOfInterest;
std::optional<mlir::DataLayout> dl =
fir::support::getOrSetDataLayout(module, /*allowDefaultLayout=*/false);
if (!dl)
mlir::emitError(module.getLoc(),
"data layout attribute is required to perform " DEBUG_TYPE
"pass");
for (auto &arg : args) {
// Optional arguments must be checked for IsPresent before
// looking for the bounds. They are unsupported for the time being.
if (func.getArgAttrOfType<mlir::UnitAttr>(arg.getArgNumber(),
fir::getOptionalAttrName())) {
LLVM_DEBUG(llvm::dbgs() << "OPTIONAL is not supported\n");
continue;
}
if (auto seqTy = getAsSequenceType(&arg)) {
unsigned rank = seqTy.getDimension();
if (rank > 0 &&
seqTy.getShape()[0] == fir::SequenceType::getUnknownExtent()) {
size_t typeSize = 0;
mlir::Type elementType = fir::unwrapSeqOrBoxedSeqType(arg.getType());
if (mlir::isa<mlir::FloatType>(elementType) ||
mlir::isa<mlir::IntegerType>(elementType) ||
mlir::isa<fir::ComplexType>(elementType)) {
auto [eleSize, eleAlign] = fir::getTypeSizeAndAlignment(
arg.getLoc(), elementType, *dl, kindMap);
typeSize = llvm::alignTo(eleSize, eleAlign);
}
if (typeSize)
argsOfInterest.push_back({arg, typeSize, rank, {}});
else
LLVM_DEBUG(llvm::dbgs() << "Type not supported\n");
}
}
}
if (argsOfInterest.empty()) {
LLVM_DEBUG(llvm::dbgs()
<< "No suitable arguments.\n=== End " DEBUG_TYPE " ===\n");
return;
}
// A list of all loops in the function in post-order.
mlir::SmallVector<fir::DoLoopOp> originalLoops;
// Information about the arguments usage by the instructions
// immediately nested in a loop.
llvm::DenseMap<fir::DoLoopOp, ArgsUsageInLoop> argsInLoops;
auto &domInfo = getAnalysis<mlir::DominanceInfo>();
// Traverse the loops in post-order and see
// if those arguments are used inside any loop.
func.walk([&](fir::DoLoopOp loop) {
mlir::Block &body = *loop.getBody();
auto &argsInLoop = argsInLoops[loop];
originalLoops.push_back(loop);
body.walk([&](mlir::Operation *op) {
// Support either fir.array_coor or fir.coordinate_of.
if (!mlir::isa<fir::ArrayCoorOp, fir::CoordinateOp>(op))
return;
// Process only operations immediately nested in the current loop.
if (op->getParentOfType<fir::DoLoopOp>() != loop)
return;
mlir::Value operand = op->getOperand(0);
for (auto a : argsOfInterest) {
if (a.arg == normaliseVal(operand)) {
// Use the reboxed value, not the block arg when re-creating the loop.
a.arg = operand;
// Check that the operand dominates the loop?
// If this is the case, record such operands in argsInLoop.cannot-
// Transform, so that they disable the transformation for the parent
/// loops as well.
if (!domInfo.dominates(a.arg, loop))
argsInLoop.cannotTransform.insert(a.arg);
// No support currently for sliced arrays.
// This means that we cannot transform properly
// instructions referencing a.arg in the whole loop
// nest this loop is located in.
if (auto arrayCoor = mlir::dyn_cast<fir::ArrayCoorOp>(op))
if (arrayCoor.getSlice())
argsInLoop.cannotTransform.insert(a.arg);
if (argsInLoop.cannotTransform.contains(a.arg)) {
// Remove any previously recorded usage, if any.
argsInLoop.usageInfo.erase(a.arg);
break;
}
// Record the a.arg usage, if not recorded yet.
argsInLoop.usageInfo.try_emplace(a.arg, a);
break;
}
}
});
});
// Dump loops info after initial collection.
