4949 lines
171 KiB
C++
4949 lines
171 KiB
C++
//===-- RISCVInstrInfo.cpp - RISC-V Instruction Information -----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the RISC-V implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "RISCVInstrInfo.h"
|
|
#include "MCTargetDesc/RISCVBaseInfo.h"
|
|
#include "MCTargetDesc/RISCVMatInt.h"
|
|
#include "RISCV.h"
|
|
#include "RISCVMachineFunctionInfo.h"
|
|
#include "RISCVSubtarget.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/LiveIntervals.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineCombinerPattern.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineTraceMetrics.h"
|
|
#include "llvm/CodeGen/RegisterScavenging.h"
|
|
#include "llvm/CodeGen/StackMaps.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/MC/MCInstBuilder.h"
|
|
#include "llvm/MC/TargetRegistry.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define GEN_CHECK_COMPRESS_INSTR
|
|
#include "RISCVGenCompressInstEmitter.inc"
|
|
|
|
#define GET_INSTRINFO_CTOR_DTOR
|
|
#define GET_INSTRINFO_NAMED_OPS
|
|
#include "RISCVGenInstrInfo.inc"
|
|
|
|
#define DEBUG_TYPE "riscv-instr-info"
|
|
STATISTIC(NumVRegSpilled,
|
|
"Number of registers within vector register groups spilled");
|
|
STATISTIC(NumVRegReloaded,
|
|
"Number of registers within vector register groups reloaded");
|
|
|
|
static cl::opt<bool> PreferWholeRegisterMove(
|
|
"riscv-prefer-whole-register-move", cl::init(false), cl::Hidden,
|
|
cl::desc("Prefer whole register move for vector registers."));
|
|
|
|
static cl::opt<MachineTraceStrategy> ForceMachineCombinerStrategy(
|
|
"riscv-force-machine-combiner-strategy", cl::Hidden,
|
|
cl::desc("Force machine combiner to use a specific strategy for machine "
|
|
"trace metrics evaluation."),
|
|
cl::init(MachineTraceStrategy::TS_NumStrategies),
|
|
cl::values(clEnumValN(MachineTraceStrategy::TS_Local, "local",
|
|
"Local strategy."),
|
|
clEnumValN(MachineTraceStrategy::TS_MinInstrCount, "min-instr",
|
|
"MinInstrCount strategy.")));
|
|
|
|
namespace llvm::RISCVVPseudosTable {
|
|
|
|
using namespace RISCV;
|
|
|
|
#define GET_RISCVVPseudosTable_IMPL
|
|
#include "RISCVGenSearchableTables.inc"
|
|
|
|
} // namespace llvm::RISCVVPseudosTable
|
|
|
|
namespace llvm::RISCV {
|
|
|
|
#define GET_RISCVMaskedPseudosTable_IMPL
|
|
#include "RISCVGenSearchableTables.inc"
|
|
|
|
} // end namespace llvm::RISCV
|
|
|
|
RISCVInstrInfo::RISCVInstrInfo(RISCVSubtarget &STI)
|
|
: RISCVGenInstrInfo(RISCV::ADJCALLSTACKDOWN, RISCV::ADJCALLSTACKUP),
|
|
STI(STI) {}
|
|
|
|
#define GET_INSTRINFO_HELPERS
|
|
#include "RISCVGenInstrInfo.inc"
|
|
|
|
MCInst RISCVInstrInfo::getNop() const {
|
|
if (STI.hasStdExtZca())
|
|
return MCInstBuilder(RISCV::C_NOP);
|
|
return MCInstBuilder(RISCV::ADDI)
|
|
.addReg(RISCV::X0)
|
|
.addReg(RISCV::X0)
|
|
.addImm(0);
|
|
}
|
|
|
|
Register RISCVInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
TypeSize Dummy = TypeSize::getZero();
|
|
return isLoadFromStackSlot(MI, FrameIndex, Dummy);
|
|
}
|
|
|
|
static std::optional<unsigned> getLMULForRVVWholeLoadStore(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default:
|
|
return std::nullopt;
|
|
case RISCV::VS1R_V:
|
|
case RISCV::VL1RE8_V:
|
|
case RISCV::VL1RE16_V:
|
|
case RISCV::VL1RE32_V:
|
|
case RISCV::VL1RE64_V:
|
|
return 1;
|
|
case RISCV::VS2R_V:
|
|
case RISCV::VL2RE8_V:
|
|
case RISCV::VL2RE16_V:
|
|
case RISCV::VL2RE32_V:
|
|
case RISCV::VL2RE64_V:
|
|
return 2;
|
|
case RISCV::VS4R_V:
|
|
case RISCV::VL4RE8_V:
|
|
case RISCV::VL4RE16_V:
|
|
case RISCV::VL4RE32_V:
|
|
case RISCV::VL4RE64_V:
|
|
return 4;
|
|
case RISCV::VS8R_V:
|
|
case RISCV::VL8RE8_V:
|
|
case RISCV::VL8RE16_V:
|
|
case RISCV::VL8RE32_V:
|
|
case RISCV::VL8RE64_V:
|
|
return 8;
|
|
}
|
|
}
|
|
|
|
Register RISCVInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex,
|
|
TypeSize &MemBytes) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return 0;
|
|
case RISCV::LB:
|
|
case RISCV::LBU:
|
|
MemBytes = TypeSize::getFixed(1);
|
|
break;
|
|
case RISCV::LH:
|
|
case RISCV::LH_INX:
|
|
case RISCV::LHU:
|
|
case RISCV::FLH:
|
|
MemBytes = TypeSize::getFixed(2);
|
|
break;
|
|
case RISCV::LW:
|
|
case RISCV::LW_INX:
|
|
case RISCV::FLW:
|
|
case RISCV::LWU:
|
|
MemBytes = TypeSize::getFixed(4);
|
|
break;
|
|
case RISCV::LD:
|
|
case RISCV::LD_RV32:
|
|
case RISCV::FLD:
|
|
MemBytes = TypeSize::getFixed(8);
|
|
break;
|
|
case RISCV::VL1RE8_V:
|
|
case RISCV::VL2RE8_V:
|
|
case RISCV::VL4RE8_V:
|
|
case RISCV::VL8RE8_V:
|
|
if (!MI.getOperand(1).isFI())
|
|
return Register();
|
|
FrameIndex = MI.getOperand(1).getIndex();
|
|
unsigned LMUL = *getLMULForRVVWholeLoadStore(MI.getOpcode());
|
|
MemBytes = TypeSize::getScalable(RISCV::RVVBytesPerBlock * LMUL);
|
|
return MI.getOperand(0).getReg();
|
|
}
|
|
|
|
if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
|
|
MI.getOperand(2).getImm() == 0) {
|
|
FrameIndex = MI.getOperand(1).getIndex();
|
|
return MI.getOperand(0).getReg();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
Register RISCVInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
TypeSize Dummy = TypeSize::getZero();
|
|
return isStoreToStackSlot(MI, FrameIndex, Dummy);
|
|
}
|
|
|
|
Register RISCVInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex,
|
|
TypeSize &MemBytes) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return 0;
|
|
case RISCV::SB:
|
|
MemBytes = TypeSize::getFixed(1);
|
|
break;
|
|
case RISCV::SH:
|
|
case RISCV::SH_INX:
|
|
case RISCV::FSH:
|
|
MemBytes = TypeSize::getFixed(2);
|
|
break;
|
|
case RISCV::SW:
|
|
case RISCV::SW_INX:
|
|
case RISCV::FSW:
|
|
MemBytes = TypeSize::getFixed(4);
|
|
break;
|
|
case RISCV::SD:
|
|
case RISCV::SD_RV32:
|
|
case RISCV::FSD:
|
|
MemBytes = TypeSize::getFixed(8);
|
|
break;
|
|
case RISCV::VS1R_V:
|
|
case RISCV::VS2R_V:
|
|
case RISCV::VS4R_V:
|
|
case RISCV::VS8R_V:
|
|
if (!MI.getOperand(1).isFI())
|
|
return Register();
|
|
FrameIndex = MI.getOperand(1).getIndex();
|
|
unsigned LMUL = *getLMULForRVVWholeLoadStore(MI.getOpcode());
|
|
MemBytes = TypeSize::getScalable(RISCV::RVVBytesPerBlock * LMUL);
|
|
return MI.getOperand(0).getReg();
|
|
}
|
|
|
|
if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
|
|
MI.getOperand(2).getImm() == 0) {
|
|
FrameIndex = MI.getOperand(1).getIndex();
|
|
return MI.getOperand(0).getReg();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool RISCVInstrInfo::isReallyTriviallyReMaterializable(
|
|
const MachineInstr &MI) const {
|
|
switch (RISCV::getRVVMCOpcode(MI.getOpcode())) {
|
|
case RISCV::VMV_V_X:
|
|
case RISCV::VFMV_V_F:
|
|
case RISCV::VMV_V_I:
|
|
case RISCV::VMV_S_X:
|
|
case RISCV::VFMV_S_F:
|
|
case RISCV::VID_V:
|
|
return MI.getOperand(1).isUndef();
|
|
default:
|
|
return TargetInstrInfo::isReallyTriviallyReMaterializable(MI);
|
|
}
|
|
}
|
|
|
|
static bool forwardCopyWillClobberTuple(unsigned DstReg, unsigned SrcReg,
|
|
unsigned NumRegs) {
|
|
return DstReg > SrcReg && (DstReg - SrcReg) < NumRegs;
|
|
}
|
|
|
|
static bool isConvertibleToVMV_V_V(const RISCVSubtarget &STI,
|
|
const MachineBasicBlock &MBB,
|
|
MachineBasicBlock::const_iterator MBBI,
|
|
MachineBasicBlock::const_iterator &DefMBBI,
|
|
RISCVVType::VLMUL LMul) {
|
|
if (PreferWholeRegisterMove)
|
|
return false;
|
|
|
|
assert(MBBI->getOpcode() == TargetOpcode::COPY &&
|
|
"Unexpected COPY instruction.");
|
|
Register SrcReg = MBBI->getOperand(1).getReg();
|
|
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
|
|
|
|
bool FoundDef = false;
|
|
bool FirstVSetVLI = false;
|
|
unsigned FirstSEW = 0;
|
|
while (MBBI != MBB.begin()) {
|
|
--MBBI;
|
|
if (MBBI->isMetaInstruction())
|
|
continue;
|
|
|
|
if (RISCVInstrInfo::isVectorConfigInstr(*MBBI)) {
|
|
// There is a vsetvli between COPY and source define instruction.
