llvm-project/flang/lib/Optimizer/Transforms/SimplifyIntrinsics.cpp
Christian Sigg fac349a169
Reapply "[mlir] Mark isa/dyn_cast/cast/... member functions depreca… (#90406)
…ted. (#89998)" (#90250)

This partially reverts commit 7aedd7dc754c74a49fe84ed2640e269c25414087.

This change removes calls to the deprecated member functions. It does
not mark the functions deprecated yet and does not disable the
deprecation warning in TypeSwitch. This seems to cause problems with
MSVC.
2024-04-28 22:01:42 +02:00

1397 lines
59 KiB
C++

//===- SimplifyIntrinsics.cpp -- replace intrinsics with simpler form -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// \file
/// This pass looks for suitable calls to runtime library for intrinsics that
/// can be simplified/specialized and replaces with a specialized function.
///
/// For example, SUM(arr) can be specialized as a simple function with one loop,
/// compared to the three arguments (plus file & line info) that the runtime
/// call has - when the argument is a 1D-array (multiple loops may be needed
// for higher dimension arrays, of course)
///
/// The general idea is that besides making the call simpler, it can also be
/// inlined by other passes that run after this pass, which further improves
/// performance, particularly when the work done in the function is trivial
/// and small in size.
//===----------------------------------------------------------------------===//
#include "flang/Common/Fortran.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/LowLevelIntrinsics.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/HLFIR/HLFIRDialect.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "flang/Optimizer/Transforms/Utils.h"
#include "flang/Runtime/entry-names.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Operation.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <llvm/Support/ErrorHandling.h>
#include <mlir/Dialect/Arith/IR/Arith.h>
#include <mlir/IR/BuiltinTypes.h>
#include <mlir/IR/Location.h>
#include <mlir/IR/MLIRContext.h>
#include <mlir/IR/Value.h>
#include <mlir/Support/LLVM.h>
#include <optional>
namespace fir {
#define GEN_PASS_DEF_SIMPLIFYINTRINSICS
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir
#define DEBUG_TYPE "flang-simplify-intrinsics"
namespace {
class SimplifyIntrinsicsPass
: public fir::impl::SimplifyIntrinsicsBase<SimplifyIntrinsicsPass> {
using FunctionTypeGeneratorTy =
llvm::function_ref<mlir::FunctionType(fir::FirOpBuilder &)>;
using FunctionBodyGeneratorTy =
llvm::function_ref<void(fir::FirOpBuilder &, mlir::func::FuncOp &)>;
using GenReductionBodyTy = llvm::function_ref<void(
fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType)>;
public:
using fir::impl::SimplifyIntrinsicsBase<
SimplifyIntrinsicsPass>::SimplifyIntrinsicsBase;
/// Generate a new function implementing a simplified version
/// of a Fortran runtime function defined by \p basename name.
/// \p typeGenerator is a callback that generates the new function's type.
/// \p bodyGenerator is a callback that generates the new function's body.
/// The new function is created in the \p builder's Module.
mlir::func::FuncOp getOrCreateFunction(fir::FirOpBuilder &builder,
const mlir::StringRef &basename,
FunctionTypeGeneratorTy typeGenerator,
FunctionBodyGeneratorTy bodyGenerator);
void runOnOperation() override;
void getDependentDialects(mlir::DialectRegistry &registry) const override;
private:
/// Helper functions to replace a reduction type of call with its
/// simplified form. The actual function is generated using a callback
/// function.
/// \p call is the call to be replaced
/// \p kindMap is used to create FIROpBuilder
/// \p genBodyFunc is the callback that builds the replacement function
void simplifyIntOrFloatReduction(fir::CallOp call,
const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc);
void simplifyLogicalDim0Reduction(fir::CallOp call,
const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc);
void simplifyLogicalDim1Reduction(fir::CallOp call,
const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc);
void simplifyMinMaxlocReduction(fir::CallOp call,
const fir::KindMapping &kindMap, bool isMax);
void simplifyReductionBody(fir::CallOp call, const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc,
fir::FirOpBuilder &builder,
const mlir::StringRef &basename,
mlir::Type elementType);
};
} // namespace
/// Create FirOpBuilder with the provided \p op insertion point
/// and \p kindMap additionally inheriting FastMathFlags from \p op.
static fir::FirOpBuilder
getSimplificationBuilder(mlir::Operation *op, const fir::KindMapping &kindMap) {
fir::FirOpBuilder builder{op, kindMap};
auto fmi = mlir::dyn_cast<mlir::arith::ArithFastMathInterface>(*op);
if (!fmi)
return builder;
// Regardless of what default FastMathFlags are used by FirOpBuilder,
// override them with FastMathFlags attached to the operation.
builder.setFastMathFlags(fmi.getFastMathFlagsAttr().getValue());
return builder;
}
/// Generate function type for the simplified version of RTNAME(Sum) and
/// similar functions with a fir.box<none> type returning \p elementType.
static mlir::FunctionType genNoneBoxType(fir::FirOpBuilder &builder,
const mlir::Type &elementType) {
mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
return mlir::FunctionType::get(builder.getContext(), {boxType},
{elementType});
}
template <typename Op>
Op expectOp(mlir::Value val) {
if (Op op = mlir::dyn_cast_or_null<Op>(val.getDefiningOp()))
return op;
LLVM_DEBUG(llvm::dbgs() << "Didn't find expected " << Op::getOperationName()
<< '\n');
return nullptr;
}
template <typename Op>
static mlir::Value findDefSingle(fir::ConvertOp op) {
if (auto defOp = expectOp<Op>(op->getOperand(0))) {
return defOp.getResult();
}
return {};
}
template <typename... Ops>
static mlir::Value findDef(fir::ConvertOp op) {
mlir::Value defOp;
// Loop over the operation types given to see if any match, exiting once
// a match is found. Cast to void is needed to avoid compiler complaining
// that the result of expression is unused
(void)((defOp = findDefSingle<Ops>(op), (defOp)) || ...);
return defOp;
}
static bool isOperandAbsent(mlir::Value val) {
if (auto op = expectOp<fir::ConvertOp>(val)) {
assert(op->getOperands().size() != 0);
return mlir::isa_and_nonnull<fir::AbsentOp>(
op->getOperand(0).getDefiningOp());
}
return false;
}
static bool isTrueOrNotConstant(mlir::Value val) {
if (auto op = expectOp<mlir::arith::ConstantOp>(val)) {
return !mlir::matchPattern(val, mlir::m_Zero());
}
return true;
}
static bool isZero(mlir::Value val) {
if (auto op = expectOp<fir::ConvertOp>(val)) {
assert(op->getOperands().size() != 0);
if (mlir::Operation *defOp = op->getOperand(0).getDefiningOp())
return mlir::matchPattern(defOp, mlir::m_Zero());
}
return false;
}
static mlir::Value findBoxDef(mlir::Value val) {
if (auto op = expectOp<fir::ConvertOp>(val)) {
assert(op->getOperands().size() != 0);
return findDef<fir::EmboxOp, fir::ReboxOp>(op);
}
return {};
}
static mlir::Value findMaskDef(mlir::Value val) {
if (auto op = expectOp<fir::ConvertOp>(val)) {
assert(op->getOperands().size() != 0);
return findDef<fir::EmboxOp, fir::ReboxOp, fir::AbsentOp>(op);
}
return {};
}
static unsigned getDimCount(mlir::Value val) {
// In order to find the dimensions count, we look for EmboxOp/ReboxOp
// and take the count from its *result* type. Note that in case
// of sliced emboxing the operand and the result of EmboxOp/ReboxOp
// have different types.
