
This is a major change on how we represent nested name qualifications in the AST. * The nested name specifier itself and how it's stored is changed. The prefixes for types are handled within the type hierarchy, which makes canonicalization for them super cheap, no memory allocation required. Also translating a type into nested name specifier form becomes a no-op. An identifier is stored as a DependentNameType. The nested name specifier gains a lightweight handle class, to be used instead of passing around pointers, which is similar to what is implemented for TemplateName. There is still one free bit available, and this handle can be used within a PointerUnion and PointerIntPair, which should keep bit-packing aficionados happy. * The ElaboratedType node is removed, all type nodes in which it could previously apply to can now store the elaborated keyword and name qualifier, tail allocating when present. * TagTypes can now point to the exact declaration found when producing these, as opposed to the previous situation of there only existing one TagType per entity. This increases the amount of type sugar retained, and can have several applications, for example in tracking module ownership, and other tools which care about source file origins, such as IWYU. These TagTypes are lazily allocated, in order to limit the increase in AST size. This patch offers a great performance benefit. It greatly improves compilation time for [stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for `test_on2.cpp` in that project, which is the slowest compiling test, this patch improves `-c` compilation time by about 7.2%, with the `-fsyntax-only` improvement being at ~12%. This has great results on compile-time-tracker as well:  This patch also further enables other optimziations in the future, and will reduce the performance impact of template specialization resugaring when that lands. It has some other miscelaneous drive-by fixes. About the review: Yes the patch is huge, sorry about that. Part of the reason is that I started by the nested name specifier part, before the ElaboratedType part, but that had a huge performance downside, as ElaboratedType is a big performance hog. I didn't have the steam to go back and change the patch after the fact. There is also a lot of internal API changes, and it made sense to remove ElaboratedType in one go, versus removing it from one type at a time, as that would present much more churn to the users. Also, the nested name specifier having a different API avoids missing changes related to how prefixes work now, which could make existing code compile but not work. How to review: The important changes are all in `clang/include/clang/AST` and `clang/lib/AST`, with also important changes in `clang/lib/Sema/TreeTransform.h`. The rest and bulk of the changes are mostly consequences of the changes in API. PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just for easier to rebasing. I plan to rename it back after this lands. Fixes #136624 Fixes https://github.com/llvm/llvm-project/issues/43179 Fixes https://github.com/llvm/llvm-project/issues/68670 Fixes https://github.com/llvm/llvm-project/issues/92757
728 lines
24 KiB
C++
728 lines
24 KiB
C++
//===- Visitor.cpp ---------------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/InstallAPI/Visitor.h"
|
|
#include "clang/AST/Availability.h"
|
|
#include "clang/AST/ParentMapContext.h"
|
|
#include "clang/AST/VTableBuilder.h"
|
|
#include "clang/Basic/Linkage.h"
|
|
#include "clang/InstallAPI/DylibVerifier.h"
|
|
#include "clang/InstallAPI/FrontendRecords.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Mangler.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::MachO;
|
|
|
|
namespace {
|
|
enum class CXXLinkage {
|
|
ExternalLinkage,
|
|
LinkOnceODRLinkage,
|
|
WeakODRLinkage,
|
|
PrivateLinkage,
|
|
};
|
|
}
|
|
|
|
namespace clang::installapi {
|
|
|
|
// Exported NamedDecl needs to have external linkage and
|
|
// default visibility from LinkageComputer.
|
|
static bool isExported(const NamedDecl *D) {
|
|
auto LV = D->getLinkageAndVisibility();
|
|
return isExternallyVisible(LV.getLinkage()) &&
|
|
(LV.getVisibility() == DefaultVisibility);
|
|
}
|
|
|
|
static bool isInlined(const FunctionDecl *D) {
|
|
bool HasInlineAttribute = false;
|
|
bool NoCXXAttr =
|
|
(!D->getASTContext().getLangOpts().CPlusPlus &&
|
|
!D->getASTContext().getTargetInfo().getCXXABI().isMicrosoft() &&
|
|
!D->hasAttr<DLLExportAttr>());
|
|
|
|
// Check all redeclarations to find an inline attribute or keyword.