|
|
// vy = def_vop ... (producing instruction)
|
|
// ...
|
|
// vsetvli
|
|
// ...
|
|
// vx = COPY vy
|
|
if (!FoundDef) {
|
|
if (!FirstVSetVLI) {
|
|
FirstVSetVLI = true;
|
|
unsigned FirstVType = MBBI->getOperand(2).getImm();
|
|
RISCVVType::VLMUL FirstLMul = RISCVVType::getVLMUL(FirstVType);
|
|
FirstSEW = RISCVVType::getSEW(FirstVType);
|
|
// The first encountered vsetvli must have the same lmul as the
|
|
// register class of COPY.
|
|
if (FirstLMul != LMul)
|
|
return false;
|
|
}
|
|
// Only permit `vsetvli x0, x0, vtype` between COPY and the source
|
|
// define instruction.
|
|
if (!RISCVInstrInfo::isVLPreservingConfig(*MBBI))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
// MBBI is the first vsetvli before the producing instruction.
|
|
unsigned VType = MBBI->getOperand(2).getImm();
|
|
// If there is a vsetvli between COPY and the producing instruction.
|
|
if (FirstVSetVLI) {
|
|
// If SEW is different, return false.
|
|
if (RISCVVType::getSEW(VType) != FirstSEW)
|
|
return false;
|
|
}
|
|
|
|
// If the vsetvli is tail undisturbed, keep the whole register move.
|
|
if (!RISCVVType::isTailAgnostic(VType))
|
|
return false;
|
|
|
|
// The checking is conservative. We only have register classes for
|
|
// LMUL = 1/2/4/8. We should be able to convert vmv1r.v to vmv.v.v
|
|
// for fractional LMUL operations. However, we could not use the vsetvli
|
|
// lmul for widening operations. The result of widening operation is
|
|
// 2 x LMUL.
|
|
return LMul == RISCVVType::getVLMUL(VType);
|
|
} else if (MBBI->isInlineAsm() || MBBI->isCall()) {
|
|
return false;
|
|
} else if (MBBI->getNumDefs()) {
|
|
// Check all the instructions which will change VL.
|
|
// For example, vleff has implicit def VL.
|
|
if (MBBI->modifiesRegister(RISCV::VL, /*TRI=*/nullptr))
|
|
return false;
|
|
|
|
// Only converting whole register copies to vmv.v.v when the defining
|
|
// value appears in the explicit operands.
|
|
for (const MachineOperand &MO : MBBI->explicit_operands()) {
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
if (!FoundDef && TRI->regsOverlap(MO.getReg(), SrcReg)) {
|
|
// We only permit the source of COPY has the same LMUL as the defined
|
|
// operand.
|
|
// There are cases we need to keep the whole register copy if the LMUL
|
|
// is different.
|
|
// For example,
|
|
// $x0 = PseudoVSETIVLI 4, 73 // vsetivli zero, 4, e16,m2,ta,m
|
|
// $v28m4 = PseudoVWADD_VV_M2 $v26m2, $v8m2
|
|
// # The COPY may be created by vlmul_trunc intrinsic.
|
|
// $v26m2 = COPY renamable $v28m2, implicit killed $v28m4
|
|
//
|
|
// After widening, the valid value will be 4 x e32 elements. If we
|
|
// convert the COPY to vmv.v.v, it will only copy 4 x e16 elements.
|
|
// FIXME: The COPY of subregister of Zvlsseg register will not be able
|
|
// to convert to vmv.v.[v|i] under the constraint.
|
|
if (MO.getReg() != SrcReg)
|
|
return false;
|
|
|
|
// In widening reduction instructions with LMUL_1 input vector case,
|
|
// only checking the LMUL is insufficient due to reduction result is
|
|
// always LMUL_1.
|
|
// For example,
|
|
// $x11 = PseudoVSETIVLI 1, 64 // vsetivli a1, 1, e8, m1, ta, mu
|
|
// $v8m1 = PseudoVWREDSUM_VS_M1 $v26, $v27
|
|
// $v26 = COPY killed renamable $v8
|
|
// After widening, The valid value will be 1 x e16 elements. If we
|
|
// convert the COPY to vmv.v.v, it will only copy 1 x e8 elements.
|
|
uint64_t TSFlags = MBBI->getDesc().TSFlags;
|
|
if (RISCVII::isRVVWideningReduction(TSFlags))
|
|
return false;
|
|
|
|
// If the producing instruction does not depend on vsetvli, do not
|
|
// convert COPY to vmv.v.v. For example, VL1R_V or PseudoVRELOAD.
|
|
if (!RISCVII::hasSEWOp(TSFlags) || !RISCVII::hasVLOp(TSFlags))
|
|
return false;
|
|
|
|
// Found the definition.
|
|
FoundDef = true;
|
|
DefMBBI = MBBI;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void RISCVInstrInfo::copyPhysRegVector(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
|
|
const DebugLoc &DL, MCRegister DstReg, MCRegister SrcReg, bool KillSrc,
|
|
const TargetRegisterClass *RegClass) const {
|
|
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
|
|
RISCVVType::VLMUL LMul = RISCVRI::getLMul(RegClass->TSFlags);
|
|
unsigned NF = RISCVRI::getNF(RegClass->TSFlags);
|
|
|
|
uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
|
|
uint16_t DstEncoding = TRI->getEncodingValue(DstReg);
|
|
auto [LMulVal, Fractional] = RISCVVType::decodeVLMUL(LMul);
|
|
assert(!Fractional && "It is impossible be fractional lmul here.");
|
|
unsigned NumRegs = NF * LMulVal;
|
|
bool ReversedCopy =
|
|
forwardCopyWillClobberTuple(DstEncoding, SrcEncoding, NumRegs);
|
|
if (ReversedCopy) {
|
|
// If the src and dest overlap when copying a tuple, we need to copy the
|
|
// registers in reverse.
|
|
SrcEncoding += NumRegs - 1;
|
|
DstEncoding += NumRegs - 1;
|
|
}
|
|
|
|
unsigned I = 0;
|
|
auto GetCopyInfo = [&](uint16_t SrcEncoding, uint16_t DstEncoding)
|
|
-> std::tuple<RISCVVType::VLMUL, const TargetRegisterClass &, unsigned,
|
|
unsigned, unsigned> {
|
|
if (ReversedCopy) {
|
|
// For reversed copying, if there are enough aligned registers(8/4/2), we
|
|
// can do a larger copy(LMUL8/4/2).
|
|
// Besides, we have already known that DstEncoding is larger than
|
|
// SrcEncoding in forwardCopyWillClobberTuple, so the difference between
|
|
// DstEncoding and SrcEncoding should be >= LMUL value we try to use to
|
|
// avoid clobbering.
|
|
uint16_t Diff = DstEncoding - SrcEncoding;
|
|
if (I + 8 <= NumRegs && Diff >= 8 && SrcEncoding % 8 == 7 &&
|
|
DstEncoding % 8 == 7)
|
|
return {RISCVVType::LMUL_8, RISCV::VRM8RegClass, RISCV::VMV8R_V,
|
|
RISCV::PseudoVMV_V_V_M8, RISCV::PseudoVMV_V_I_M8};
|
|
if (I + 4 <= NumRegs && Diff >= 4 && SrcEncoding % 4 == 3 &&
|
|
DstEncoding % 4 == 3)
|
|
return {RISCVVType::LMUL_4, RISCV::VRM4RegClass, RISCV::VMV4R_V,
|
|
RISCV::PseudoVMV_V_V_M4, RISCV::PseudoVMV_V_I_M4};
|
|
if (I + 2 <= NumRegs && Diff >= 2 && SrcEncoding % 2 == 1 &&
|
|
DstEncoding % 2 == 1)
|
|
return {RISCVVType::LMUL_2, RISCV::VRM2RegClass, RISCV::VMV2R_V,
|
|
RISCV::PseudoVMV_V_V_M2, RISCV::PseudoVMV_V_I_M2};
|
|
// Or we should do LMUL1 copying.