// Actually, we can take the box type from the operand of
// the first ConvertOp that has non-opaque box type that we meet
// going through the ConvertOp chain.
if (mlir::Value emboxVal = findBoxDef(val))
if (auto boxTy = mlir::dyn_cast<fir::BoxType>(emboxVal.getType()))
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(boxTy.getEleTy()))
return seqTy.getDimension();
return 0;
}
/// Given the call operation's box argument \p val, discover
/// the element type of the underlying array object.
/// \returns the element type or std::nullopt if the type cannot
/// be reliably found.
/// We expect that the argument is a result of fir.convert
/// with the destination type of !fir.box<none>.
static std::optional<mlir::Type> getArgElementType(mlir::Value val) {
mlir::Operation *defOp;
do {
defOp = val.getDefiningOp();
// Analyze only sequences of convert operations.
if (!mlir::isa<fir::ConvertOp>(defOp))
return std::nullopt;
val = defOp->getOperand(0);
// The convert operation is expected to convert from one
// box type to another box type.
auto boxType = mlir::cast<fir::BoxType>(val.getType());
auto elementType = fir::unwrapSeqOrBoxedSeqType(boxType);
if (!mlir::isa<mlir::NoneType>(elementType))
return elementType;
} while (true);
}
using BodyOpGeneratorTy = llvm::function_ref<mlir::Value(
fir::FirOpBuilder &, mlir::Location, const mlir::Type &, mlir::Value,
mlir::Value)>;
using ContinueLoopGenTy = llvm::function_ref<llvm::SmallVector<mlir::Value>(
fir::FirOpBuilder &, mlir::Location, mlir::Value)>;
/// Generate the reduction loop into \p funcOp.
///
/// \p initVal is a function, called to get the initial value for
/// the reduction value
/// \p genBody is called to fill in the actual reduciton operation
/// for example add for SUM, MAX for MAXVAL, etc.
/// \p rank is the rank of the input argument.
/// \p elementType is the type of the elements in the input array,
/// which may be different to the return type.
/// \p loopCond is called to generate the condition to continue or
/// not for IterWhile loops
/// \p unorderedOrInitalLoopCond contains either a boolean or bool
/// mlir constant, and controls the inital value for while loops
/// or if DoLoop is ordered/unordered.
template <typename OP, typename T, int resultIndex>
static void
genReductionLoop(fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp,
fir::InitValGeneratorTy initVal, ContinueLoopGenTy loopCond,
T unorderedOrInitialLoopCond, BodyOpGeneratorTy genBody,
unsigned rank, mlir::Type elementType, mlir::Location loc) {
mlir::IndexType idxTy = builder.getIndexType();
mlir::Block::BlockArgListType args = funcOp.front().getArguments();
mlir::Value arg = args[0];
mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
fir::SequenceType::Shape flatShape(rank,
fir::SequenceType::getUnknownExtent());
mlir::Type arrTy = fir::SequenceType::get(flatShape, elementType);
mlir::Type boxArrTy = fir::BoxType::get(arrTy);
mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, arg);
mlir::Type resultType = funcOp.getResultTypes()[0];
mlir::Value init = initVal(builder, loc, resultType);
llvm::SmallVector<mlir::Value, Fortran::common::maxRank> bounds;
assert(rank > 0 && "rank cannot be zero");
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
// Compute all the upper bounds before the loop nest.
// It is not strictly necessary for performance, since the loop nest
// does not have any store operations and any LICM optimization
// should be able to optimize the redundancy.
for (unsigned i = 0; i < rank; ++i) {
mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i);
auto dims =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array, dimIdx);
mlir::Value len = dims.getResult(1);
// We use C indexing here, so len-1 as loopcount
mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
bounds.push_back(loopCount);
}
// Create a loop nest consisting of OP operations.
// Collect the loops' induction variables into indices array,
// which will be used in the innermost loop to load the input
// array's element.
// The loops are generated such that the innermost loop processes
// the 0 dimension.
llvm::SmallVector<mlir::Value, Fortran::common::maxRank> indices;
for (unsigned i = rank; 0 < i; --i) {
mlir::Value step = one;
mlir::Value loopCount = bounds[i - 1];
auto loop = builder.create<OP>(loc, zeroIdx, loopCount, step,
unorderedOrInitialLoopCond,
/*finalCountValue=*/false, init);
init = loop.getRegionIterArgs()[resultIndex];
indices.push_back(loop.getInductionVar());
// Set insertion point to the loop body so that the next loop
// is inserted inside the current one.
builder.setInsertionPointToStart(loop.getBody());
}
// Reverse the indices such that they are ordered as:
// <dim-0-idx, dim-1-idx, ...>
std::reverse(indices.begin(), indices.end());
// We are in the innermost loop: generate the reduction body.
mlir::Type eleRefTy = builder.getRefType(elementType);
mlir::Value addr =
builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices);
mlir::Value elem = builder.create<fir::LoadOp>(loc, addr);
mlir::Value reductionVal = genBody(builder, loc, elementType, elem, init);
// Generate vector with condition to continue while loop at [0] and result
// from current loop at [1] for IterWhileOp loops, just result at [0] for
// DoLoopOp loops.
llvm::SmallVector<mlir::Value> results = loopCond(builder, loc, reductionVal);
// Unwind the loop nest and insert ResultOp on each level
// to return the updated value of the reduction to the enclosing
// loops.
for (unsigned i = 0; i < rank; ++i) {
auto result = builder.create<fir::ResultOp>(loc, results);
// Proceed to the outer loop.
auto loop = mlir::cast<OP>(result->getParentOp());
results = loop.getResults();
// Set insertion point after the loop operation that we have
// just processed.
builder.setInsertionPointAfter(loop.getOperation());
}
// End of loop nest. The insertion point is after the outermost loop.