LLVM_DEBUG({
llvm::dbgs() << "Initial usage info:\n";
for (fir::DoLoopOp loop : originalLoops) {
auto &argsInLoop = argsInLoops[loop];
argsInLoop.dump(loop);
}
});
// Clear argument usage for parent loops if an inner loop
// contains a non-transformable usage.
for (fir::DoLoopOp loop : originalLoops) {
auto &argsInLoop = argsInLoops[loop];
if (argsInLoop.cannotTransform.empty())
continue;
fir::DoLoopOp parent = loop;
while ((parent = parent->getParentOfType<fir::DoLoopOp>()))
argsInLoops[parent].eraseUsage(argsInLoop.cannotTransform);
}
// If an argument access can be optimized in a loop and
// its descendant loop, then it does not make sense to
// generate the contiguity check for the descendant loop.
// The check will be produced as part of the ancestor
// loop's transformation. So we can clear the argument
// usage for all descendant loops.
for (fir::DoLoopOp loop : originalLoops) {
auto &argsInLoop = argsInLoops[loop];
if (argsInLoop.usageInfo.empty())
continue;
loop.getBody()->walk([&](fir::DoLoopOp dloop) {
argsInLoops[dloop].eraseUsage(argsInLoop.usageInfo);
});
}
LLVM_DEBUG({
llvm::dbgs() << "Final usage info:\n";
for (fir::DoLoopOp loop : originalLoops) {
auto &argsInLoop = argsInLoops[loop];
argsInLoop.dump(loop);
}
});
// Reduce the collected information to a list of loops
// with attached arguments usage information.
// The list must hold the loops in post order, so that
// the inner loops are transformed before the outer loops.
struct OpsWithArgs {
mlir::Operation *op;
mlir::SmallVector<ArgInfo, 4> argsAndDims;
};
mlir::SmallVector<OpsWithArgs, 4> loopsOfInterest;
for (fir::DoLoopOp loop : originalLoops) {
auto &argsInLoop = argsInLoops[loop];
if (argsInLoop.usageInfo.empty())
continue;
OpsWithArgs info;
info.op = loop;
for (auto &arg : argsInLoop.usageInfo)
info.argsAndDims.push_back(arg.second);
loopsOfInterest.emplace_back(std::move(info));
}
if (loopsOfInterest.empty()) {
LLVM_DEBUG(llvm::dbgs()
<< "No loops to transform.\n=== End " DEBUG_TYPE " ===\n");
return;
}
// If we get here, there are loops to process.
fir::FirOpBuilder builder{module, std::move(kindMap)};
mlir::Location loc = builder.getUnknownLoc();
mlir::IndexType idxTy = builder.getIndexType();
LLVM_DEBUG(llvm::dbgs() << "Module Before transformation:");
LLVM_DEBUG(module->dump());
LLVM_DEBUG(llvm::dbgs() << "loopsOfInterest: " << loopsOfInterest.size()
<< "\n");
for (auto op : loopsOfInterest) {
LLVM_DEBUG(op.op->dump());
builder.setInsertionPoint(op.op);
mlir::Value allCompares = nullptr;
// Ensure all of the arrays are unit-stride.
for (auto &arg : op.argsAndDims) {
// Fetch all the dimensions of the array, except the last dimension.
// Always fetch the first dimension, however, so set ndims = 1 if
// we have one dim
unsigned ndims = arg.rank;
for (unsigned i = 0; i < ndims; i++) {
mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i);
arg.dims[i] = builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy,
arg.arg, dimIdx);
}
// We only care about lowest order dimension, here.