|
|
return {RISCVVType::LMUL_1, RISCV::VRRegClass, RISCV::VMV1R_V,
|
|
RISCV::PseudoVMV_V_V_M1, RISCV::PseudoVMV_V_I_M1};
|
|
}
|
|
|
|
// For forward copying, if source register encoding and destination register
|
|
// encoding are aligned to 8/4/2, we can do a LMUL8/4/2 copying.
|
|
if (I + 8 <= NumRegs && SrcEncoding % 8 == 0 && DstEncoding % 8 == 0)
|
|
return {RISCVVType::LMUL_8, RISCV::VRM8RegClass, RISCV::VMV8R_V,
|
|
RISCV::PseudoVMV_V_V_M8, RISCV::PseudoVMV_V_I_M8};
|
|
if (I + 4 <= NumRegs && SrcEncoding % 4 == 0 && DstEncoding % 4 == 0)
|
|
return {RISCVVType::LMUL_4, RISCV::VRM4RegClass, RISCV::VMV4R_V,
|
|
RISCV::PseudoVMV_V_V_M4, RISCV::PseudoVMV_V_I_M4};
|
|
if (I + 2 <= NumRegs && SrcEncoding % 2 == 0 && DstEncoding % 2 == 0)
|
|
return {RISCVVType::LMUL_2, RISCV::VRM2RegClass, RISCV::VMV2R_V,
|
|
RISCV::PseudoVMV_V_V_M2, RISCV::PseudoVMV_V_I_M2};
|
|
// Or we should do LMUL1 copying.
|
|
return {RISCVVType::LMUL_1, RISCV::VRRegClass, RISCV::VMV1R_V,
|
|
RISCV::PseudoVMV_V_V_M1, RISCV::PseudoVMV_V_I_M1};
|
|
};
|
|
auto FindRegWithEncoding = [TRI](const TargetRegisterClass &RegClass,
|
|
uint16_t Encoding) {
|
|
MCRegister Reg = RISCV::V0 + Encoding;
|
|
if (RISCVRI::getLMul(RegClass.TSFlags) == RISCVVType::LMUL_1)
|
|
return Reg;
|
|
return TRI->getMatchingSuperReg(Reg, RISCV::sub_vrm1_0, &RegClass);
|
|
};
|
|
while (I != NumRegs) {
|
|
// For non-segment copying, we only do this once as the registers are always
|
|
// aligned.
|
|
// For segment copying, we may do this several times. If the registers are
|
|
// aligned to larger LMUL, we can eliminate some copyings.
|
|
auto [LMulCopied, RegClass, Opc, VVOpc, VIOpc] =
|
|
GetCopyInfo(SrcEncoding, DstEncoding);
|
|
auto [NumCopied, _] = RISCVVType::decodeVLMUL(LMulCopied);
|
|
|
|
MachineBasicBlock::const_iterator DefMBBI;
|
|
if (LMul == LMulCopied &&
|
|
isConvertibleToVMV_V_V(STI, MBB, MBBI, DefMBBI, LMul)) {
|
|
Opc = VVOpc;
|
|
if (DefMBBI->getOpcode() == VIOpc)
|
|
Opc = VIOpc;
|
|
}
|
|
|
|
// Emit actual copying.
|
|
// For reversed copying, the encoding should be decreased.
|
|
MCRegister ActualSrcReg = FindRegWithEncoding(
|
|
RegClass, ReversedCopy ? (SrcEncoding - NumCopied + 1) : SrcEncoding);
|
|
MCRegister ActualDstReg = FindRegWithEncoding(
|
|
RegClass, ReversedCopy ? (DstEncoding - NumCopied + 1) : DstEncoding);
|
|
|
|
auto MIB = BuildMI(MBB, MBBI, DL, get(Opc), ActualDstReg);
|
|
bool UseVMV_V_I = RISCV::getRVVMCOpcode(Opc) == RISCV::VMV_V_I;
|
|
bool UseVMV = UseVMV_V_I || RISCV::getRVVMCOpcode(Opc) == RISCV::VMV_V_V;
|
|
if (UseVMV)
|
|
MIB.addReg(ActualDstReg, RegState::Undef);
|
|
if (UseVMV_V_I)
|
|
MIB = MIB.add(DefMBBI->getOperand(2));
|
|
else
|
|
MIB = MIB.addReg(ActualSrcReg, getKillRegState(KillSrc));
|
|
if (UseVMV) {
|
|
const MCInstrDesc &Desc = DefMBBI->getDesc();
|
|
MIB.add(DefMBBI->getOperand(RISCVII::getVLOpNum(Desc))); // AVL
|
|
unsigned Log2SEW =
|
|
DefMBBI->getOperand(RISCVII::getSEWOpNum(Desc)).getImm();
|
|
MIB.addImm(Log2SEW ? Log2SEW : 3); // SEW
|
|
MIB.addImm(0); // tu, mu
|
|
MIB.addReg(RISCV::VL, RegState::Implicit);
|
|
MIB.addReg(RISCV::VTYPE, RegState::Implicit);
|
|
}
|
|
// Add an implicit read of the original source to silence the verifier
|
|
// in the cases where some of the smaller VRs we're copying from might be
|
|
// undef, caused by the fact that the original, larger source VR might not
|
|
// be fully initialized at the time this COPY happens.
|
|
MIB.addReg(SrcReg, RegState::Implicit);
|
|
|
|
// If we are copying reversely, we should decrease the encoding.
|
|
SrcEncoding += (ReversedCopy ? -NumCopied : NumCopied);
|
|
DstEncoding += (ReversedCopy ? -NumCopied : NumCopied);
|
|
I += NumCopied;
|
|
}
|
|
}
|
|
|
|
void RISCVInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
const DebugLoc &DL, Register DstReg,
|
|
Register SrcReg, bool KillSrc,
|
|
bool RenamableDest, bool RenamableSrc) const {
|
|
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
|
|
unsigned KillFlag = getKillRegState(KillSrc);
|
|
|
|
if (RISCV::GPRRegClass.contains(DstReg, SrcReg)) {
|
|
BuildMI(MBB, MBBI, DL, get(RISCV::ADDI), DstReg)
|
|
.addReg(SrcReg, KillFlag | getRenamableRegState(RenamableSrc))
|
|
.addImm(0);
|
|
return;
|
|
}
|
|
|
|
if (RISCV::GPRF16RegClass.contains(DstReg, SrcReg)) {
|
|
BuildMI(MBB, MBBI, DL, get(RISCV::PseudoMV_FPR16INX), DstReg)
|
|
.addReg(SrcReg, KillFlag | getRenamableRegState(RenamableSrc));
|
|
return;
|
|
}
|
|
|
|
if (RISCV::GPRF32RegClass.contains(DstReg, SrcReg)) {
|
|
BuildMI(MBB, MBBI, DL, get(RISCV::PseudoMV_FPR32INX), DstReg)
|
|
.addReg(SrcReg, KillFlag | getRenamableRegState(RenamableSrc));
|
|
return;
|
|
}
|
|
|
|
if (RISCV::GPRPairRegClass.contains(DstReg, SrcReg)) {
|
|
MCRegister EvenReg = TRI->getSubReg(SrcReg, RISCV::sub_gpr_even);
|
|
MCRegister OddReg = TRI->getSubReg(SrcReg, RISCV::sub_gpr_odd);
|
|
// We need to correct the odd register of X0_Pair.
|
|
if (OddReg == RISCV::DUMMY_REG_PAIR_WITH_X0)
|
|
OddReg = RISCV::X0;
|
|
assert(DstReg != RISCV::X0_Pair && "Cannot write to X0_Pair");
|
|
|
|
// Emit an ADDI for both parts of GPRPair.
|
|
BuildMI(MBB, MBBI, DL, get(RISCV::ADDI),
|
|
TRI->getSubReg(DstReg, RISCV::sub_gpr_even))
|
|
.addReg(EvenReg, KillFlag)
|
|
.addImm(0);
|
|
BuildMI(MBB, MBBI, DL, get(RISCV::ADDI),
|
|
TRI->getSubReg(DstReg, RISCV::sub_gpr_odd))
|
|
.addReg(OddReg, KillFlag)
|
|
.addImm(0);
|
|
return;
|
|
}
|
|
|
|
// Handle copy from csr
|
|
if (RISCV::VCSRRegClass.contains(SrcReg) &&
|
|
RISCV::GPRRegClass.contains(DstReg)) {
|
|
BuildMI(MBB, MBBI, DL, get(RISCV::CSRRS), DstReg)
|
|
.addImm(RISCVSysReg::lookupSysRegByName(TRI->getName(SrcReg))->Encoding)
|
|
.addReg(RISCV::X0);
|
|
return;
|
|
}
|
|
|
|
if (RISCV::FPR16RegClass.contains(DstReg, SrcReg)) {
|
|
unsigned Opc;
|
|
if (STI.hasStdExtZfh()) {
|
|
Opc = RISCV::FSGNJ_H;
|
|
} else {
|
|
assert(STI.hasStdExtF() &&
|
|
(STI.hasStdExtZfhmin() || STI.hasStdExtZfbfmin()) &&
|
|
"Unexpected extensions");
|
|
// Zfhmin/Zfbfmin doesn't have FSGNJ_H, replace FSGNJ_H with FSGNJ_S.