// Return the reduction value from the function.
builder.create<mlir::func::ReturnOp>(loc, results[resultIndex]);
}
static llvm::SmallVector<mlir::Value> nopLoopCond(fir::FirOpBuilder &builder,
mlir::Location loc,
mlir::Value reductionVal) {
return {reductionVal};
}
/// Generate function body of the simplified version of RTNAME(Sum)
/// with signature provided by \p funcOp. The caller is responsible
/// for saving/restoring the original insertion point of \p builder.
/// \p funcOp is expected to be empty on entry to this function.
/// \p rank specifies the rank of the input argument.
static void genRuntimeSumBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType) {
// function RTNAME(Sum)<T>x<rank>_simplified(arr)
// T, dimension(:) :: arr
// T sum = 0
// integer iter
// do iter = 0, extent(arr)
// sum = sum + arr[iter]
// end do
// RTNAME(Sum)<T>x<rank>_simplified = sum
// end function RTNAME(Sum)<T>x<rank>_simplified
auto zero = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
if (auto ty = mlir::dyn_cast<mlir::FloatType>(elementType)) {
const llvm::fltSemantics &sem = ty.getFloatSemantics();
return builder.createRealConstant(loc, elementType,
llvm::APFloat::getZero(sem));
}
return builder.createIntegerConstant(loc, elementType, 0);
};
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType, mlir::Value elem1,
mlir::Value elem2) -> mlir::Value {
if (mlir::isa<mlir::FloatType>(elementType))
return builder.create<mlir::arith::AddFOp>(loc, elem1, elem2);
if (mlir::isa<mlir::IntegerType>(elementType))
return builder.create<mlir::arith::AddIOp>(loc, elem1, elem2);
llvm_unreachable("unsupported type");
return {};
};
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, zero, nopLoopCond,
false, genBodyOp, rank, elementType,
loc);
}
static void genRuntimeMaxvalBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType) {
auto init = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
if (auto ty = mlir::dyn_cast<mlir::FloatType>(elementType)) {
const llvm::fltSemantics &sem = ty.getFloatSemantics();
return builder.createRealConstant(
loc, elementType, llvm::APFloat::getLargest(sem, /*Negative=*/true));
}
unsigned bits = elementType.getIntOrFloatBitWidth();
int64_t minInt = llvm::APInt::getSignedMinValue(bits).getSExtValue();
return builder.createIntegerConstant(loc, elementType, minInt);
};
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType, mlir::Value elem1,
mlir::Value elem2) -> mlir::Value {
if (mlir::isa<mlir::FloatType>(elementType)) {
// arith.maxf later converted to llvm.intr.maxnum does not work
// correctly for NaNs and -0.0 (see maxnum/minnum pattern matching
// in LLVM's InstCombine pass). Moreover, llvm.intr.maxnum
// for F128 operands is lowered into fmaxl call by LLVM.
// This libm function may not work properly for F128 arguments
// on targets where long double is not F128. It is an LLVM issue,
// but we just use normal select here to resolve all the cases.
auto compare = builder.create<mlir::arith::CmpFOp>(
loc, mlir::arith::CmpFPredicate::OGT, elem1, elem2);
return builder.create<mlir::arith::SelectOp>(loc, compare, elem1, elem2);
}
if (mlir::isa<mlir::IntegerType>(elementType))
return builder.create<mlir::arith::MaxSIOp>(loc, elem1, elem2);
llvm_unreachable("unsupported type");
return {};
};
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, init, nopLoopCond,
false, genBodyOp, rank, elementType,
loc);
}
static void genRuntimeCountBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType) {
auto zero = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
unsigned bits = elementType.getIntOrFloatBitWidth();
int64_t zeroInt = llvm::APInt::getZero(bits).getSExtValue();
return builder.createIntegerConstant(loc, elementType, zeroInt);
};
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType, mlir::Value elem1,
mlir::Value elem2) -> mlir::Value {
auto zero32 = builder.createIntegerConstant(loc, elementType, 0);
auto zero64 = builder.createIntegerConstant(loc, builder.getI64Type(), 0);
auto one64 = builder.createIntegerConstant(loc, builder.getI64Type(), 1);
auto compare = builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::eq, elem1, zero32);
auto select =
builder.create<mlir::arith::SelectOp>(loc, compare, zero64, one64);
return builder.create<mlir::arith::AddIOp>(loc, select, elem2);
};
// Count always gets I32 for elementType as it converts logical input to
// logical<4> before passing to the function.
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, zero, nopLoopCond,
false, genBodyOp, rank, elementType,
loc);
}
static void genRuntimeAnyBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType) {
auto zero = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
return builder.createIntegerConstant(loc, elementType, 0);
};
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType, mlir::Value elem1,
mlir::Value elem2) -> mlir::Value {
auto zero = builder.createIntegerConstant(loc, elementType, 0);
return builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::ne, elem1, zero);
};
auto continueCond = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Value reductionVal) {
auto one1 = builder.createIntegerConstant(loc, builder.getI1Type(), 1);
auto eor = builder.create<mlir::arith::XOrIOp>(loc, reductionVal, one1);
llvm::SmallVector<mlir::Value> results = {eor, reductionVal};
return results;
};
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
mlir::Value ok = builder.createBool(loc, true);
genReductionLoop<fir::IterWhileOp, mlir::Value, 1>(
builder, funcOp, zero, continueCond, ok, genBodyOp, rank, elementType,
loc);
}
static void genRuntimeAllBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank,
mlir::Type elementType) {
auto one = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
return builder.createIntegerConstant(loc, elementType, 1);
};
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType, mlir::Value elem1,
mlir::Value elem2) -> mlir::Value {
auto zero = builder.createIntegerConstant(loc, elementType, 0);
return builder.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::ne, elem1, zero);
};
auto continueCond = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Value reductionVal) {
llvm::SmallVector<mlir::Value> results = {reductionVal, reductionVal};
return results;
};
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
mlir::Value ok = builder.createBool(loc, true);
genReductionLoop<fir::IterWhileOp, mlir::Value, 1>(
builder, funcOp, one, continueCond, ok, genBodyOp, rank, elementType,
loc);
}
static mlir::FunctionType genRuntimeMinlocType(fir::FirOpBuilder &builder,
unsigned int rank) {
mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
mlir::Type boxRefType = builder.getRefType(boxType);
return mlir::FunctionType::get(builder.getContext(),
{boxRefType, boxType, boxType}, {});
}
// Produces a loop nest for a Minloc intrinsic.