|
|
for (const auto *RD : D->redecls()) {
|
|
if (!RD->isInlined())
|
|
continue;
|
|
HasInlineAttribute = true;
|
|
if (!(NoCXXAttr || RD->hasAttr<GNUInlineAttr>()))
|
|
continue;
|
|
if (RD->doesThisDeclarationHaveABody() &&
|
|
RD->isInlineDefinitionExternallyVisible())
|
|
return false;
|
|
}
|
|
|
|
if (!HasInlineAttribute)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static SymbolFlags getFlags(bool WeakDef, bool ThreadLocal = false) {
|
|
SymbolFlags Result = SymbolFlags::None;
|
|
if (WeakDef)
|
|
Result |= SymbolFlags::WeakDefined;
|
|
if (ThreadLocal)
|
|
Result |= SymbolFlags::ThreadLocalValue;
|
|
|
|
return Result;
|
|
}
|
|
|
|
void InstallAPIVisitor::HandleTranslationUnit(ASTContext &ASTCtx) {
|
|
if (ASTCtx.getDiagnostics().hasErrorOccurred())
|
|
return;
|
|
|
|
auto *D = ASTCtx.getTranslationUnitDecl();
|
|
TraverseDecl(D);
|
|
}
|
|
|
|
std::string InstallAPIVisitor::getMangledName(const NamedDecl *D) const {
|
|
SmallString<256> Name;
|
|
if (MC->shouldMangleDeclName(D)) {
|
|
raw_svector_ostream NStream(Name);
|
|
MC->mangleName(D, NStream);
|
|
} else
|
|
Name += D->getNameAsString();
|
|
|
|
return getBackendMangledName(Name);
|
|
}
|
|
|
|
std::string InstallAPIVisitor::getBackendMangledName(Twine Name) const {
|
|
SmallString<256> FinalName;
|
|
Mangler::getNameWithPrefix(FinalName, Name, DataLayout(Layout));
|
|
return std::string(FinalName);
|
|
}
|
|
|
|
std::optional<HeaderType>
|
|
InstallAPIVisitor::getAccessForDecl(const NamedDecl *D) const {
|
|
SourceLocation Loc = D->getLocation();
|
|
if (Loc.isInvalid())
|
|
return std::nullopt;
|
|
|
|
// If the loc refers to a macro expansion, InstallAPI needs to first get the
|
|
// file location of the expansion.
|
|
auto FileLoc = SrcMgr.getFileLoc(Loc);
|
|
FileID ID = SrcMgr.getFileID(FileLoc);
|
|
if (ID.isInvalid())
|
|
return std::nullopt;
|
|
|
|
const FileEntry *FE = SrcMgr.getFileEntryForID(ID);
|
|
if (!FE)
|
|
return std::nullopt;
|
|
|
|
auto Header = Ctx.findAndRecordFile(FE, PP);
|
|
if (!Header.has_value())
|
|
return std::nullopt;
|
|
|
|
HeaderType Access = Header.value();
|
|
assert(Access != HeaderType::Unknown && "unexpected access level for global");
|
|
return Access;
|
|
}
|
|
|
|
/// Check if the interface itself or any of its super classes have an
|
|
/// exception attribute. InstallAPI needs to export an additional symbol
|
|
/// ("OBJC_EHTYPE_$CLASS_NAME") if any of the classes have the exception
|
|
/// attribute.
|
|
static bool hasObjCExceptionAttribute(const ObjCInterfaceDecl *D) {
|
|
for (; D != nullptr; D = D->getSuperClass())
|
|
if (D->hasAttr<ObjCExceptionAttr>())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
void InstallAPIVisitor::recordObjCInstanceVariables(
|
|
const ASTContext &ASTCtx, ObjCContainerRecord *Record, StringRef SuperClass,
|
|
const llvm::iterator_range<
|
|
DeclContext::specific_decl_iterator<ObjCIvarDecl>>
|
|
Ivars) {
|
|
RecordLinkage Linkage = RecordLinkage::Exported;
|
|
const RecordLinkage ContainerLinkage = Record->getLinkage();
|
|
// If fragile, set to unknown.
|
|
if (ASTCtx.getLangOpts().ObjCRuntime.isFragile())
|
|
Linkage = RecordLinkage::Unknown;
|
|
// Linkage should be inherited from container.