|
|
DstReg = TRI->getMatchingSuperReg(DstReg, RISCV::sub_16,
|
|
&RISCV::FPR32RegClass);
|
|
SrcReg = TRI->getMatchingSuperReg(SrcReg, RISCV::sub_16,
|
|
&RISCV::FPR32RegClass);
|
|
Opc = RISCV::FSGNJ_S;
|
|
}
|
|
BuildMI(MBB, MBBI, DL, get(Opc), DstReg)
|
|
.addReg(SrcReg, KillFlag)
|
|
.addReg(SrcReg, KillFlag);
|
|
return;
|
|
}
|
|
|
|
if (RISCV::FPR32RegClass.contains(DstReg, SrcReg)) {
|
|
BuildMI(MBB, MBBI, DL, get(RISCV::FSGNJ_S), DstReg)
|
|
.addReg(SrcReg, KillFlag)
|
|
.addReg(SrcReg, KillFlag);
|
|
return;
|
|
}
|
|
|
|
if (RISCV::FPR64RegClass.contains(DstReg, SrcReg)) {
|
|
BuildMI(MBB, MBBI, DL, get(RISCV::FSGNJ_D), DstReg)
|
|
.addReg(SrcReg, KillFlag)
|
|
.addReg(SrcReg, KillFlag);
|
|
return;
|
|
}
|
|
|
|
if (RISCV::FPR32RegClass.contains(DstReg) &&
|
|
RISCV::GPRRegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, MBBI, DL, get(RISCV::FMV_W_X), DstReg)
|
|
.addReg(SrcReg, KillFlag);
|
|
return;
|
|
}
|
|
|
|
if (RISCV::GPRRegClass.contains(DstReg) &&
|
|
RISCV::FPR32RegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, MBBI, DL, get(RISCV::FMV_X_W), DstReg)
|
|
.addReg(SrcReg, KillFlag);
|
|
return;
|
|
}
|
|
|
|
if (RISCV::FPR64RegClass.contains(DstReg) &&
|
|
RISCV::GPRRegClass.contains(SrcReg)) {
|
|
assert(STI.getXLen() == 64 && "Unexpected GPR size");
|
|
BuildMI(MBB, MBBI, DL, get(RISCV::FMV_D_X), DstReg)
|
|
.addReg(SrcReg, KillFlag);
|
|
return;
|
|
}
|
|
|
|
if (RISCV::GPRRegClass.contains(DstReg) &&
|
|
RISCV::FPR64RegClass.contains(SrcReg)) {
|
|
assert(STI.getXLen() == 64 && "Unexpected GPR size");
|
|
BuildMI(MBB, MBBI, DL, get(RISCV::FMV_X_D), DstReg)
|
|
.addReg(SrcReg, KillFlag);
|
|
return;
|
|
}
|
|
|
|
// VR->VR copies.
|
|
const TargetRegisterClass *RegClass =
|
|
TRI->getCommonMinimalPhysRegClass(SrcReg, DstReg);
|
|
if (RISCVRegisterInfo::isRVVRegClass(RegClass)) {
|
|
copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RegClass);
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Impossible reg-to-reg copy");
|
|
}
|
|
|
|
void RISCVInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
Register SrcReg, bool IsKill, int FI,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI,
|
|
Register VReg,
|
|
MachineInstr::MIFlag Flags) const {
|
|
MachineFunction *MF = MBB.getParent();
|
|
MachineFrameInfo &MFI = MF->getFrameInfo();
|
|
|
|
unsigned Opcode;
|
|
if (RISCV::GPRRegClass.hasSubClassEq(RC)) {
|
|
Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
|
|
RISCV::SW : RISCV::SD;
|
|
} else if (RISCV::GPRF16RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::SH_INX;
|
|
} else if (RISCV::GPRF32RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::SW_INX;
|
|
} else if (RISCV::GPRPairRegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::PseudoRV32ZdinxSD;
|
|
} else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::FSH;
|
|
} else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::FSW;
|
|
} else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::FSD;
|
|
} else if (RISCV::VRRegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::VS1R_V;
|
|
} else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::VS2R_V;
|
|
} else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::VS4R_V;
|
|
} else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::VS8R_V;
|
|
} else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL2_M1;
|
|
else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL2_M2;
|
|
else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL2_M4;
|
|
else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL3_M1;
|
|
else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL3_M2;
|
|
else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL4_M1;
|
|
else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL4_M2;
|
|
else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL5_M1;
|
|
else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL6_M1;
|
|
else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL7_M1;
|
|
else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVSPILL8_M1;
|
|
else
|
|
llvm_unreachable("Can't store this register to stack slot");
|
|
|
|
if (RISCVRegisterInfo::isRVVRegClass(RC)) {
|
|
MachineMemOperand *MMO = MF->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
|
|
TypeSize::getScalable(MFI.getObjectSize(FI)), MFI.getObjectAlign(FI));
|
|
|
|
MFI.setStackID(FI, TargetStackID::ScalableVector);
|
|
BuildMI(MBB, I, DebugLoc(), get(Opcode))
|
|
.addReg(SrcReg, getKillRegState(IsKill))
|
|
.addFrameIndex(FI)
|
|
.addMemOperand(MMO)
|
|
.setMIFlag(Flags);
|
|
NumVRegSpilled += TRI->getRegSizeInBits(*RC) / RISCV::RVVBitsPerBlock;
|
|
} else {
|
|
MachineMemOperand *MMO = MF->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
|
|
MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
|
|
|
|
BuildMI(MBB, I, DebugLoc(), get(Opcode))
|
|
.addReg(SrcReg, getKillRegState(IsKill))
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addMemOperand(MMO)
|
|
.setMIFlag(Flags);
|
|
}
|
|
}
|
|
|
|
void RISCVInstrInfo::loadRegFromStackSlot(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register DstReg,
|
|
int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI,
|
|
Register VReg, MachineInstr::MIFlag Flags) const {
|
|
MachineFunction *MF = MBB.getParent();
|
|
MachineFrameInfo &MFI = MF->getFrameInfo();
|
|
DebugLoc DL =
|
|
Flags & MachineInstr::FrameDestroy ? MBB.findDebugLoc(I) : DebugLoc();
|
|
|
|
unsigned Opcode;
|
|
if (RISCV::GPRRegClass.hasSubClassEq(RC)) {
|
|
Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
|
|
RISCV::LW : RISCV::LD;
|
|
} else if (RISCV::GPRF16RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::LH_INX;
|
|
} else if (RISCV::GPRF32RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::LW_INX;
|
|
} else if (RISCV::GPRPairRegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::PseudoRV32ZdinxLD;
|
|
} else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::FLH;
|
|
} else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::FLW;
|
|
} else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::FLD;
|
|
} else if (RISCV::VRRegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::VL1RE8_V;
|
|
} else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::VL2RE8_V;
|
|
} else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::VL4RE8_V;
|
|
} else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) {
|
|
Opcode = RISCV::VL8RE8_V;
|
|
} else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD2_M1;
|
|
else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD2_M2;
|
|
else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD2_M4;
|
|
else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD3_M1;
|
|
else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD3_M2;
|
|
else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD4_M1;
|
|
else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD4_M2;
|
|
else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD5_M1;
|
|
else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD6_M1;
|
|
else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD7_M1;
|
|
else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC))
|
|
Opcode = RISCV::PseudoVRELOAD8_M1;
|
|
else
|
|
llvm_unreachable("Can't load this register from stack slot");
|
|
|
|
if (RISCVRegisterInfo::isRVVRegClass(RC)) {
|
|
MachineMemOperand *MMO = MF->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
|
|
TypeSize::getScalable(MFI.getObjectSize(FI)), MFI.getObjectAlign(FI));
|
|
|
|
MFI.setStackID(FI, TargetStackID::ScalableVector);
|
|
BuildMI(MBB, I, DL, get(Opcode), DstReg)
|
|
.addFrameIndex(FI)
|
|
.addMemOperand(MMO)
|
|
.setMIFlag(Flags);
|
|
NumVRegReloaded += TRI->getRegSizeInBits(*RC) / RISCV::RVVBitsPerBlock;
|
|
} else {
|
|
MachineMemOperand *MMO = MF->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
|
|
MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
|
|
|
|
BuildMI(MBB, I, DL, get(Opcode), DstReg)
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addMemOperand(MMO)
|
|
.setMIFlag(Flags);
|
|
}
|
|
}
|
|
std::optional<unsigned> getFoldedOpcode(MachineFunction &MF, MachineInstr &MI,
|
|
ArrayRef<unsigned> Ops,
|
|
const RISCVSubtarget &ST) {
|
|
|
|
// The below optimizations narrow the load so they are only valid for little
|
|
// endian.