void fir::genMinMaxlocReductionLoop(
fir::FirOpBuilder &builder, mlir::Value array,
fir::InitValGeneratorTy initVal, fir::MinlocBodyOpGeneratorTy genBody,
fir::AddrGeneratorTy getAddrFn, unsigned rank, mlir::Type elementType,
mlir::Location loc, mlir::Type maskElemType, mlir::Value resultArr,
bool maskMayBeLogicalScalar) {
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
fir::SequenceType::Shape flatShape(rank,
fir::SequenceType::getUnknownExtent());
mlir::Type arrTy = fir::SequenceType::get(flatShape, elementType);
mlir::Type boxArrTy = fir::BoxType::get(arrTy);
array = builder.create<fir::ConvertOp>(loc, boxArrTy, array);
mlir::Type resultElemType = hlfir::getFortranElementType(resultArr.getType());
mlir::Value flagSet = builder.createIntegerConstant(loc, resultElemType, 1);
mlir::Value zero = builder.createIntegerConstant(loc, resultElemType, 0);
mlir::Value flagRef = builder.createTemporary(loc, resultElemType);
builder.create<fir::StoreOp>(loc, zero, flagRef);
mlir::Value init = initVal(builder, loc, elementType);
llvm::SmallVector<mlir::Value, Fortran::common::maxRank> bounds;
assert(rank > 0 && "rank cannot be zero");
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
// Compute all the upper bounds before the loop nest.
// It is not strictly necessary for performance, since the loop nest
// does not have any store operations and any LICM optimization
// should be able to optimize the redundancy.
for (unsigned i = 0; i < rank; ++i) {
mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i);
auto dims =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array, dimIdx);
mlir::Value len = dims.getResult(1);
// We use C indexing here, so len-1 as loopcount
mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
bounds.push_back(loopCount);
}
// Create a loop nest consisting of OP operations.
// Collect the loops' induction variables into indices array,
// which will be used in the innermost loop to load the input
// array's element.
// The loops are generated such that the innermost loop processes
// the 0 dimension.
llvm::SmallVector<mlir::Value, Fortran::common::maxRank> indices;
for (unsigned i = rank; 0 < i; --i) {
mlir::Value step = one;
mlir::Value loopCount = bounds[i - 1];
auto loop =
builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step, false,
/*finalCountValue=*/false, init);
init = loop.getRegionIterArgs()[0];
indices.push_back(loop.getInductionVar());
// Set insertion point to the loop body so that the next loop
// is inserted inside the current one.
builder.setInsertionPointToStart(loop.getBody());
}
// Reverse the indices such that they are ordered as:
// <dim-0-idx, dim-1-idx, ...>
std::reverse(indices.begin(), indices.end());
mlir::Value reductionVal =
genBody(builder, loc, elementType, array, flagRef, init, indices);
// Unwind the loop nest and insert ResultOp on each level
// to return the updated value of the reduction to the enclosing
// loops.
for (unsigned i = 0; i < rank; ++i) {
auto result = builder.create<fir::ResultOp>(loc, reductionVal);
// Proceed to the outer loop.
auto loop = mlir::cast<fir::DoLoopOp>(result->getParentOp());
reductionVal = loop.getResult(0);
// Set insertion point after the loop operation that we have
// just processed.
builder.setInsertionPointAfter(loop.getOperation());
}
// End of loop nest. The insertion point is after the outermost loop.
if (maskMayBeLogicalScalar) {
if (fir::IfOp ifOp =
mlir::dyn_cast<fir::IfOp>(builder.getBlock()->getParentOp())) {
builder.create<fir::ResultOp>(loc, reductionVal);
builder.setInsertionPointAfter(ifOp);
// Redefine flagSet to escape scope of ifOp
flagSet = builder.createIntegerConstant(loc, resultElemType, 1);
reductionVal = ifOp.getResult(0);
}
}
}
static void genRuntimeMinMaxlocBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, bool isMax,
unsigned rank, int maskRank,
mlir::Type elementType,
mlir::Type maskElemType,
mlir::Type resultElemTy, bool isDim) {
auto init = [isMax](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
if (auto ty = mlir::dyn_cast<mlir::FloatType>(elementType)) {
const llvm::fltSemantics &sem = ty.getFloatSemantics();
llvm::APFloat limit = llvm::APFloat::getInf(sem, /*Negative=*/isMax);
return builder.createRealConstant(loc, elementType, limit);
}
unsigned bits = elementType.getIntOrFloatBitWidth();
int64_t initValue = (isMax ? llvm::APInt::getSignedMinValue(bits)
: llvm::APInt::getSignedMaxValue(bits))
.getSExtValue();
return builder.createIntegerConstant(loc, elementType, initValue);
};
mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
mlir::Value mask = funcOp.front().getArgument(2);
// Set up result array in case of early exit / 0 length array
mlir::IndexType idxTy = builder.getIndexType();
mlir::Type resultTy = fir::SequenceType::get(rank, resultElemTy);
mlir::Type resultHeapTy = fir::HeapType::get(resultTy);
mlir::Type resultBoxTy = fir::BoxType::get(resultHeapTy);
mlir::Value returnValue = builder.createIntegerConstant(loc, resultElemTy, 0);
mlir::Value resultArrSize = builder.createIntegerConstant(loc, idxTy, rank);
mlir::Value resultArrInit = builder.create<fir::AllocMemOp>(loc, resultTy);
mlir::Value resultArrShape = builder.create<fir::ShapeOp>(loc, resultArrSize);
mlir::Value resultArr = builder.create<fir::EmboxOp>(
loc, resultBoxTy, resultArrInit, resultArrShape);
mlir::Type resultRefTy = builder.getRefType(resultElemTy);
if (maskRank > 0) {
fir::SequenceType::Shape flatShape(rank,
fir::SequenceType::getUnknownExtent());
mlir::Type maskTy = fir::SequenceType::get(flatShape, maskElemType);
mlir::Type boxMaskTy = fir::BoxType::get(maskTy);
mask = builder.create<fir::ConvertOp>(loc, boxMaskTy, mask);
}
for (unsigned int i = 0; i < rank; ++i) {
mlir::Value index = builder.createIntegerConstant(loc, idxTy, i);
mlir::Value resultElemAddr =
builder.create<fir::CoordinateOp>(loc, resultRefTy, resultArr, index);
builder.create<fir::StoreOp>(loc, returnValue, resultElemAddr);
}
auto genBodyOp =
[&rank, &resultArr, isMax, &mask, &maskElemType, &maskRank](
fir::FirOpBuilder builder, mlir::Location loc, mlir::Type elementType,
mlir::Value array, mlir::Value flagRef, mlir::Value reduction,
const llvm::SmallVectorImpl<mlir::Value> &indices) -> mlir::Value {
// We are in the innermost loop: generate the reduction body.
