llvm-project/llvm/lib/Object/OffloadBinary.cpp
Joseph Huber 5dbc7cf7ca [Object] Refactor code for extracting offload binaries
We currently extract offload binaries inside of the linker wrapper.
Other tools may wish to do the same extraction operation. This patch
simply factors out this handling into the `OffloadBinary.h` interface.

Reviewed By: yaxunl

Differential Revision: https://reviews.llvm.org/D132689
2022-09-06 08:55:16 -05:00

325 lines
11 KiB
C++

//===- Offloading.cpp - Utilities for handling offloading code -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/OffloadBinary.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/BinaryFormat/Magic.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Module.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/ArchiveWriter.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/Error.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/SourceMgr.h"
using namespace llvm;
using namespace llvm::object;
namespace {
/// Attempts to extract all the embedded device images contained inside the
/// buffer \p Contents. The buffer is expected to contain a valid offloading
/// binary format.
Error extractOffloadFiles(MemoryBufferRef Contents,
SmallVectorImpl<OffloadFile> &Binaries) {
uint64_t Offset = 0;
// There could be multiple offloading binaries stored at this section.
while (Offset < Contents.getBuffer().size()) {
std::unique_ptr<MemoryBuffer> Buffer =
MemoryBuffer::getMemBuffer(Contents.getBuffer().drop_front(Offset), "",
/*RequiresNullTerminator*/ false);
auto BinaryOrErr = OffloadBinary::create(*Buffer);
if (!BinaryOrErr)
return BinaryOrErr.takeError();
OffloadBinary &Binary = **BinaryOrErr;
// Create a new owned binary with a copy of the original memory.
std::unique_ptr<MemoryBuffer> BufferCopy = MemoryBuffer::getMemBufferCopy(
Binary.getData().take_front(Binary.getSize()),
Contents.getBufferIdentifier());
auto NewBinaryOrErr = OffloadBinary::create(*BufferCopy);
if (!NewBinaryOrErr)
return NewBinaryOrErr.takeError();
Binaries.emplace_back(std::move(*NewBinaryOrErr), std::move(BufferCopy));
Offset += Binary.getSize();
}
return Error::success();
}
// Extract offloading binaries from an Object file \p Obj.
Error extractFromBinary(const ObjectFile &Obj,
SmallVectorImpl<OffloadFile> &Binaries) {
for (ELFSectionRef Sec : Obj.sections()) {
if (Sec.getType() != ELF::SHT_LLVM_OFFLOADING)
continue;
Expected<StringRef> Buffer = Sec.getContents();
if (!Buffer)
return Buffer.takeError();
MemoryBufferRef Contents(*Buffer, Obj.getFileName());
if (Error Err = extractOffloadFiles(Contents, Binaries))
return Err;
}
return Error::success();
}
Error extractFromBitcode(MemoryBufferRef Buffer,
SmallVectorImpl<OffloadFile> &Binaries) {
LLVMContext Context;
SMDiagnostic Err;
std::unique_ptr<Module> M = getLazyIRModule(
MemoryBuffer::getMemBuffer(Buffer, /*RequiresNullTerminator=*/false), Err,
Context);
if (!M)
return createStringError(inconvertibleErrorCode(),
"Failed to create module");
// Extract offloading data from globals referenced by the
// `llvm.embedded.object` metadata with the `.llvm.offloading` section.
auto *MD = M->getNamedMetadata("llvm.embedded.objects");
if (!MD)
return Error::success();
for (const MDNode *Op : MD->operands()) {
if (Op->getNumOperands() < 2)
continue;
MDString *SectionID = dyn_cast<MDString>(Op->getOperand(1));
if (!SectionID || SectionID->getString() != ".llvm.offloading")
continue;
GlobalVariable *GV =
mdconst::dyn_extract_or_null<GlobalVariable>(Op->getOperand(0));
if (!GV)
continue;
auto *CDS = dyn_cast<ConstantDataSequential>(GV->getInitializer());
if (!CDS)
continue;
MemoryBufferRef Contents(CDS->getAsString(), M->getName());
if (Error Err = extractOffloadFiles(Contents, Binaries))
return Err;
}
return Error::success();
}
Error extractFromArchive(const Archive &Library,
SmallVectorImpl<OffloadFile> &Binaries) {
// Try to extract device code from each file stored in the static archive.