|
|
// TODO: Support big endian by adding an offset into the frame object?
|
|
if (MF.getDataLayout().isBigEndian())
|
|
return std::nullopt;
|
|
|
|
// Fold load from stack followed by sext.b/sext.h/sext.w/zext.b/zext.h/zext.w.
|
|
if (Ops.size() != 1 || Ops[0] != 1)
|
|
return std::nullopt;
|
|
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
if (RISCVInstrInfo::isSEXT_W(MI))
|
|
return RISCV::LW;
|
|
if (RISCVInstrInfo::isZEXT_W(MI))
|
|
return RISCV::LWU;
|
|
if (RISCVInstrInfo::isZEXT_B(MI))
|
|
return RISCV::LBU;
|
|
break;
|
|
case RISCV::SEXT_H:
|
|
return RISCV::LH;
|
|
case RISCV::SEXT_B:
|
|
return RISCV::LB;
|
|
case RISCV::ZEXT_H_RV32:
|
|
case RISCV::ZEXT_H_RV64:
|
|
return RISCV::LHU;
|
|
}
|
|
|
|
switch (RISCV::getRVVMCOpcode(MI.getOpcode())) {
|
|
default:
|
|
return std::nullopt;
|
|
case RISCV::VMV_X_S: {
|
|
unsigned Log2SEW =
|
|
MI.getOperand(RISCVII::getSEWOpNum(MI.getDesc())).getImm();
|
|
if (ST.getXLen() < (1U << Log2SEW))
|
|
return std::nullopt;
|
|
switch (Log2SEW) {
|
|
case 3:
|
|
return RISCV::LB;
|
|
case 4:
|
|
return RISCV::LH;
|
|
case 5:
|
|
return RISCV::LW;
|
|
case 6:
|
|
return RISCV::LD;
|
|
default:
|
|
llvm_unreachable("Unexpected SEW");
|
|
}
|
|
}
|
|
case RISCV::VFMV_F_S: {
|
|
unsigned Log2SEW =
|
|
MI.getOperand(RISCVII::getSEWOpNum(MI.getDesc())).getImm();
|
|
switch (Log2SEW) {
|
|
case 4:
|
|
return RISCV::FLH;
|
|
case 5:
|
|
return RISCV::FLW;
|
|
case 6:
|
|
return RISCV::FLD;
|
|
default:
|
|
llvm_unreachable("Unexpected SEW");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// This is the version used during inline spilling
|
|
MachineInstr *RISCVInstrInfo::foldMemoryOperandImpl(
|
|
MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
|
|
MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS,
|
|
VirtRegMap *VRM) const {
|
|
|
|
std::optional<unsigned> LoadOpc = getFoldedOpcode(MF, MI, Ops, STI);
|
|
if (!LoadOpc)
|
|
return nullptr;
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
return BuildMI(*MI.getParent(), InsertPt, MI.getDebugLoc(), get(*LoadOpc),
|
|
DstReg)
|
|
.addFrameIndex(FrameIndex)
|
|
.addImm(0);
|
|
}
|
|
|
|
void RISCVInstrInfo::movImm(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
const DebugLoc &DL, Register DstReg, uint64_t Val,
|
|
MachineInstr::MIFlag Flag, bool DstRenamable,
|
|
bool DstIsDead) const {
|
|
Register SrcReg = RISCV::X0;
|
|
|
|
// For RV32, allow a sign or unsigned 32 bit value.
|
|
if (!STI.is64Bit() && !isInt<32>(Val)) {
|
|
// If have a uimm32 it will still fit in a register so we can allow it.
|
|
if (!isUInt<32>(Val))
|
|
report_fatal_error("Should only materialize 32-bit constants for RV32");
|
|
|
|
// Sign extend for generateInstSeq.
|
|
Val = SignExtend64<32>(Val);
|
|
}
|
|
|
|
RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, STI);
|
|
assert(!Seq.empty());
|
|
|
|
bool SrcRenamable = false;
|
|
unsigned Num = 0;
|
|
|
|
for (const RISCVMatInt::Inst &Inst : Seq) {
|
|
bool LastItem = ++Num == Seq.size();
|
|
unsigned DstRegState = getDeadRegState(DstIsDead && LastItem) |
|
|
getRenamableRegState(DstRenamable);
|
|
unsigned SrcRegState = getKillRegState(SrcReg != RISCV::X0) |
|
|
getRenamableRegState(SrcRenamable);
|
|
switch (Inst.getOpndKind()) {
|
|
case RISCVMatInt::Imm:
|
|
BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()))
|
|
.addReg(DstReg, RegState::Define | DstRegState)
|
|
.addImm(Inst.getImm())
|
|
.setMIFlag(Flag);
|
|
break;
|
|
case RISCVMatInt::RegX0:
|
|
BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()))
|
|
.addReg(DstReg, RegState::Define | DstRegState)
|
|
.addReg(SrcReg, SrcRegState)
|
|
.addReg(RISCV::X0)
|
|
.setMIFlag(Flag);
|
|
break;
|
|
case RISCVMatInt::RegReg:
|
|
BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()))
|
|
.addReg(DstReg, RegState::Define | DstRegState)
|
|
.addReg(SrcReg, SrcRegState)
|
|
.addReg(SrcReg, SrcRegState)
|
|
.setMIFlag(Flag);
|
|
break;
|
|
case RISCVMatInt::RegImm:
|
|
BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()))
|
|
.addReg(DstReg, RegState::Define | DstRegState)
|
|
.addReg(SrcReg, SrcRegState)
|
|
.addImm(Inst.getImm())
|
|
.setMIFlag(Flag);
|
|
break;
|
|
}
|
|
|
|
// Only the first instruction has X0 as its source.
|
|
SrcReg = DstReg;
|
|
SrcRenamable = DstRenamable;
|
|
}
|
|
}
|
|
|
|
RISCVCC::CondCode RISCVInstrInfo::getCondFromBranchOpc(unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
return RISCVCC::COND_INVALID;
|
|
case RISCV::BEQ:
|
|
case RISCV::CV_BEQIMM:
|
|
case RISCV::QC_BEQI:
|
|
case RISCV::QC_E_BEQI:
|
|
case RISCV::NDS_BBC:
|
|
case RISCV::NDS_BEQC:
|
|
return RISCVCC::COND_EQ;
|
|
case RISCV::BNE:
|
|
case RISCV::QC_BNEI:
|
|
case RISCV::QC_E_BNEI:
|
|
case RISCV::CV_BNEIMM:
|
|
case RISCV::NDS_BBS:
|
|
case RISCV::NDS_BNEC:
|
|
return RISCVCC::COND_NE;
|
|
case RISCV::BLT:
|
|
case RISCV::QC_BLTI:
|
|
case RISCV::QC_E_BLTI:
|
|
return RISCVCC::COND_LT;
|
|
case RISCV::BGE:
|
|
case RISCV::QC_BGEI:
|
|
case RISCV::QC_E_BGEI:
|
|
return RISCVCC::COND_GE;
|
|
case RISCV::BLTU:
|
|
case RISCV::QC_BLTUI:
|
|
case RISCV::QC_E_BLTUI:
|
|
return RISCVCC::COND_LTU;
|
|
case RISCV::BGEU:
|
|
case RISCV::QC_BGEUI:
|
|
case RISCV::QC_E_BGEUI:
|
|
return RISCVCC::COND_GEU;
|
|
}
|
|
}
|
|
|
|
bool RISCVInstrInfo::evaluateCondBranch(RISCVCC::CondCode CC, int64_t C0,
|
|
int64_t C1) {
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unexpected CC");
|
|
case RISCVCC::COND_EQ:
|
|
return C0 == C1;
|
|
case RISCVCC::COND_NE:
|
|
return C0 != C1;
|
|
case RISCVCC::COND_LT:
|
|
return C0 < C1;
|
|
case RISCVCC::COND_GE:
|
|
return C0 >= C1;
|
|
case RISCVCC::COND_LTU:
|
|
return (uint64_t)C0 < (uint64_t)C1;
|
|
case RISCVCC::COND_GEU:
|
|
return (uint64_t)C0 >= (uint64_t)C1;
|
|
}
|
|
}
|
|
|
|
// The contents of values added to Cond are not examined outside of
|
|
// RISCVInstrInfo, giving us flexibility in what to push to it. For RISCV, we
|
|
// push BranchOpcode, Reg1, Reg2.
|
|
static void parseCondBranch(MachineInstr &LastInst, MachineBasicBlock *&Target,
|
|
SmallVectorImpl<MachineOperand> &Cond) {
|
|
// Block ends with fall-through condbranch.