|
|
else if (ContainerLinkage != RecordLinkage::Unknown)
|
|
Linkage = ContainerLinkage;
|
|
for (const auto *IV : Ivars) {
|
|
auto Access = getAccessForDecl(IV);
|
|
if (!Access)
|
|
continue;
|
|
StringRef Name = IV->getName();
|
|
const AvailabilityInfo Avail = AvailabilityInfo::createFromDecl(IV);
|
|
auto AC = IV->getCanonicalAccessControl();
|
|
auto [ObjCIVR, FA] =
|
|
Ctx.Slice->addObjCIVar(Record, Name, Linkage, Avail, IV, *Access, AC);
|
|
Ctx.Verifier->verify(ObjCIVR, FA, SuperClass);
|
|
}
|
|
}
|
|
|
|
bool InstallAPIVisitor::VisitObjCInterfaceDecl(const ObjCInterfaceDecl *D) {
|
|
// Skip forward declaration for classes (@class)
|
|
if (!D->isThisDeclarationADefinition())
|
|
return true;
|
|
|
|
// Skip over declarations that access could not be collected for.
|
|
auto Access = getAccessForDecl(D);
|
|
if (!Access)
|
|
return true;
|
|
|
|
StringRef Name = D->getObjCRuntimeNameAsString();
|
|
const RecordLinkage Linkage =
|
|
isExported(D) ? RecordLinkage::Exported : RecordLinkage::Internal;
|
|
const AvailabilityInfo Avail = AvailabilityInfo::createFromDecl(D);
|
|
const bool IsEHType =
|
|
(!D->getASTContext().getLangOpts().ObjCRuntime.isFragile() &&
|
|
hasObjCExceptionAttribute(D));
|
|
|
|
auto [Class, FA] =
|
|
Ctx.Slice->addObjCInterface(Name, Linkage, Avail, D, *Access, IsEHType);
|
|
Ctx.Verifier->verify(Class, FA);
|
|
|
|
// Get base class.
|
|
StringRef SuperClassName;
|
|
if (const auto *SuperClass = D->getSuperClass())
|
|
SuperClassName = SuperClass->getObjCRuntimeNameAsString();
|
|
|
|
recordObjCInstanceVariables(D->getASTContext(), Class, Class->getName(),
|
|
D->ivars());
|
|
return true;
|
|
}
|
|
|
|
bool InstallAPIVisitor::VisitObjCCategoryDecl(const ObjCCategoryDecl *D) {
|
|
StringRef CategoryName = D->getName();
|
|
// Skip over declarations that access could not be collected for.
|
|
auto Access = getAccessForDecl(D);
|
|
if (!Access)
|
|
return true;
|
|
const AvailabilityInfo Avail = AvailabilityInfo::createFromDecl(D);
|
|
const ObjCInterfaceDecl *InterfaceD = D->getClassInterface();
|
|
const StringRef InterfaceName = InterfaceD->getName();
|
|
|
|
ObjCCategoryRecord *CategoryRecord =
|
|
Ctx.Slice->addObjCCategory(InterfaceName, CategoryName, Avail, D, *Access)
|
|
.first;
|
|
recordObjCInstanceVariables(D->getASTContext(), CategoryRecord, InterfaceName,
|
|
D->ivars());
|
|
return true;
|
|
}
|
|
|
|
bool InstallAPIVisitor::VisitVarDecl(const VarDecl *D) {
|
|
// Skip function parameters.
|
|
if (isa<ParmVarDecl>(D))
|
|
return true;
|
|
|
|
// Skip variables in records. They are handled separately for C++.
|
|
if (D->getDeclContext()->isRecord())
|
|
return true;
|
|
|
|
// Skip anything inside functions or methods.
|
|
if (!D->isDefinedOutsideFunctionOrMethod())
|
|
return true;
|
|
|
|
// If this is a template but not specialization or instantiation, skip.
|
|
if (D->getASTContext().getTemplateOrSpecializationInfo(D) &&
|
|
D->getTemplateSpecializationKind() == TSK_Undeclared)
|
|
return true;
|
|
|
|
// Skip over declarations that access could not collected for.