mlir::Value elemSize =
builder.createIntegerConstant(loc, idxTy, arg.size);
mlir::Value cmp = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::eq, arg.dims[0].getResult(2),
elemSize);
if (!allCompares) {
allCompares = cmp;
} else {
allCompares =
builder.create<mlir::arith::AndIOp>(loc, cmp, allCompares);
}
}
auto ifOp =
builder.create<fir::IfOp>(loc, op.op->getResultTypes(), allCompares,
/*withElse=*/true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
LLVM_DEBUG(llvm::dbgs() << "Creating cloned loop\n");
mlir::Operation *clonedLoop = op.op->clone();
bool changed = false;
for (auto &arg : op.argsAndDims) {
fir::SequenceType::Shape newShape;
newShape.push_back(fir::SequenceType::getUnknownExtent());
auto elementType = fir::unwrapSeqOrBoxedSeqType(arg.arg.getType());
mlir::Type arrTy = fir::SequenceType::get(newShape, elementType);
mlir::Type boxArrTy = fir::BoxType::get(arrTy);
mlir::Type refArrTy = builder.getRefType(arrTy);
auto carg = builder.create<fir::ConvertOp>(loc, boxArrTy, arg.arg);
auto caddr = builder.create<fir::BoxAddrOp>(loc, refArrTy, carg);
auto insPt = builder.saveInsertionPoint();
// Use caddr instead of arg.
clonedLoop->walk([&](mlir::Operation *coop) {
if (!mlir::isa<fir::CoordinateOp, fir::ArrayCoorOp>(coop))
return;
// Reduce the multi-dimensioned index to a single index.
// This is required becase fir arrays do not support multiple dimensions
// with unknown dimensions at compile time.
// We then calculate the multidimensional array like this:
// arr(x, y, z) bedcomes arr(z * stride(2) + y * stride(1) + x)
// where stride is the distance between elements in the dimensions
// 0, 1 and 2 or x, y and z.
if (coop->getOperand(0) == arg.arg && coop->getOperands().size() >= 2) {
builder.setInsertionPoint(coop);
mlir::Value totalIndex;
for (unsigned i = arg.rank - 1; i > 0; i--) {
mlir::Value curIndex =
builder.createConvert(loc, idxTy, getIndex(builder, coop, i));
// Multiply by the stride of this array. Later we'll divide by the
// element size.
mlir::Value scale =
builder.createConvert(loc, idxTy, arg.dims[i].getResult(2));
curIndex =
builder.create<mlir::arith::MulIOp>(loc, scale, curIndex);
totalIndex = (totalIndex) ? builder.create<mlir::arith::AddIOp>(
loc, curIndex, totalIndex)
: curIndex;
}
// This is the lowest dimension - which doesn't need scaling
mlir::Value finalIndex =
builder.createConvert(loc, idxTy, getIndex(builder, coop, 0));
if (totalIndex) {
assert(llvm::isPowerOf2_32(arg.size) &&
"Expected power of two here");
unsigned bits = llvm::Log2_32(arg.size);
mlir::Value elemShift =
builder.createIntegerConstant(loc, idxTy, bits);
totalIndex = builder.create<mlir::arith::AddIOp>(
loc,
builder.create<mlir::arith::ShRSIOp>(loc, totalIndex,
elemShift),
finalIndex);
} else {
totalIndex = finalIndex;
}
auto newOp = builder.create<fir::CoordinateOp>(
loc, builder.getRefType(elementType), caddr,
mlir::ValueRange{totalIndex});
LLVM_DEBUG(newOp->dump());
coop->getResult(0).replaceAllUsesWith(newOp->getResult(0));
coop->erase();
changed = true;
}
});
builder.restoreInsertionPoint(insPt);
}
assert(changed && "Expected operations to have changed");
builder.insert(clonedLoop);
// Forward the result(s), if any, from the loop operation to the
//
mlir::ResultRange results = clonedLoop->getResults();
bool hasResults = (results.size() > 0);
if (hasResults)
builder.create<fir::ResultOp>(loc, results);
// Add the original loop in the else-side of the if operation.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
op.op->replaceAllUsesWith(ifOp);
op.op->remove();
builder.insert(op.op);
// Rely on "cloned loop has results, so original loop also has results".
if (hasResults) {
builder.create<fir::ResultOp>(loc, op.op->getResults());
} else {
// Use an assert to check this.
assert(op.op->getResults().size() == 0 &&
"Weird, the cloned loop doesn't have results, but the original "
"does?");
}
}
LLVM_DEBUG(llvm::dbgs() << "After transform:\n");
LLVM_DEBUG(module->dump());
LLVM_DEBUG(llvm::dbgs() << "=== End " DEBUG_TYPE " ===\n");
}