|
|
assert(LastInst.getDesc().isConditionalBranch() &&
|
|
"Unknown conditional branch");
|
|
Target = LastInst.getOperand(2).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(LastInst.getOpcode()));
|
|
Cond.push_back(LastInst.getOperand(0));
|
|
Cond.push_back(LastInst.getOperand(1));
|
|
}
|
|
|
|
unsigned RISCVCC::getBrCond(RISCVCC::CondCode CC, unsigned SelectOpc) {
|
|
switch (SelectOpc) {
|
|
default:
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unexpected condition code!");
|
|
case RISCVCC::COND_EQ:
|
|
return RISCV::BEQ;
|
|
case RISCVCC::COND_NE:
|
|
return RISCV::BNE;
|
|
case RISCVCC::COND_LT:
|
|
return RISCV::BLT;
|
|
case RISCVCC::COND_GE:
|
|
return RISCV::BGE;
|
|
case RISCVCC::COND_LTU:
|
|
return RISCV::BLTU;
|
|
case RISCVCC::COND_GEU:
|
|
return RISCV::BGEU;
|
|
}
|
|
break;
|
|
case RISCV::Select_GPR_Using_CC_SImm5_CV:
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unexpected condition code!");
|
|
case RISCVCC::COND_EQ:
|
|
return RISCV::CV_BEQIMM;
|
|
case RISCVCC::COND_NE:
|
|
return RISCV::CV_BNEIMM;
|
|
}
|
|
break;
|
|
case RISCV::Select_GPRNoX0_Using_CC_SImm5NonZero_QC:
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unexpected condition code!");
|
|
case RISCVCC::COND_EQ:
|
|
return RISCV::QC_BEQI;
|
|
case RISCVCC::COND_NE:
|
|
return RISCV::QC_BNEI;
|
|
case RISCVCC::COND_LT:
|
|
return RISCV::QC_BLTI;
|
|
case RISCVCC::COND_GE:
|
|
return RISCV::QC_BGEI;
|
|
}
|
|
break;
|
|
case RISCV::Select_GPRNoX0_Using_CC_UImm5NonZero_QC:
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unexpected condition code!");
|
|
case RISCVCC::COND_LTU:
|
|
return RISCV::QC_BLTUI;
|
|
case RISCVCC::COND_GEU:
|
|
return RISCV::QC_BGEUI;
|
|
}
|
|
break;
|
|
case RISCV::Select_GPRNoX0_Using_CC_SImm16NonZero_QC:
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unexpected condition code!");
|
|
case RISCVCC::COND_EQ:
|
|
return RISCV::QC_E_BEQI;
|
|
case RISCVCC::COND_NE:
|
|
return RISCV::QC_E_BNEI;
|
|
case RISCVCC::COND_LT:
|
|
return RISCV::QC_E_BLTI;
|
|
case RISCVCC::COND_GE:
|
|
return RISCV::QC_E_BGEI;
|
|
}
|
|
break;
|
|
case RISCV::Select_GPRNoX0_Using_CC_UImm16NonZero_QC:
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unexpected condition code!");
|
|
case RISCVCC::COND_LTU:
|
|
return RISCV::QC_E_BLTUI;
|
|
case RISCVCC::COND_GEU:
|
|
return RISCV::QC_E_BGEUI;
|
|
}
|
|
break;
|
|
case RISCV::Select_GPR_Using_CC_UImmLog2XLen_NDS:
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unexpected condition code!");
|
|
case RISCVCC::COND_EQ:
|
|
return RISCV::NDS_BBC;
|
|
case RISCVCC::COND_NE:
|
|
return RISCV::NDS_BBS;
|
|
}
|
|
break;
|
|
case RISCV::Select_GPR_Using_CC_UImm7_NDS:
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unexpected condition code!");
|
|
case RISCVCC::COND_EQ:
|
|
return RISCV::NDS_BEQC;
|
|
case RISCVCC::COND_NE:
|
|
return RISCV::NDS_BNEC;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
RISCVCC::CondCode RISCVCC::getOppositeBranchCondition(RISCVCC::CondCode CC) {
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unrecognized conditional branch");
|
|
case RISCVCC::COND_EQ:
|
|
return RISCVCC::COND_NE;
|
|
case RISCVCC::COND_NE:
|
|
return RISCVCC::COND_EQ;
|
|
case RISCVCC::COND_LT:
|
|
return RISCVCC::COND_GE;
|
|
case RISCVCC::COND_GE:
|
|
return RISCVCC::COND_LT;
|
|
case RISCVCC::COND_LTU:
|
|
return RISCVCC::COND_GEU;
|
|
case RISCVCC::COND_GEU:
|
|
return RISCVCC::COND_LTU;
|
|
}
|
|
}
|
|
|
|
bool RISCVInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
TBB = FBB = nullptr;
|
|
Cond.clear();
|
|
|
|
// If the block has no terminators, it just falls into the block after it.
|
|
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
|
|
if (I == MBB.end() || !isUnpredicatedTerminator(*I))
|
|
return false;
|
|
|
|
// Count the number of terminators and find the first unconditional or
|
|
// indirect branch.
|
|
MachineBasicBlock::iterator FirstUncondOrIndirectBr = MBB.end();
|
|
int NumTerminators = 0;
|
|
for (auto J = I.getReverse(); J != MBB.rend() && isUnpredicatedTerminator(*J);
|
|
J++) {
|
|
NumTerminators++;
|
|
if (J->getDesc().isUnconditionalBranch() ||
|
|
J->getDesc().isIndirectBranch()) {
|
|
FirstUncondOrIndirectBr = J.getReverse();
|
|
}
|
|
}
|
|
|
|
// If AllowModify is true, we can erase any terminators after
|
|
// FirstUncondOrIndirectBR.
|
|
if (AllowModify && FirstUncondOrIndirectBr != MBB.end()) {
|
|
while (std::next(FirstUncondOrIndirectBr) != MBB.end()) {
|
|
std::next(FirstUncondOrIndirectBr)->eraseFromParent();
|
|
NumTerminators--;
|
|
}
|
|
I = FirstUncondOrIndirectBr;
|
|
}
|
|
|
|
// We can't handle blocks that end in an indirect branch.
|
|
if (I->getDesc().isIndirectBranch())
|
|
return true;
|
|
|
|
// We can't handle Generic branch opcodes from Global ISel.
|
|
if (I->isPreISelOpcode())
|
|
return true;
|
|
|
|
// We can't handle blocks with more than 2 terminators.
|
|
if (NumTerminators > 2)
|
|
return true;
|
|
|
|
// Handle a single unconditional branch.
|
|
if (NumTerminators == 1 && I->getDesc().isUnconditionalBranch()) {
|
|
TBB = getBranchDestBlock(*I);
|
|
return false;
|
|
}
|
|
|
|
// Handle a single conditional branch.
|
|
if (NumTerminators == 1 && I->getDesc().isConditionalBranch()) {
|
|
parseCondBranch(*I, TBB, Cond);
|
|
return false;
|
|
}
|
|
|
|
// Handle a conditional branch followed by an unconditional branch.
|
|
if (NumTerminators == 2 && std::prev(I)->getDesc().isConditionalBranch() &&
|
|
I->getDesc().isUnconditionalBranch()) {
|
|
parseCondBranch(*std::prev(I), TBB, Cond);
|
|
FBB = getBranchDestBlock(*I);
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we can't handle this.
|
|
return true;
|
|
}
|
|
|
|
unsigned RISCVInstrInfo::removeBranch(MachineBasicBlock &MBB,
|
|
int *BytesRemoved) const {
|
|
if (BytesRemoved)
|
|
*BytesRemoved = 0;
|
|
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
|
|
if (I == MBB.end())
|
|
return 0;
|
|
|
|
if (!I->getDesc().isUnconditionalBranch() &&
|
|
!I->getDesc().isConditionalBranch())
|
|
return 0;
|
|
|
|
// Remove the branch.
|
|
if (BytesRemoved)
|
|
*BytesRemoved += getInstSizeInBytes(*I);
|
|
I->eraseFromParent();
|
|
|
|
I = MBB.end();
|
|
|
|
if (I == MBB.begin())
|
|
return 1;
|
|
--I;
|
|
if (!I->getDesc().isConditionalBranch())
|
|
return 1;
|
|
|
|
// Remove the branch.
|
|
if (BytesRemoved)
|
|
*BytesRemoved += getInstSizeInBytes(*I);
|
|
I->eraseFromParent();
|
|
return 2;
|
|
}
|
|
|
|
// Inserts a branch into the end of the specific MachineBasicBlock, returning
|
|
// the number of instructions inserted.
|
|
unsigned RISCVInstrInfo::insertBranch(
|
|
MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
|
|
ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
|
|
if (BytesAdded)
|
|
*BytesAdded = 0;
|
|
|
|
// Shouldn't be a fall through.
|
|
assert(TBB && "insertBranch must not be told to insert a fallthrough");
|
|
assert((Cond.size() == 3 || Cond.size() == 0) &&
|
|
"RISC-V branch conditions have two components!");
|
|
|
|
// Unconditional branch.
|
|
if (Cond.empty()) {
|
|
MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(TBB);
|
|
if (BytesAdded)
|
|
*BytesAdded += getInstSizeInBytes(MI);
|
|
return 1;
|
|
}
|
|
|
|
// Either a one or two-way conditional branch.