|
|
auto Access = getAccessForDecl(D);
|
|
if (!Access)
|
|
return true;
|
|
|
|
const RecordLinkage Linkage =
|
|
isExported(D) ? RecordLinkage::Exported : RecordLinkage::Internal;
|
|
const bool WeakDef = D->hasAttr<WeakAttr>();
|
|
const bool ThreadLocal = D->getTLSKind() != VarDecl::TLS_None;
|
|
const AvailabilityInfo Avail = AvailabilityInfo::createFromDecl(D);
|
|
auto [GR, FA] = Ctx.Slice->addGlobal(getMangledName(D), Linkage,
|
|
GlobalRecord::Kind::Variable, Avail, D,
|
|
*Access, getFlags(WeakDef, ThreadLocal));
|
|
Ctx.Verifier->verify(GR, FA);
|
|
return true;
|
|
}
|
|
|
|
bool InstallAPIVisitor::VisitFunctionDecl(const FunctionDecl *D) {
|
|
if (const CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(D)) {
|
|
// Skip member function in class templates.
|
|
if (M->getParent()->getDescribedClassTemplate() != nullptr)
|
|
return true;
|
|
|
|
// Skip methods in CXX RecordDecls.
|
|
for (const DynTypedNode &P : D->getASTContext().getParents(*M)) {
|
|
if (P.get<CXXRecordDecl>())
|
|
return true;
|
|
}
|
|
|
|
// Skip CXX ConstructorDecls and DestructorDecls.
|
|
if (isa<CXXConstructorDecl>(M) || isa<CXXDestructorDecl>(M))
|
|
return true;
|
|
}
|
|
|
|
// Skip templated functions.
|
|
switch (D->getTemplatedKind()) {
|
|
case FunctionDecl::TK_NonTemplate:
|
|
case FunctionDecl::TK_DependentNonTemplate:
|
|
break;
|
|
case FunctionDecl::TK_MemberSpecialization:
|
|
case FunctionDecl::TK_FunctionTemplateSpecialization:
|
|
if (auto *TempInfo = D->getTemplateSpecializationInfo()) {
|
|
if (!TempInfo->isExplicitInstantiationOrSpecialization())
|
|
return true;
|
|
}
|
|
break;
|
|
case FunctionDecl::TK_FunctionTemplate:
|
|
case FunctionDecl::TK_DependentFunctionTemplateSpecialization:
|
|
return true;
|
|
}
|
|
|
|
auto Access = getAccessForDecl(D);
|
|
if (!Access)
|
|
return true;
|
|
auto Name = getMangledName(D);
|
|
const AvailabilityInfo Avail = AvailabilityInfo::createFromDecl(D);
|
|
const bool ExplicitInstantiation = D->getTemplateSpecializationKind() ==
|
|
TSK_ExplicitInstantiationDeclaration;
|
|
const bool WeakDef = ExplicitInstantiation || D->hasAttr<WeakAttr>();
|
|
const bool Inlined = isInlined(D);
|
|
const RecordLinkage Linkage = (Inlined || !isExported(D))
|
|
? RecordLinkage::Internal
|
|
: RecordLinkage::Exported;
|
|
auto [GR, FA] =
|
|
Ctx.Slice->addGlobal(Name, Linkage, GlobalRecord::Kind::Function, Avail,
|
|
D, *Access, getFlags(WeakDef), Inlined);
|
|
Ctx.Verifier->verify(GR, FA);
|
|
return true;
|
|
}
|
|
|
|
static bool hasVTable(const CXXRecordDecl *D) {
|
|
// Check if vtable symbols should be emitted, only dynamic classes need
|
|
// vtables.
|
|
if (!D->hasDefinition() || !D->isDynamicClass())
|
|
return false;
|
|
|
|
assert(D->isExternallyVisible() && "Should be externally visible");
|
|
assert(D->isCompleteDefinition() && "Only works on complete definitions");
|
|
|
|
const CXXMethodDecl *KeyFunctionD =
|
|
D->getASTContext().getCurrentKeyFunction(D);
|
|
// If this class has a key function, then there is a vtable, possibly internal
|
|
// though.
|
|
if (KeyFunctionD) {
|
|
switch (KeyFunctionD->getTemplateSpecializationKind()) {
|
|
case TSK_Undeclared:
|
|
case TSK_ExplicitSpecialization:
|
|
case TSK_ImplicitInstantiation:
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
return true;
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
llvm_unreachable(
|
|
"Unexpected TemplateSpecializationKind for key function");
|
|
}
|
|
} else if (D->isAbstract()) {
|
|
// If the class is abstract and it doesn't have a key function, it is a
|
|
// 'pure' virtual class. It doesn't need a vtable.