if (maskRank > 0) {
mlir::Type logicalRef = builder.getRefType(maskElemType);
mlir::Value maskAddr =
builder.create<fir::CoordinateOp>(loc, logicalRef, mask, indices);
mlir::Value maskElem = builder.create<fir::LoadOp>(loc, maskAddr);
// fir::IfOp requires argument to be I1 - won't accept logical or any
// other Integer.
mlir::Type ifCompatType = builder.getI1Type();
mlir::Value ifCompatElem =
builder.create<fir::ConvertOp>(loc, ifCompatType, maskElem);
llvm::SmallVector<mlir::Type> resultsTy = {elementType, elementType};
fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, ifCompatElem,
/*withElseRegion=*/true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
}
// Set flag that mask was true at some point
mlir::Value flagSet = builder.createIntegerConstant(
loc, mlir::cast<fir::ReferenceType>(flagRef.getType()).getEleTy(), 1);
mlir::Value isFirst = builder.create<fir::LoadOp>(loc, flagRef);
mlir::Type eleRefTy = builder.getRefType(elementType);
mlir::Value addr =
builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices);
mlir::Value elem = builder.create<fir::LoadOp>(loc, addr);
mlir::Value cmp;
if (mlir::isa<mlir::FloatType>(elementType)) {
// For FP reductions we want the first smallest value to be used, that
// is not NaN. A OGL/OLT condition will usually work for this unless all
// the values are Nan or Inf. This follows the same logic as
// NumericCompare for Minloc/Maxlox in extrema.cpp.
cmp = builder.create<mlir::arith::CmpFOp>(
loc,
isMax ? mlir::arith::CmpFPredicate::OGT
: mlir::arith::CmpFPredicate::OLT,
elem, reduction);
mlir::Value cmpNan = builder.create<mlir::arith::CmpFOp>(
loc, mlir::arith::CmpFPredicate::UNE, reduction, reduction);
mlir::Value cmpNan2 = builder.create<mlir::arith::CmpFOp>(
loc, mlir::arith::CmpFPredicate::OEQ, elem, elem);
cmpNan = builder.create<mlir::arith::AndIOp>(loc, cmpNan, cmpNan2);
cmp = builder.create<mlir::arith::OrIOp>(loc, cmp, cmpNan);
} else if (mlir::isa<mlir::IntegerType>(elementType)) {
cmp = builder.create<mlir::arith::CmpIOp>(
loc,
isMax ? mlir::arith::CmpIPredicate::sgt
: mlir::arith::CmpIPredicate::slt,
elem, reduction);
} else {
llvm_unreachable("unsupported type");
}
// The condition used for the loop is isFirst || <the condition above>.
isFirst = builder.create<fir::ConvertOp>(loc, cmp.getType(), isFirst);
isFirst = builder.create<mlir::arith::XOrIOp>(
loc, isFirst, builder.createIntegerConstant(loc, cmp.getType(), 1));
cmp = builder.create<mlir::arith::OrIOp>(loc, cmp, isFirst);
fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, cmp,
/*withElseRegion*/ true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
builder.create<fir::StoreOp>(loc, flagSet, flagRef);
mlir::Type resultElemTy = hlfir::getFortranElementType(resultArr.getType());
mlir::Type returnRefTy = builder.getRefType(resultElemTy);
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value one = builder.createIntegerConstant(loc, resultElemTy, 1);
for (unsigned int i = 0; i < rank; ++i) {
mlir::Value index = builder.createIntegerConstant(loc, idxTy, i);
mlir::Value resultElemAddr =
builder.create<fir::CoordinateOp>(loc, returnRefTy, resultArr, index);
mlir::Value convert =
builder.create<fir::ConvertOp>(loc, resultElemTy, indices[i]);
mlir::Value fortranIndex =
builder.create<mlir::arith::AddIOp>(loc, convert, one);
builder.create<fir::StoreOp>(loc, fortranIndex, resultElemAddr);
}
builder.create<fir::ResultOp>(loc, elem);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<fir::ResultOp>(loc, reduction);
builder.setInsertionPointAfter(ifOp);
mlir::Value reductionVal = ifOp.getResult(0);
// Close the mask if needed
if (maskRank > 0) {
fir::IfOp ifOp =
mlir::dyn_cast<fir::IfOp>(builder.getBlock()->getParentOp());
builder.create<fir::ResultOp>(loc, reductionVal);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<fir::ResultOp>(loc, reduction);
reductionVal = ifOp.getResult(0);
builder.setInsertionPointAfter(ifOp);
}
return reductionVal;
};
// if mask is a logical scalar, we can check its value before the main loop
// and either ignore the fact it is there or exit early.
if (maskRank == 0) {
mlir::Type logical = builder.getI1Type();
mlir::IndexType idxTy = builder.getIndexType();
fir::SequenceType::Shape singleElement(1, 1);
mlir::Type arrTy = fir::SequenceType::get(singleElement, logical);
mlir::Type boxArrTy = fir::BoxType::get(arrTy);
mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, mask);
mlir::Value indx = builder.createIntegerConstant(loc, idxTy, 0);
mlir::Type logicalRefTy = builder.getRefType(logical);
mlir::Value condAddr =
builder.create<fir::CoordinateOp>(loc, logicalRefTy, array, indx);
mlir::Value cond = builder.create<fir::LoadOp>(loc, condAddr);
fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, cond,
/*withElseRegion=*/true);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
mlir::Value basicValue;
if (mlir::isa<mlir::IntegerType>(elementType)) {
basicValue = builder.createIntegerConstant(loc, elementType, 0);
} else {
basicValue = builder.createRealConstant(loc, elementType, 0);
}
builder.create<fir::ResultOp>(loc, basicValue);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
}
auto getAddrFn = [](fir::FirOpBuilder builder, mlir::Location loc,
const mlir::Type &resultElemType, mlir::Value resultArr,
mlir::Value index) {
mlir::Type resultRefTy = builder.getRefType(resultElemType);
return builder.create<fir::CoordinateOp>(loc, resultRefTy, resultArr,
index);
};
genMinMaxlocReductionLoop(builder, funcOp.front().getArgument(1), init,
genBodyOp, getAddrFn, rank, elementType, loc,
maskElemType, resultArr, maskRank == 0);
// Store newly created output array to the reference passed in
if (isDim) {
mlir::Type resultBoxTy =
fir::BoxType::get(fir::HeapType::get(resultElemTy));
mlir::Value outputArr = builder.create<fir::ConvertOp>(
loc, builder.getRefType(resultBoxTy), funcOp.front().getArgument(0));
mlir::Value resultArrScalar = builder.create<fir::ConvertOp>(
loc, fir::HeapType::get(resultElemTy), resultArrInit);
mlir::Value resultBox =
builder.create<fir::EmboxOp>(loc, resultBoxTy, resultArrScalar);
builder.create<fir::StoreOp>(loc, resultBox, outputArr);
} else {
fir::SequenceType::Shape resultShape(1, rank);
mlir::Type outputArrTy = fir::SequenceType::get(resultShape, resultElemTy);
mlir::Type outputHeapTy = fir::HeapType::get(outputArrTy);
mlir::Type outputBoxTy = fir::BoxType::get(outputHeapTy);
mlir::Type outputRefTy = builder.getRefType(outputBoxTy);
mlir::Value outputArr = builder.create<fir::ConvertOp>(
loc, outputRefTy, funcOp.front().getArgument(0));
builder.create<fir::StoreOp>(loc, resultArr, outputArr);
}
builder.create<mlir::func::ReturnOp>(loc);
}
/// Generate function type for the simplified version of RTNAME(DotProduct)
/// operating on the given \p elementType.