Error Err = Error::success();
for (auto Child : Library.children(Err)) {
auto ChildBufferOrErr = Child.getMemoryBufferRef();
if (!ChildBufferOrErr)
return ChildBufferOrErr.takeError();
std::unique_ptr<MemoryBuffer> ChildBuffer =
MemoryBuffer::getMemBuffer(*ChildBufferOrErr, false);
// Check if the buffer has the required alignment.
if (!isAddrAligned(Align(OffloadBinary::getAlignment()),
ChildBuffer->getBufferStart()))
ChildBuffer = MemoryBuffer::getMemBufferCopy(
ChildBufferOrErr->getBuffer(),
ChildBufferOrErr->getBufferIdentifier());
if (Error Err = extractOffloadBinaries(*ChildBuffer, Binaries))
return Err;
}
if (Err)
return Err;
return Error::success();
}
} // namespace
Expected<std::unique_ptr<OffloadBinary>>
OffloadBinary::create(MemoryBufferRef Buf) {
if (Buf.getBufferSize() < sizeof(Header) + sizeof(Entry))
return errorCodeToError(object_error::parse_failed);
// Check for 0x10FF1OAD magic bytes.
if (identify_magic(Buf.getBuffer()) != file_magic::offload_binary)
return errorCodeToError(object_error::parse_failed);
// Make sure that the data has sufficient alignment.
if (!isAddrAligned(Align(getAlignment()), Buf.getBufferStart()))
return errorCodeToError(object_error::parse_failed);
const char *Start = Buf.getBufferStart();
const Header *TheHeader = reinterpret_cast<const Header *>(Start);
if (TheHeader->Version != OffloadBinary::Version)
return errorCodeToError(object_error::parse_failed);
if (TheHeader->Size > Buf.getBufferSize() ||
TheHeader->EntryOffset > TheHeader->Size - sizeof(Entry) ||
TheHeader->EntrySize > TheHeader->Size - sizeof(Header))
return errorCodeToError(object_error::unexpected_eof);
const Entry *TheEntry =
reinterpret_cast<const Entry *>(&Start[TheHeader->EntryOffset]);
if (TheEntry->ImageOffset > Buf.getBufferSize() ||
TheEntry->StringOffset > Buf.getBufferSize())
return errorCodeToError(object_error::unexpected_eof);
return std::unique_ptr<OffloadBinary>(
new OffloadBinary(Buf, TheHeader, TheEntry));
}
std::unique_ptr<MemoryBuffer>
OffloadBinary::write(const OffloadingImage &OffloadingData) {
// Create a null-terminated string table with all the used strings.
StringTableBuilder StrTab(StringTableBuilder::ELF);
for (auto &KeyAndValue : OffloadingData.StringData) {
StrTab.add(KeyAndValue.getKey());
StrTab.add(KeyAndValue.getValue());
}
StrTab.finalize();
uint64_t StringEntrySize =
sizeof(StringEntry) * OffloadingData.StringData.size();
// Make sure the image we're wrapping around is aligned as well.
uint64_t BinaryDataSize = alignTo(sizeof(Header) + sizeof(Entry) +
StringEntrySize + StrTab.getSize(),
getAlignment());
// Create the header and fill in the offsets. The entry will be directly
// placed after the header in memory. Align the size to the alignment of the
// header so this can be placed contiguously in a single section.
Header TheHeader;
TheHeader.Size = alignTo(
BinaryDataSize + OffloadingData.Image->getBufferSize(), getAlignment());
TheHeader.EntryOffset = sizeof(Header);
TheHeader.EntrySize = sizeof(Entry);
// Create the entry using the string table offsets. The string table will be
// placed directly after the entry in memory, and the image after that.