|
|
return false;
|
|
}
|
|
|
|
switch (D->getTemplateSpecializationKind()) {
|
|
case TSK_Undeclared:
|
|
case TSK_ExplicitSpecialization:
|
|
case TSK_ImplicitInstantiation:
|
|
return false;
|
|
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
return true;
|
|
}
|
|
|
|
llvm_unreachable("Invalid TemplateSpecializationKind!");
|
|
}
|
|
|
|
static CXXLinkage getVTableLinkage(const CXXRecordDecl *D) {
|
|
assert((D->hasDefinition() && D->isDynamicClass()) && "Record has no vtable");
|
|
assert(D->isExternallyVisible() && "Record should be externally visible");
|
|
if (D->getVisibility() == HiddenVisibility)
|
|
return CXXLinkage::PrivateLinkage;
|
|
|
|
const CXXMethodDecl *KeyFunctionD =
|
|
D->getASTContext().getCurrentKeyFunction(D);
|
|
if (KeyFunctionD) {
|
|
// If this class has a key function, use that to determine the
|
|
// linkage of the vtable.
|
|
switch (KeyFunctionD->getTemplateSpecializationKind()) {
|
|
case TSK_Undeclared:
|
|
case TSK_ExplicitSpecialization:
|
|
if (isInlined(KeyFunctionD))
|
|
return CXXLinkage::LinkOnceODRLinkage;
|
|
return CXXLinkage::ExternalLinkage;
|
|
case TSK_ImplicitInstantiation:
|
|
llvm_unreachable("No external vtable for implicit instantiations");
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
return CXXLinkage::WeakODRLinkage;
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
llvm_unreachable(
|
|
"Unexpected TemplateSpecializationKind for key function");
|
|
}
|
|
}
|
|
|
|
switch (D->getTemplateSpecializationKind()) {
|
|
case TSK_Undeclared:
|
|
case TSK_ExplicitSpecialization:
|
|
case TSK_ImplicitInstantiation:
|
|
return CXXLinkage::LinkOnceODRLinkage;
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
return CXXLinkage::WeakODRLinkage;
|
|
}
|
|
|
|
llvm_unreachable("Invalid TemplateSpecializationKind!");
|
|
}
|
|
|
|
static bool isRTTIWeakDef(const CXXRecordDecl *D) {
|
|
if (D->hasAttr<WeakAttr>())
|
|
return true;
|
|
|
|
if (D->isAbstract() && D->getASTContext().getCurrentKeyFunction(D) == nullptr)
|
|
return true;
|
|
|
|
if (D->isDynamicClass())
|
|
return getVTableLinkage(D) != CXXLinkage::ExternalLinkage;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool hasRTTI(const CXXRecordDecl *D) {
|
|
if (!D->getASTContext().getLangOpts().RTTI)
|
|
return false;
|
|
|
|
if (!D->hasDefinition())
|
|
return false;
|
|
|
|
if (!D->isDynamicClass())
|
|
return false;
|
|
|
|
// Don't emit weak-def RTTI information. InstallAPI cannot reliably determine
|
|
// if the final binary will have those weak defined RTTI symbols. This depends
|
|
// on the optimization level and if the class has been instantiated and used.
|
|
//
|
|
// Luckily, the Apple static linker doesn't need those weak defined RTTI
|
|
// symbols for linking. They are only needed by the runtime linker. That means
|
|
// they can be safely dropped.
