llvm-project/llvm/lib/Target/AMDGPU/AMDGPUPrepareAGPRAlloc.cpp
2025-08-22 13:59:36 +09:00

127 lines
4.1 KiB
C++

//===-- AMDGPUPrepareAGPRAlloc.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Make simple transformations to relax register constraints for cases which can
// allocate to AGPRs or VGPRs. Replace materialize of inline immediates into
// AGPR or VGPR with a pseudo with an AV_* class register constraint. This
// allows later passes to inflate the register class if necessary. The register
// allocator does not know to replace instructions to relax constraints.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUPrepareAGPRAlloc.h"
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
#define DEBUG_TYPE "amdgpu-prepare-agpr-alloc"
namespace {
class AMDGPUPrepareAGPRAllocImpl {
private:
const SIInstrInfo &TII;
MachineRegisterInfo &MRI;
bool isAV64Imm(const MachineOperand &MO) const;
public:
AMDGPUPrepareAGPRAllocImpl(const GCNSubtarget &ST, MachineRegisterInfo &MRI)
: TII(*ST.getInstrInfo()), MRI(MRI) {}
bool run(MachineFunction &MF);
};
class AMDGPUPrepareAGPRAllocLegacy : public MachineFunctionPass {
public:
static char ID;
AMDGPUPrepareAGPRAllocLegacy() : MachineFunctionPass(ID) {
initializeAMDGPUPrepareAGPRAllocLegacyPass(
*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return "AMDGPU Prepare AGPR Alloc"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // End anonymous namespace.
INITIALIZE_PASS_BEGIN(AMDGPUPrepareAGPRAllocLegacy, DEBUG_TYPE,
"AMDGPU Prepare AGPR Alloc", false, false)
INITIALIZE_PASS_END(AMDGPUPrepareAGPRAllocLegacy, DEBUG_TYPE,
"AMDGPU Prepare AGPR Alloc", false, false)
char AMDGPUPrepareAGPRAllocLegacy::ID = 0;
char &llvm::AMDGPUPrepareAGPRAllocLegacyID = AMDGPUPrepareAGPRAllocLegacy::ID;
bool AMDGPUPrepareAGPRAllocLegacy::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
return AMDGPUPrepareAGPRAllocImpl(ST, MF.getRegInfo()).run(MF);
}
PreservedAnalyses
AMDGPUPrepareAGPRAllocPass::run(MachineFunction &MF,
MachineFunctionAnalysisManager &MFAM) {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
AMDGPUPrepareAGPRAllocImpl(ST, MF.getRegInfo()).run(MF);
return PreservedAnalyses::all();
}
bool AMDGPUPrepareAGPRAllocImpl::isAV64Imm(const MachineOperand &MO) const {
return MO.isImm() && TII.isLegalAV64PseudoImm(MO.getImm());
}
bool AMDGPUPrepareAGPRAllocImpl::run(MachineFunction &MF) {
if (MRI.isReserved(AMDGPU::AGPR0))
return false;
const MCInstrDesc &AVImmPseudo32 = TII.get(AMDGPU::AV_MOV_B32_IMM_PSEUDO);
const MCInstrDesc &AVImmPseudo64 = TII.get(AMDGPU::AV_MOV_B64_IMM_PSEUDO);
bool Changed = false;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if ((MI.getOpcode() == AMDGPU::V_MOV_B32_e32 &&
TII.isInlineConstant(MI, 1)) ||
(MI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 &&
MI.getOperand(1).isImm())) {
MI.setDesc(AVImmPseudo32);
Changed = true;
continue;
}
// TODO: If only half of the value is rewritable, is it worth splitting it
// up?
if ((MI.getOpcode() == AMDGPU::V_MOV_B64_e64 ||
MI.getOpcode() == AMDGPU::V_MOV_B64_PSEUDO) &&
isAV64Imm(MI.getOperand(1))) {
MI.setDesc(AVImmPseudo64);
Changed = true;
continue;
}
}
}
return Changed;
}