static mlir::FunctionType genRuntimeDotType(fir::FirOpBuilder &builder,
const mlir::Type &elementType) {
mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
return mlir::FunctionType::get(builder.getContext(), {boxType, boxType},
{elementType});
}
/// Generate function body of the simplified version of RTNAME(DotProduct)
/// with signature provided by \p funcOp. The caller is responsible
/// for saving/restoring the original insertion point of \p builder.
/// \p funcOp is expected to be empty on entry to this function.
/// \p arg1ElementTy and \p arg2ElementTy specify elements types
/// of the underlying array objects - they are used to generate proper
/// element accesses.
static void genRuntimeDotBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp,
mlir::Type arg1ElementTy,
mlir::Type arg2ElementTy) {
// function RTNAME(DotProduct)<T>_simplified(arr1, arr2)
// T, dimension(:) :: arr1, arr2
// T product = 0
// integer iter
// do iter = 0, extent(arr1)
// product = product + arr1[iter] * arr2[iter]
// end do
// RTNAME(ADotProduct)<T>_simplified = product
// end function RTNAME(DotProduct)<T>_simplified
auto loc = mlir::UnknownLoc::get(builder.getContext());
mlir::Type resultElementType = funcOp.getResultTypes()[0];
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value zero =
mlir::isa<mlir::FloatType>(resultElementType)
? builder.createRealConstant(loc, resultElementType, 0.0)
: builder.createIntegerConstant(loc, resultElementType, 0);
mlir::Block::BlockArgListType args = funcOp.front().getArguments();
mlir::Value arg1 = args[0];
mlir::Value arg2 = args[1];
mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
fir::SequenceType::Shape flatShape = {fir::SequenceType::getUnknownExtent()};
mlir::Type arrTy1 = fir::SequenceType::get(flatShape, arg1ElementTy);
mlir::Type boxArrTy1 = fir::BoxType::get(arrTy1);
mlir::Value array1 = builder.create<fir::ConvertOp>(loc, boxArrTy1, arg1);
mlir::Type arrTy2 = fir::SequenceType::get(flatShape, arg2ElementTy);
mlir::Type boxArrTy2 = fir::BoxType::get(arrTy2);
mlir::Value array2 = builder.create<fir::ConvertOp>(loc, boxArrTy2, arg2);
// This version takes the loop trip count from the first argument.
// If the first argument's box has unknown (at compilation time)
// extent, then it may be better to take the extent from the second
// argument - so that after inlining the loop may be better optimized, e.g.
// fully unrolled. This requires generating two versions of the simplified
// function and some analysis at the call site to choose which version
// is more profitable to call.
// Note that we can assume that both arguments have the same extent.
auto dims =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array1, zeroIdx);
mlir::Value len = dims.getResult(1);
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
mlir::Value step = one;
// We use C indexing here, so len-1 as loopcount
mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
auto loop = builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step,
/*unordered=*/false,
/*finalCountValue=*/false, zero);
mlir::Value sumVal = loop.getRegionIterArgs()[0];
// Begin loop code
mlir::OpBuilder::InsertPoint loopEndPt = builder.saveInsertionPoint();
builder.setInsertionPointToStart(loop.getBody());
mlir::Type eleRef1Ty = builder.getRefType(arg1ElementTy);
mlir::Value index = loop.getInductionVar();
mlir::Value addr1 =
builder.create<fir::CoordinateOp>(loc, eleRef1Ty, array1, index);
mlir::Value elem1 = builder.create<fir::LoadOp>(loc, addr1);
// Convert to the result type.
elem1 = builder.create<fir::ConvertOp>(loc, resultElementType, elem1);
mlir::Type eleRef2Ty = builder.getRefType(arg2ElementTy);
mlir::Value addr2 =
builder.create<fir::CoordinateOp>(loc, eleRef2Ty, array2, index);
mlir::Value elem2 = builder.create<fir::LoadOp>(loc, addr2);
// Convert to the result type.
elem2 = builder.create<fir::ConvertOp>(loc, resultElementType, elem2);
if (mlir::isa<mlir::FloatType>(resultElementType))
sumVal = builder.create<mlir::arith::AddFOp>(
loc, builder.create<mlir::arith::MulFOp>(loc, elem1, elem2), sumVal);
else if (mlir::isa<mlir::IntegerType>(resultElementType))
sumVal = builder.create<mlir::arith::AddIOp>(
loc, builder.create<mlir::arith::MulIOp>(loc, elem1, elem2), sumVal);
else
llvm_unreachable("unsupported type");
builder.create<fir::ResultOp>(loc, sumVal);
// End of loop.
builder.restoreInsertionPoint(loopEndPt);
mlir::Value resultVal = loop.getResult(0);
builder.create<mlir::func::ReturnOp>(loc, resultVal);
}
mlir::func::FuncOp SimplifyIntrinsicsPass::getOrCreateFunction(
fir::FirOpBuilder &builder, const mlir::StringRef &baseName,
FunctionTypeGeneratorTy typeGenerator,
FunctionBodyGeneratorTy bodyGenerator) {
// WARNING: if the function generated here changes its signature
// or behavior (the body code), we should probably embed some
// versioning information into its name, otherwise libraries
// statically linked with older versions of Flang may stop
// working with object files created with newer Flang.