|
|
if (isRTTIWeakDef(D))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
std::string
|
|
InstallAPIVisitor::getMangledCXXRTTIName(const CXXRecordDecl *D) const {
|
|
SmallString<256> Name;
|
|
raw_svector_ostream NameStream(Name);
|
|
MC->mangleCXXRTTIName(MC->getASTContext().getCanonicalTagType(D), NameStream);
|
|
|
|
return getBackendMangledName(Name);
|
|
}
|
|
|
|
std::string InstallAPIVisitor::getMangledCXXRTTI(const CXXRecordDecl *D) const {
|
|
SmallString<256> Name;
|
|
raw_svector_ostream NameStream(Name);
|
|
MC->mangleCXXRTTI(MC->getASTContext().getCanonicalTagType(D), NameStream);
|
|
|
|
return getBackendMangledName(Name);
|
|
}
|
|
|
|
std::string
|
|
InstallAPIVisitor::getMangledCXXVTableName(const CXXRecordDecl *D) const {
|
|
SmallString<256> Name;
|
|
raw_svector_ostream NameStream(Name);
|
|
MC->mangleCXXVTable(D, NameStream);
|
|
|
|
return getBackendMangledName(Name);
|
|
}
|
|
|
|
std::string InstallAPIVisitor::getMangledCXXThunk(
|
|
const GlobalDecl &D, const ThunkInfo &Thunk, bool ElideOverrideInfo) const {
|
|
SmallString<256> Name;
|
|
raw_svector_ostream NameStream(Name);
|
|
const auto *Method = cast<CXXMethodDecl>(D.getDecl());
|
|
if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(Method))
|
|
MC->mangleCXXDtorThunk(Dtor, D.getDtorType(), Thunk, ElideOverrideInfo,
|
|
NameStream);
|
|
else
|
|
MC->mangleThunk(Method, Thunk, ElideOverrideInfo, NameStream);
|
|
|
|
return getBackendMangledName(Name);
|
|
}
|
|
|
|
std::string InstallAPIVisitor::getMangledCtorDtor(const CXXMethodDecl *D,
|
|
int Type) const {
|
|
SmallString<256> Name;
|
|
raw_svector_ostream NameStream(Name);
|
|
GlobalDecl GD;
|
|
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(D))
|
|
GD = GlobalDecl(Ctor, CXXCtorType(Type));
|
|
else {
|
|
const auto *Dtor = cast<CXXDestructorDecl>(D);
|
|
GD = GlobalDecl(Dtor, CXXDtorType(Type));
|
|
}
|
|
MC->mangleName(GD, NameStream);
|
|
return getBackendMangledName(Name);
|
|
}
|
|
|
|
void InstallAPIVisitor::emitVTableSymbols(const CXXRecordDecl *D,
|
|
const AvailabilityInfo &Avail,
|
|
const HeaderType Access,
|
|
bool EmittedVTable) {
|
|
if (hasVTable(D)) {
|
|
EmittedVTable = true;
|
|
const CXXLinkage VTableLinkage = getVTableLinkage(D);
|
|
if (VTableLinkage == CXXLinkage::ExternalLinkage ||
|
|
VTableLinkage == CXXLinkage::WeakODRLinkage) {
|
|
const std::string Name = getMangledCXXVTableName(D);
|
|
const bool WeakDef = VTableLinkage == CXXLinkage::WeakODRLinkage;
|
|
auto [GR, FA] = Ctx.Slice->addGlobal(Name, RecordLinkage::Exported,
|
|
GlobalRecord::Kind::Variable, Avail,
|
|
D, Access, getFlags(WeakDef));
|
|
Ctx.Verifier->verify(GR, FA);
|
|
if (!D->getDescribedClassTemplate() && !D->isInvalidDecl()) {
|
|
VTableContextBase *VTable = D->getASTContext().getVTableContext();
|
|
auto AddThunk = [&](GlobalDecl GD) {
|
|
const ItaniumVTableContext::ThunkInfoVectorTy *Thunks =
|
|
VTable->getThunkInfo(GD);
|
|
if (!Thunks)
|
|
return;
|
|
|
|
for (const auto &Thunk : *Thunks) {
|
|
const std::string Name =
|
|
getMangledCXXThunk(GD, Thunk, /*ElideOverrideInfo=*/true);
|
|
auto [GR, FA] = Ctx.Slice->addGlobal(Name, RecordLinkage::Exported,
|
|
GlobalRecord::Kind::Function,
|
|
Avail, GD.getDecl(), Access);
|
|
Ctx.Verifier->verify(GR, FA);
|
|
}
|
|
};
|
|
|
|
for (const auto *Method : D->methods()) {
|
|
if (isa<CXXConstructorDecl>(Method) || !Method->isVirtual())
|
|
continue;
|
|
|
|
if (auto Dtor = dyn_cast<CXXDestructorDecl>(Method)) {
|
|
// Skip default destructor.