|
|
MachineInstr &CondMI = *BuildMI(&MBB, DL, get(Cond[0].getImm()))
|
|
.add(Cond[1])
|
|
.add(Cond[2])
|
|
.addMBB(TBB);
|
|
if (BytesAdded)
|
|
*BytesAdded += getInstSizeInBytes(CondMI);
|
|
|
|
// One-way conditional branch.
|
|
if (!FBB)
|
|
return 1;
|
|
|
|
// Two-way conditional branch.
|
|
MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(FBB);
|
|
if (BytesAdded)
|
|
*BytesAdded += getInstSizeInBytes(MI);
|
|
return 2;
|
|
}
|
|
|
|
void RISCVInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock &DestBB,
|
|
MachineBasicBlock &RestoreBB,
|
|
const DebugLoc &DL, int64_t BrOffset,
|
|
RegScavenger *RS) const {
|
|
assert(RS && "RegScavenger required for long branching");
|
|
assert(MBB.empty() &&
|
|
"new block should be inserted for expanding unconditional branch");
|
|
assert(MBB.pred_size() == 1);
|
|
assert(RestoreBB.empty() &&
|
|
"restore block should be inserted for restoring clobbered registers");
|
|
|
|
MachineFunction *MF = MBB.getParent();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
RISCVMachineFunctionInfo *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
|
|
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
|
|
|
|
if (!isInt<32>(BrOffset))
|
|
report_fatal_error(
|
|
"Branch offsets outside of the signed 32-bit range not supported");
|
|
|
|
// FIXME: A virtual register must be used initially, as the register
|
|
// scavenger won't work with empty blocks (SIInstrInfo::insertIndirectBranch
|
|
// uses the same workaround).
|
|
Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRJALRRegClass);
|
|
auto II = MBB.end();
|
|
// We may also update the jump target to RestoreBB later.
|
|
MachineInstr &MI = *BuildMI(MBB, II, DL, get(RISCV::PseudoJump))
|
|
.addReg(ScratchReg, RegState::Define | RegState::Dead)
|
|
.addMBB(&DestBB, RISCVII::MO_CALL);
|
|
|
|
RS->enterBasicBlockEnd(MBB);
|
|
Register TmpGPR =
|
|
RS->scavengeRegisterBackwards(RISCV::GPRRegClass, MI.getIterator(),
|
|
/*RestoreAfter=*/false, /*SpAdj=*/0,
|
|
/*AllowSpill=*/false);
|
|
if (TmpGPR != RISCV::NoRegister)
|
|
RS->setRegUsed(TmpGPR);
|
|
else {
|
|
// The case when there is no scavenged register needs special handling.
|
|
|
|
// Pick s11(or s1 for rve) because it doesn't make a difference.
|
|
TmpGPR = STI.hasStdExtE() ? RISCV::X9 : RISCV::X27;
|
|
|
|
int FrameIndex = RVFI->getBranchRelaxationScratchFrameIndex();
|
|
if (FrameIndex == -1)
|
|
report_fatal_error("underestimated function size");
|
|
|
|
storeRegToStackSlot(MBB, MI, TmpGPR, /*IsKill=*/true, FrameIndex,
|
|
&RISCV::GPRRegClass, TRI, Register());
|
|
TRI->eliminateFrameIndex(std::prev(MI.getIterator()),
|
|
/*SpAdj=*/0, /*FIOperandNum=*/1);
|
|
|
|
MI.getOperand(1).setMBB(&RestoreBB);
|
|
|
|
loadRegFromStackSlot(RestoreBB, RestoreBB.end(), TmpGPR, FrameIndex,
|
|
&RISCV::GPRRegClass, TRI, Register());
|
|
TRI->eliminateFrameIndex(RestoreBB.back(),
|
|
/*SpAdj=*/0, /*FIOperandNum=*/1);
|
|
}
|
|
|
|
MRI.replaceRegWith(ScratchReg, TmpGPR);
|
|
MRI.clearVirtRegs();
|
|
}
|
|
|
|
bool RISCVInstrInfo::reverseBranchCondition(
|
|
SmallVectorImpl<MachineOperand> &Cond) const {
|
|
assert((Cond.size() == 3) && "Invalid branch condition!");
|
|
switch (Cond[0].getImm()) {
|
|
default:
|
|
llvm_unreachable("Unknown conditional branch!");
|
|
case RISCV::BEQ:
|
|
Cond[0].setImm(RISCV::BNE);
|
|
break;
|
|
case RISCV::BNE:
|
|
Cond[0].setImm(RISCV::BEQ);
|
|
break;
|
|
case RISCV::BLT:
|
|
Cond[0].setImm(RISCV::BGE);
|
|
break;
|
|
case RISCV::BGE:
|
|
Cond[0].setImm(RISCV::BLT);
|
|
break;
|
|
case RISCV::BLTU:
|
|
Cond[0].setImm(RISCV::BGEU);
|
|
break;
|
|
case RISCV::BGEU:
|
|
Cond[0].setImm(RISCV::BLTU);
|
|
break;
|
|
case RISCV::CV_BEQIMM:
|
|
Cond[0].setImm(RISCV::CV_BNEIMM);
|
|
break;
|
|
case RISCV::CV_BNEIMM:
|
|
Cond[0].setImm(RISCV::CV_BEQIMM);
|
|
break;
|
|
case RISCV::QC_BEQI:
|
|
Cond[0].setImm(RISCV::QC_BNEI);
|
|
break;
|
|
case RISCV::QC_BNEI:
|
|
Cond[0].setImm(RISCV::QC_BEQI);
|
|
break;
|
|
case RISCV::QC_BGEI:
|
|
Cond[0].setImm(RISCV::QC_BLTI);
|
|
break;
|
|
case RISCV::QC_BLTI:
|
|
Cond[0].setImm(RISCV::QC_BGEI);
|
|
break;
|
|
case RISCV::QC_BGEUI:
|
|
Cond[0].setImm(RISCV::QC_BLTUI);
|
|
break;
|
|
case RISCV::QC_BLTUI:
|
|
Cond[0].setImm(RISCV::QC_BGEUI);
|
|
break;
|
|
case RISCV::QC_E_BEQI:
|
|
Cond[0].setImm(RISCV::QC_E_BNEI);
|
|
break;
|
|
case RISCV::QC_E_BNEI:
|
|
Cond[0].setImm(RISCV::QC_E_BEQI);
|
|
break;
|
|
case RISCV::QC_E_BGEI:
|
|
Cond[0].setImm(RISCV::QC_E_BLTI);
|
|
break;
|
|
case RISCV::QC_E_BLTI:
|
|
Cond[0].setImm(RISCV::QC_E_BGEI);
|
|
break;
|
|
case RISCV::QC_E_BGEUI:
|
|
Cond[0].setImm(RISCV::QC_E_BLTUI);
|
|
break;
|
|
case RISCV::QC_E_BLTUI:
|
|
Cond[0].setImm(RISCV::QC_E_BGEUI);
|
|
break;
|
|
case RISCV::NDS_BBC:
|
|
Cond[0].setImm(RISCV::NDS_BBS);
|
|
break;
|
|
case RISCV::NDS_BBS:
|
|
Cond[0].setImm(RISCV::NDS_BBC);
|
|
break;
|
|
case RISCV::NDS_BEQC:
|
|
Cond[0].setImm(RISCV::NDS_BNEC);
|
|
break;
|
|
case RISCV::NDS_BNEC:
|
|
Cond[0].setImm(RISCV::NDS_BEQC);
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Return true if the instruction is a load immediate instruction (i.e.
|
|
// ADDI x0, imm).
|
|
static bool isLoadImm(const MachineInstr *MI, int64_t &Imm) {
|
|
if (MI->getOpcode() == RISCV::ADDI && MI->getOperand(1).isReg() &&
|
|
MI->getOperand(1).getReg() == RISCV::X0) {
|
|
Imm = MI->getOperand(2).getImm();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool RISCVInstrInfo::isFromLoadImm(const MachineRegisterInfo &MRI,
|
|
const MachineOperand &Op, int64_t &Imm) {
|
|
// Either a load from immediate instruction or X0.
|
|
if (!Op.isReg())
|
|
return false;
|
|
|
|
Register Reg = Op.getReg();
|
|
if (Reg == RISCV::X0) {
|
|
Imm = 0;
|
|
return true;
|
|
}
|
|
return Reg.isVirtual() && isLoadImm(MRI.getVRegDef(Reg), Imm);
|
|
}
|
|
|
|
bool RISCVInstrInfo::optimizeCondBranch(MachineInstr &MI) const {
|
|
bool IsSigned = false;
|
|
bool IsEquality = false;
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
case RISCV::BEQ:
|
|
case RISCV::BNE:
|
|
IsEquality = true;
|
|
break;
|
|
case RISCV::BGE:
|
|
case RISCV::BLT:
|
|
IsSigned = true;
|
|
break;
|
|
case RISCV::BGEU:
|
|
case RISCV::BLTU:
|
|
break;
|
|
}
|
|
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
|
|
|
|
const MachineOperand &LHS = MI.getOperand(0);
|
|
const MachineOperand &RHS = MI.getOperand(1);
|
|
MachineBasicBlock *TBB = MI.getOperand(2).getMBB();
|
|
|
|
RISCVCC::CondCode CC = getCondFromBranchOpc(MI.getOpcode());
|
|
assert(CC != RISCVCC::COND_INVALID);
|
|
|
|
// Canonicalize conditional branches which can be constant folded into
|
|
// beqz or bnez. We can't modify the CFG here.