// We can also avoid this by using internal linkage, but
// this may increase the size of final executable/shared library.
std::string replacementName = mlir::Twine{baseName, "_simplified"}.str();
// If we already have a function, just return it.
mlir::func::FuncOp newFunc = builder.getNamedFunction(replacementName);
mlir::FunctionType fType = typeGenerator(builder);
if (newFunc) {
assert(newFunc.getFunctionType() == fType &&
"type mismatch for simplified function");
return newFunc;
}
// Need to build the function!
auto loc = mlir::UnknownLoc::get(builder.getContext());
newFunc = builder.createFunction(loc, replacementName, fType);
auto inlineLinkage = mlir::LLVM::linkage::Linkage::LinkonceODR;
auto linkage =
mlir::LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage);
newFunc->setAttr("llvm.linkage", linkage);
// Save the position of the original call.
mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
bodyGenerator(builder, newFunc);
// Now back to where we were adding code earlier...
builder.restoreInsertionPoint(insertPt);
return newFunc;
}
void SimplifyIntrinsicsPass::simplifyIntOrFloatReduction(
fir::CallOp call, const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc) {
// args[1] and args[2] are source filename and line number, ignored.
mlir::Operation::operand_range args = call.getArgs();
const mlir::Value &dim = args[3];
const mlir::Value &mask = args[4];
// dim is zero when it is absent, which is an implementation
// detail in the runtime library.
bool dimAndMaskAbsent = isZero(dim) && isOperandAbsent(mask);
unsigned rank = getDimCount(args[0]);
// Rank is set to 0 for assumed shape arrays, don't simplify
// in these cases
if (!(dimAndMaskAbsent && rank > 0))
return;
mlir::Type resultType = call.getResult(0).getType();
if (!mlir::isa<mlir::FloatType>(resultType) &&
!mlir::isa<mlir::IntegerType>(resultType))
return;
auto argType = getArgElementType(args[0]);
if (!argType)
return;
assert(*argType == resultType &&
"Argument/result types mismatch in reduction");
mlir::SymbolRefAttr callee = call.getCalleeAttr();
fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
std::string fmfString{builder.getFastMathFlagsString()};
std::string funcName =
(mlir::Twine{callee.getLeafReference().getValue(), "x"} +
mlir::Twine{rank} +
// We must mangle the generated function name with FastMathFlags
// value.
(fmfString.empty() ? mlir::Twine{} : mlir::Twine{"_", fmfString}))
.str();
simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName,
resultType);
}
void SimplifyIntrinsicsPass::simplifyLogicalDim0Reduction(
fir::CallOp call, const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc) {
mlir::Operation::operand_range args = call.getArgs();
const mlir::Value &dim = args[3];
unsigned rank = getDimCount(args[0]);
// getDimCount returns a rank of 0 for assumed shape arrays, don't simplify in
// these cases.
if (!(isZero(dim) && rank > 0))
return;
mlir::Value inputBox = findBoxDef(args[0]);
mlir::Type elementType = hlfir::getFortranElementType(inputBox.getType());
mlir::SymbolRefAttr callee = call.getCalleeAttr();
fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
// Treating logicals as integers makes things a lot easier
fir::LogicalType logicalType = {
mlir::dyn_cast<fir::LogicalType>(elementType)};
fir::KindTy kind = logicalType.getFKind();
mlir::Type intElementType = builder.getIntegerType(kind * 8);
// Mangle kind into function name as it is not done by default
std::string funcName =
(mlir::Twine{callee.getLeafReference().getValue(), "Logical"} +
mlir::Twine{kind} + "x" + mlir::Twine{rank})
.str();
simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName,
intElementType);
}
void SimplifyIntrinsicsPass::simplifyLogicalDim1Reduction(
fir::CallOp call, const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc) {
mlir::Operation::operand_range args = call.getArgs();
mlir::SymbolRefAttr callee = call.getCalleeAttr();
mlir::StringRef funcNameBase = callee.getLeafReference().getValue();
unsigned rank = getDimCount(args[0]);
// getDimCount returns a rank of 0 for assumed shape arrays, don't simplify in
// these cases. We check for Dim at the end as some logical functions (Any,
// All) set dim to 1 instead of 0 when the argument is not present.
if (funcNameBase.ends_with("Dim") || !(rank > 0))
return;
mlir::Value inputBox = findBoxDef(args[0]);
mlir::Type elementType = hlfir::getFortranElementType(inputBox.getType());
fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
// Treating logicals as integers makes things a lot easier
fir::LogicalType logicalType = {
mlir::dyn_cast<fir::LogicalType>(elementType)};
fir::KindTy kind = logicalType.getFKind();
mlir::Type intElementType = builder.getIntegerType(kind * 8);
// Mangle kind into function name as it is not done by default
std::string funcName =
(mlir::Twine{callee.getLeafReference().getValue(), "Logical"} +
mlir::Twine{kind} + "x" + mlir::Twine{rank})
.str();
simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName,
intElementType);
}
void SimplifyIntrinsicsPass::simplifyMinMaxlocReduction(
fir::CallOp call, const fir::KindMapping &kindMap, bool isMax) {
mlir::Operation::operand_range args = call.getArgs();
mlir::SymbolRefAttr callee = call.getCalleeAttr();
mlir::StringRef funcNameBase = callee.getLeafReference().getValue();
bool isDim = funcNameBase.ends_with("Dim");
mlir::Value back = args[isDim ? 7 : 6];
if (isTrueOrNotConstant(back))
return;
mlir::Value mask = args[isDim ? 6 : 5];
mlir::Value maskDef = findMaskDef(mask);
// maskDef is set to NULL when the defining op is not one we accept.
// This tends to be because it is a selectOp, in which case let the
// runtime deal with it.
if (maskDef == NULL)
return;
unsigned rank = getDimCount(args[1]);
if ((isDim && rank != 1) || !(rank > 0))
return;
fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
mlir::Location loc = call.getLoc();
auto inputBox = findBoxDef(args[1]);
mlir::Type inputType = hlfir::getFortranElementType(inputBox.getType());
if (mlir::isa<fir::CharacterType>(inputType))
return;
int maskRank;
fir::KindTy kind = 0;
mlir::Type logicalElemType = builder.getI1Type();
if (isOperandAbsent(mask)) {
maskRank = -1;
} else {
maskRank = getDimCount(mask);
mlir::Type maskElemTy = hlfir::getFortranElementType(maskDef.getType());
fir::LogicalType logicalFirType = {
mlir::dyn_cast<fir::LogicalType>(maskElemTy)};
kind = logicalFirType.getFKind();
// Convert fir::LogicalType to mlir::Type
logicalElemType = logicalFirType;
}
mlir::Operation *outputDef = args[0].getDefiningOp();
mlir::Value outputAlloc = outputDef->getOperand(0);
mlir::Type outType = hlfir::getFortranElementType(outputAlloc.getType());
std::string fmfString{builder.getFastMathFlagsString()};
std::string funcName =
(mlir::Twine{callee.getLeafReference().getValue(), "x"} +
mlir::Twine{rank} +
(maskRank >= 0
? "_Logical" + mlir::Twine{kind} + "x" + mlir::Twine{maskRank}
: "") +
"_")
.str();
llvm::raw_string_ostream nameOS(funcName);
outType.print(nameOS);
if (isDim)
nameOS << '_' << inputType;
nameOS << '_' << fmfString;
auto typeGenerator = [rank](fir::FirOpBuilder &builder) {
return genRuntimeMinlocType(builder, rank);
};
auto bodyGenerator = [rank, maskRank, inputType, logicalElemType, outType,
isMax, isDim](fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp) {
genRuntimeMinMaxlocBody(builder, funcOp, isMax, rank, maskRank, inputType,
logicalElemType, outType, isDim);
};
mlir::func::FuncOp newFunc =
getOrCreateFunction(builder, funcName, typeGenerator, bodyGenerator);
builder.create<fir::CallOp>(loc, newFunc,
mlir::ValueRange{args[0], args[1], mask});
call->dropAllReferences();
call->erase();
}
void SimplifyIntrinsicsPass::simplifyReductionBody(
fir::CallOp call, const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc, fir::FirOpBuilder &builder,
const mlir::StringRef &funcName, mlir::Type elementType) {
mlir::Operation::operand_range args = call.getArgs();
mlir::Type resultType = call.getResult(0).getType();
unsigned rank = getDimCount(args[0]);
mlir::Location loc = call.getLoc();
auto typeGenerator = [&resultType](fir::FirOpBuilder &builder) {
return genNoneBoxType(builder, resultType);
};
auto bodyGenerator = [&rank, &genBodyFunc,
&elementType](fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp) {
genBodyFunc(builder, funcOp, rank, elementType);
};
// Mangle the function name with the rank value as "x<rank>".