|
|
if (Dtor->isDefaulted())
|
|
continue;
|
|
AddThunk({Dtor, Dtor_Deleting});
|
|
AddThunk({Dtor, Dtor_Complete});
|
|
} else
|
|
AddThunk(Method);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!EmittedVTable)
|
|
return;
|
|
|
|
if (hasRTTI(D)) {
|
|
std::string Name = getMangledCXXRTTI(D);
|
|
auto [GR, FA] =
|
|
Ctx.Slice->addGlobal(Name, RecordLinkage::Exported,
|
|
GlobalRecord::Kind::Variable, Avail, D, Access);
|
|
Ctx.Verifier->verify(GR, FA);
|
|
|
|
Name = getMangledCXXRTTIName(D);
|
|
auto [NamedGR, NamedFA] =
|
|
Ctx.Slice->addGlobal(Name, RecordLinkage::Exported,
|
|
GlobalRecord::Kind::Variable, Avail, D, Access);
|
|
Ctx.Verifier->verify(NamedGR, NamedFA);
|
|
}
|
|
|
|
for (const auto &It : D->bases()) {
|
|
const CXXRecordDecl *Base = cast<CXXRecordDecl>(
|
|
It.getType()->castAs<RecordType>()->getOriginalDecl());
|
|
const auto BaseAccess = getAccessForDecl(Base);
|
|
if (!BaseAccess)
|
|
continue;
|
|
const AvailabilityInfo BaseAvail = AvailabilityInfo::createFromDecl(Base);
|
|
emitVTableSymbols(Base, BaseAvail, *BaseAccess, /*EmittedVTable=*/true);
|
|
}
|
|
}
|
|
|
|
bool InstallAPIVisitor::VisitCXXRecordDecl(const CXXRecordDecl *D) {
|
|
if (!D->isCompleteDefinition())
|
|
return true;
|
|
|
|
// Skip templated classes.
|
|
if (D->getDescribedClassTemplate() != nullptr)
|
|
return true;
|
|
|
|
// Skip partial templated classes too.
|
|
if (isa<ClassTemplatePartialSpecializationDecl>(D))
|
|
return true;
|
|
|
|
auto Access = getAccessForDecl(D);
|
|
if (!Access)
|
|
return true;
|
|
const AvailabilityInfo Avail = AvailabilityInfo::createFromDecl(D);
|
|
|
|
// Check whether to emit the vtable/rtti symbols.
|
|
if (isExported(D))
|
|
emitVTableSymbols(D, Avail, *Access);
|
|
|
|
TemplateSpecializationKind ClassSK = TSK_Undeclared;
|
|
bool KeepInlineAsWeak = false;
|
|
if (auto *Templ = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
|
|
ClassSK = Templ->getTemplateSpecializationKind();
|
|
if (ClassSK == TSK_ExplicitInstantiationDeclaration)
|
|
KeepInlineAsWeak = true;
|
|
}
|
|
|
|
// Record the class methods.
|
|
for (const auto *M : D->methods()) {
|
|
// Inlined methods are usually not emitted, except when it comes from a
|
|
// specialized template.
|
|
bool WeakDef = false;
|
|
if (isInlined(M)) {
|
|
if (!KeepInlineAsWeak)
|
|
continue;
|
|
|
|
WeakDef = true;
|
|
}
|
|
|
|
if (!isExported(M))
|
|
continue;
|
|
|
|
switch (M->getTemplateSpecializationKind()) {
|
|
case TSK_Undeclared:
|
|
case TSK_ExplicitSpecialization:
|
|
break;
|
|
case TSK_ImplicitInstantiation:
|
|
continue;
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
if (ClassSK == TSK_ExplicitInstantiationDeclaration)
|
|
WeakDef = true;
|
|
break;
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
WeakDef = true;
|
|
break;
|
|
}
|
|
|
|
if (!M->isUserProvided())
|
|
continue;
|
|
|
|
// Methods that are deleted are not exported.
|
|
if (M->isDeleted())
|
|
continue;
|
|
|
|
const auto Access = getAccessForDecl(M);
|
|
if (!Access)
|
|
return true;
|
|
const AvailabilityInfo Avail = AvailabilityInfo::createFromDecl(M);
|
|
|
|
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(M)) {
|
|
// Defaulted constructors are not exported.