Entry TheEntry;
TheEntry.TheImageKind = OffloadingData.TheImageKind;
TheEntry.TheOffloadKind = OffloadingData.TheOffloadKind;
TheEntry.Flags = OffloadingData.Flags;
TheEntry.StringOffset = sizeof(Header) + sizeof(Entry);
TheEntry.NumStrings = OffloadingData.StringData.size();
TheEntry.ImageOffset = BinaryDataSize;
TheEntry.ImageSize = OffloadingData.Image->getBufferSize();
SmallVector<char> Data;
Data.reserve(TheHeader.Size);
raw_svector_ostream OS(Data);
OS << StringRef(reinterpret_cast<char *>(&TheHeader), sizeof(Header));
OS << StringRef(reinterpret_cast<char *>(&TheEntry), sizeof(Entry));
for (auto &KeyAndValue : OffloadingData.StringData) {
uint64_t Offset = sizeof(Header) + sizeof(Entry) + StringEntrySize;
StringEntry Map{Offset + StrTab.getOffset(KeyAndValue.getKey()),
Offset + StrTab.getOffset(KeyAndValue.getValue())};
OS << StringRef(reinterpret_cast<char *>(&Map), sizeof(StringEntry));
}
StrTab.write(OS);
// Add padding to required image alignment.
OS.write_zeros(TheEntry.ImageOffset - OS.tell());
OS << OffloadingData.Image->getBuffer();
// Add final padding to required alignment.
assert(TheHeader.Size >= OS.tell() && "Too much data written?");
OS.write_zeros(TheHeader.Size - OS.tell());
assert(TheHeader.Size == OS.tell() && "Size mismatch");
return MemoryBuffer::getMemBufferCopy(OS.str());
}
Error object::extractOffloadBinaries(MemoryBufferRef Buffer,
SmallVectorImpl<OffloadFile> &Binaries) {
file_magic Type = identify_magic(Buffer.getBuffer());
switch (Type) {
case file_magic::bitcode:
return extractFromBitcode(Buffer, Binaries);
case file_magic::elf_relocatable: {
Expected<std::unique_ptr<ObjectFile>> ObjFile =
ObjectFile::createObjectFile(Buffer, Type);
if (!ObjFile)
return ObjFile.takeError();
return extractFromBinary(*ObjFile->get(), Binaries);
}
case file_magic::archive: {
Expected<std::unique_ptr<llvm::object::Archive>> LibFile =
object::Archive::create(Buffer);
if (!LibFile)
return LibFile.takeError();
return extractFromArchive(*LibFile->get(), Binaries);
}
case file_magic::offload_binary:
return extractOffloadFiles(Buffer, Binaries);
default:
return Error::success();
}
}
OffloadKind object::getOffloadKind(StringRef Name) {
return llvm::StringSwitch<OffloadKind>(Name)
.Case("openmp", OFK_OpenMP)
.Case("cuda", OFK_Cuda)
.Case("hip", OFK_HIP)
.Default(OFK_None);
}
StringRef object::getOffloadKindName(OffloadKind Kind) {
switch (Kind) {
case OFK_OpenMP:
return "openmp";
case OFK_Cuda:
return "cuda";
case OFK_HIP:
return "hip";
default:
return "none";
}
}
ImageKind object::getImageKind(StringRef Name) {
return llvm::StringSwitch<ImageKind>(Name)
.Case("o", IMG_Object)
.Case("bc", IMG_Bitcode)
.Case("cubin", IMG_Cubin)
.Case("fatbin", IMG_Fatbinary)
.Case("s", IMG_PTX)
.Default(IMG_None);
}
StringRef object::getImageKindName(ImageKind Kind) {
switch (Kind) {
case IMG_Object:
return "o";
case IMG_Bitcode:
return "bc";
case IMG_Cubin:
return "cubin";
case IMG_Fatbinary:
return "fatbin";
case IMG_PTX:
return "s";
default:
return "";
}
}