mlir::func::FuncOp newFunc =
getOrCreateFunction(builder, funcName, typeGenerator, bodyGenerator);
auto newCall =
builder.create<fir::CallOp>(loc, newFunc, mlir::ValueRange{args[0]});
call->replaceAllUsesWith(newCall.getResults());
call->dropAllReferences();
call->erase();
}
void SimplifyIntrinsicsPass::runOnOperation() {
LLVM_DEBUG(llvm::dbgs() << "=== Begin " DEBUG_TYPE " ===\n");
mlir::ModuleOp module = getOperation();
fir::KindMapping kindMap = fir::getKindMapping(module);
module.walk([&](mlir::Operation *op) {
if (auto call = mlir::dyn_cast<fir::CallOp>(op)) {
if (mlir::SymbolRefAttr callee = call.getCalleeAttr()) {
mlir::StringRef funcName = callee.getLeafReference().getValue();
// Replace call to runtime function for SUM when it has single
// argument (no dim or mask argument) for 1D arrays with either
// Integer4 or Real8 types. Other forms are ignored.
// The new function is added to the module.
//
// Prototype for runtime call (from sum.cpp):
// RTNAME(Sum<T>)(const Descriptor &x, const char *source, int line,
// int dim, const Descriptor *mask)
//
if (funcName.starts_with(RTNAME_STRING(Sum))) {
simplifyIntOrFloatReduction(call, kindMap, genRuntimeSumBody);
return;
}
if (funcName.starts_with(RTNAME_STRING(DotProduct))) {
LLVM_DEBUG(llvm::dbgs() << "Handling " << funcName << "\n");
LLVM_DEBUG(llvm::dbgs() << "Call operation:\n"; op->dump();
llvm::dbgs() << "\n");
mlir::Operation::operand_range args = call.getArgs();
const mlir::Value &v1 = args[0];
const mlir::Value &v2 = args[1];
mlir::Location loc = call.getLoc();
fir::FirOpBuilder builder{getSimplificationBuilder(op, kindMap)};
// Stringize the builder's FastMathFlags flags for mangling
// the generated function name.
std::string fmfString{builder.getFastMathFlagsString()};
mlir::Type type = call.getResult(0).getType();
if (!mlir::isa<mlir::FloatType>(type) &&
!mlir::isa<mlir::IntegerType>(type))
return;
// Try to find the element types of the boxed arguments.
auto arg1Type = getArgElementType(v1);
auto arg2Type = getArgElementType(v2);
if (!arg1Type || !arg2Type)
return;
// Support only floating point and integer arguments
// now (e.g. logical is skipped here).
if (!arg1Type->isa<mlir::FloatType>() &&
!arg1Type->isa<mlir::IntegerType>())
return;
if (!arg2Type->isa<mlir::FloatType>() &&
!arg2Type->isa<mlir::IntegerType>())
return;
auto typeGenerator = [&type](fir::FirOpBuilder &builder) {
return genRuntimeDotType(builder, type);
};
auto bodyGenerator = [&arg1Type,
&arg2Type](fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp) {
genRuntimeDotBody(builder, funcOp, *arg1Type, *arg2Type);
};
// Suffix the function name with the element types
// of the arguments.
std::string typedFuncName(funcName);
llvm::raw_string_ostream nameOS(typedFuncName);
// We must mangle the generated function name with FastMathFlags
// value.
if (!fmfString.empty())
nameOS << '_' << fmfString;
nameOS << '_';
arg1Type->print(nameOS);
nameOS << '_';
arg2Type->print(nameOS);
mlir::func::FuncOp newFunc = getOrCreateFunction(
builder, typedFuncName, typeGenerator, bodyGenerator);
auto newCall = builder.create<fir::CallOp>(loc, newFunc,
mlir::ValueRange{v1, v2});
call->replaceAllUsesWith(newCall.getResults());
call->dropAllReferences();
call->erase();
LLVM_DEBUG(llvm::dbgs() << "Replaced with:\n"; newCall.dump();
llvm::dbgs() << "\n");
return;
}
if (funcName.starts_with(RTNAME_STRING(Maxval))) {
simplifyIntOrFloatReduction(call, kindMap, genRuntimeMaxvalBody);
return;
}
if (funcName.starts_with(RTNAME_STRING(Count))) {
simplifyLogicalDim0Reduction(call, kindMap, genRuntimeCountBody);
return;
}
if (funcName.starts_with(RTNAME_STRING(Any))) {
simplifyLogicalDim1Reduction(call, kindMap, genRuntimeAnyBody);
return;
}
if (funcName.ends_with(RTNAME_STRING(All))) {
simplifyLogicalDim1Reduction(call, kindMap, genRuntimeAllBody);
return;
}
if (funcName.starts_with(RTNAME_STRING(Minloc))) {
simplifyMinMaxlocReduction(call, kindMap, false);
return;
}
if (funcName.starts_with(RTNAME_STRING(Maxloc))) {
simplifyMinMaxlocReduction(call, kindMap, true);
return;
}
}
}
});
LLVM_DEBUG(llvm::dbgs() << "=== End " DEBUG_TYPE " ===\n");
}
void SimplifyIntrinsicsPass::getDependentDialects(
mlir::DialectRegistry &registry) const {
// LLVM::LinkageAttr creation requires that LLVM dialect is loaded.
registry.insert<mlir::LLVM::LLVMDialect>();
}