|
|
if (Ctor->isDefaulted())
|
|
continue;
|
|
|
|
std::string Name = getMangledCtorDtor(M, Ctor_Base);
|
|
auto [GR, FA] = Ctx.Slice->addGlobal(Name, RecordLinkage::Exported,
|
|
GlobalRecord::Kind::Function, Avail,
|
|
D, *Access, getFlags(WeakDef));
|
|
Ctx.Verifier->verify(GR, FA);
|
|
|
|
if (!D->isAbstract()) {
|
|
std::string Name = getMangledCtorDtor(M, Ctor_Complete);
|
|
auto [GR, FA] = Ctx.Slice->addGlobal(
|
|
Name, RecordLinkage::Exported, GlobalRecord::Kind::Function, Avail,
|
|
D, *Access, getFlags(WeakDef));
|
|
Ctx.Verifier->verify(GR, FA);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(M)) {
|
|
// Defaulted destructors are not exported.
|
|
if (Dtor->isDefaulted())
|
|
continue;
|
|
|
|
std::string Name = getMangledCtorDtor(M, Dtor_Base);
|
|
auto [GR, FA] = Ctx.Slice->addGlobal(Name, RecordLinkage::Exported,
|
|
GlobalRecord::Kind::Function, Avail,
|
|
D, *Access, getFlags(WeakDef));
|
|
Ctx.Verifier->verify(GR, FA);
|
|
|
|
Name = getMangledCtorDtor(M, Dtor_Complete);
|
|
auto [CompleteGR, CompleteFA] = Ctx.Slice->addGlobal(
|
|
Name, RecordLinkage::Exported, GlobalRecord::Kind::Function, Avail, D,
|
|
*Access, getFlags(WeakDef));
|
|
Ctx.Verifier->verify(CompleteGR, CompleteFA);
|
|
|
|
if (Dtor->isVirtual()) {
|
|
Name = getMangledCtorDtor(M, Dtor_Deleting);
|
|
auto [VirtualGR, VirtualFA] = Ctx.Slice->addGlobal(
|
|
Name, RecordLinkage::Exported, GlobalRecord::Kind::Function, Avail,
|
|
D, *Access, getFlags(WeakDef));
|
|
Ctx.Verifier->verify(VirtualGR, VirtualFA);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// Though abstract methods can map to exports, this is generally unexpected.
|
|
// Except in the case of destructors. Only ignore pure virtuals after
|
|
// checking if the member function was a destructor.
|
|
if (M->isPureVirtual())
|
|
continue;
|
|
|
|
std::string Name = getMangledName(M);
|
|
auto [GR, FA] = Ctx.Slice->addGlobal(Name, RecordLinkage::Exported,
|
|
GlobalRecord::Kind::Function, Avail, M,
|
|
*Access, getFlags(WeakDef));
|
|
Ctx.Verifier->verify(GR, FA);
|
|
}
|
|
|
|
if (auto *Templ = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
|
|
if (!Templ->isExplicitInstantiationOrSpecialization())
|
|
return true;
|
|
}
|
|
|
|
using var_iter = CXXRecordDecl::specific_decl_iterator<VarDecl>;
|
|
using var_range = iterator_range<var_iter>;
|
|
for (const auto *Var : var_range(D->decls())) {
|
|
// Skip const static member variables.
|
|
// \code
|
|
// struct S {
|
|
// static const int x = 0;
|
|
// };
|
|
// \endcode
|
|
if (Var->isStaticDataMember() && Var->hasInit())
|
|
continue;
|
|
|
|
// Skip unexported var decls.
|
|
if (!isExported(Var))
|
|
continue;
|
|
|
|
const std::string Name = getMangledName(Var);
|
|
const auto Access = getAccessForDecl(Var);
|
|
if (!Access)
|
|
return true;
|
|
const AvailabilityInfo Avail = AvailabilityInfo::createFromDecl(Var);
|
|
const bool WeakDef = Var->hasAttr<WeakAttr>() || KeepInlineAsWeak;
|
|
|
|
auto [GR, FA] = Ctx.Slice->addGlobal(Name, RecordLinkage::Exported,
|
|
GlobalRecord::Kind::Variable, Avail, D,
|
|
*Access, getFlags(WeakDef));
|
|
Ctx.Verifier->verify(GR, FA);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace clang::installapi
|