|
|
int64_t C0, C1;
|
|
if (isFromLoadImm(MRI, LHS, C0) && isFromLoadImm(MRI, RHS, C1)) {
|
|
unsigned NewOpc = evaluateCondBranch(CC, C0, C1) ? RISCV::BEQ : RISCV::BNE;
|
|
// Build the new branch and remove the old one.
|
|
BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpc))
|
|
.addReg(RISCV::X0)
|
|
.addReg(RISCV::X0)
|
|
.addMBB(TBB);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
if (IsEquality)
|
|
return false;
|
|
|
|
// For two constants C0 and C1 from
|
|
// ```
|
|
// li Y, C0
|
|
// li Z, C1
|
|
// ```
|
|
// 1. if C1 = C0 + 1
|
|
// we can turn:
|
|
// (a) blt Y, X -> bge X, Z
|
|
// (b) bge Y, X -> blt X, Z
|
|
//
|
|
// 2. if C1 = C0 - 1
|
|
// we can turn:
|
|
// (a) blt X, Y -> bge Z, X
|
|
// (b) bge X, Y -> blt Z, X
|
|
//
|
|
// To make sure this optimization is really beneficial, we only
|
|
// optimize for cases where Y had only one use (i.e. only used by the branch).
|
|
// Try to find the register for constant Z; return
|
|
// invalid register otherwise.
|
|
auto searchConst = [&](int64_t C1) -> Register {
|
|
MachineBasicBlock::reverse_iterator II(&MI), E = MBB->rend();
|
|
auto DefC1 = std::find_if(++II, E, [&](const MachineInstr &I) -> bool {
|
|
int64_t Imm;
|
|
return isLoadImm(&I, Imm) && Imm == C1 &&
|
|
I.getOperand(0).getReg().isVirtual();
|
|
});
|
|
if (DefC1 != E)
|
|
return DefC1->getOperand(0).getReg();
|
|
|
|
return Register();
|
|
};
|
|
|
|
unsigned NewOpc = RISCVCC::getBrCond(getOppositeBranchCondition(CC));
|
|
|
|
// Might be case 1.
|
|
// Don't change 0 to 1 since we can use x0.
|
|
// For unsigned cases changing -1U to 0 would be incorrect.
|
|
// The incorrect case for signed would be INT_MAX, but isFromLoadImm can't
|
|
// return that.
|
|
if (isFromLoadImm(MRI, LHS, C0) && C0 != 0 && LHS.getReg().isVirtual() &&
|
|
MRI.hasOneUse(LHS.getReg()) && (IsSigned || C0 != -1)) {
|
|
assert(isInt<12>(C0) && "Unexpected immediate");
|
|
if (Register RegZ = searchConst(C0 + 1)) {
|
|
BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpc))
|
|
.add(RHS)
|
|
.addReg(RegZ)
|
|
.addMBB(TBB);
|
|
// We might extend the live range of Z, clear its kill flag to
|
|
// account for this.
|
|
MRI.clearKillFlags(RegZ);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Might be case 2.
|
|
// For signed cases we don't want to change 0 since we can use x0.
|
|
// For unsigned cases changing 0 to -1U would be incorrect.
|
|
// The incorrect case for signed would be INT_MIN, but isFromLoadImm can't
|
|
// return that.
|
|
if (isFromLoadImm(MRI, RHS, C0) && C0 != 0 && RHS.getReg().isVirtual() &&
|
|
MRI.hasOneUse(RHS.getReg())) {
|
|
assert(isInt<12>(C0) && "Unexpected immediate");
|
|
if (Register RegZ = searchConst(C0 - 1)) {
|
|
BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpc))
|
|
.addReg(RegZ)
|
|
.add(LHS)
|
|
.addMBB(TBB);
|
|
// We might extend the live range of Z, clear its kill flag to
|
|
// account for this.
|
|
MRI.clearKillFlags(RegZ);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
RISCVInstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
|
|
assert(MI.getDesc().isBranch() && "Unexpected opcode!");
|
|
// The branch target is always the last operand.
|
|
int NumOp = MI.getNumExplicitOperands();
|
|
return MI.getOperand(NumOp - 1).getMBB();
|
|
}
|
|
|
|
bool RISCVInstrInfo::isBranchOffsetInRange(unsigned BranchOp,
|
|
int64_t BrOffset) const {
|
|
unsigned XLen = STI.getXLen();
|
|
// Ideally we could determine the supported branch offset from the
|
|
// RISCVII::FormMask, but this can't be used for Pseudo instructions like
|
|
// PseudoBR.
|
|
switch (BranchOp) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode!");
|
|
case RISCV::NDS_BBC:
|
|
case RISCV::NDS_BBS:
|
|
case RISCV::NDS_BEQC:
|
|
case RISCV::NDS_BNEC:
|
|
return isInt<11>(BrOffset);
|
|
case RISCV::BEQ:
|
|
case RISCV::BNE:
|
|
case RISCV::BLT:
|
|
case RISCV::BGE:
|
|
case RISCV::BLTU:
|
|
case RISCV::BGEU:
|
|
case RISCV::CV_BEQIMM:
|
|
case RISCV::CV_BNEIMM:
|
|
case RISCV::QC_BEQI:
|
|
case RISCV::QC_BNEI:
|
|
case RISCV::QC_BGEI:
|
|
case RISCV::QC_BLTI:
|
|
case RISCV::QC_BLTUI:
|
|
case RISCV::QC_BGEUI:
|
|
case RISCV::QC_E_BEQI:
|
|
case RISCV::QC_E_BNEI:
|
|
case RISCV::QC_E_BGEI:
|
|
case RISCV::QC_E_BLTI:
|
|
case RISCV::QC_E_BLTUI:
|
|
case RISCV::QC_E_BGEUI:
|
|
return isInt<13>(BrOffset);
|
|
case RISCV::JAL:
|
|
case RISCV::PseudoBR:
|
|
return isInt<21>(BrOffset);
|
|
case RISCV::PseudoJump:
|
|
return isInt<32>(SignExtend64(BrOffset + 0x800, XLen));
|
|
}
|
|
}
|
|
|
|
// If the operation has a predicated pseudo instruction, return the pseudo
|
|
// instruction opcode. Otherwise, return RISCV::INSTRUCTION_LIST_END.
|
|
// TODO: Support more operations.
|
|
unsigned getPredicatedOpcode(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
case RISCV::ADD: return RISCV::PseudoCCADD; break;
|
|
case RISCV::SUB: return RISCV::PseudoCCSUB; break;
|
|
case RISCV::SLL: return RISCV::PseudoCCSLL; break;
|
|
case RISCV::SRL: return RISCV::PseudoCCSRL; break;
|
|
case RISCV::SRA: return RISCV::PseudoCCSRA; break;
|
|
case RISCV::AND: return RISCV::PseudoCCAND; break;
|
|
case RISCV::OR: return RISCV::PseudoCCOR; break;
|
|
case RISCV::XOR: return RISCV::PseudoCCXOR; break;
|
|
|
|
case RISCV::ADDI: return RISCV::PseudoCCADDI; break;
|
|
case RISCV::SLLI: return RISCV::PseudoCCSLLI; break;
|
|
case RISCV::SRLI: return RISCV::PseudoCCSRLI; break;
|
|
case RISCV::SRAI: return RISCV::PseudoCCSRAI; break;
|
|
case RISCV::ANDI: return RISCV::PseudoCCANDI; break;
|
|
case RISCV::ORI: return RISCV::PseudoCCORI; break;
|
|
case RISCV::XORI: return RISCV::PseudoCCXORI; break;
|
|
|
|
case RISCV::ADDW: return RISCV::PseudoCCADDW; break;
|
|
case RISCV::SUBW: return RISCV::PseudoCCSUBW; break;
|
|
case RISCV::SLLW: return RISCV::PseudoCCSLLW; break;
|
|
case RISCV::SRLW: return RISCV::PseudoCCSRLW; break;
|
|
case RISCV::SRAW: return RISCV::PseudoCCSRAW; break;
|
|
|
|
case RISCV::ADDIW: return RISCV::PseudoCCADDIW; break;
|
|
case RISCV::SLLIW: return RISCV::PseudoCCSLLIW; break;
|
|
case RISCV::SRLIW: return RISCV::PseudoCCSRLIW; break;
|
|
case RISCV::SRAIW: return RISCV::PseudoCCSRAIW; break;
|
|
|
|
case RISCV::ANDN: return RISCV::PseudoCCANDN; break;
|
|
case RISCV::ORN: return RISCV::PseudoCCORN; break;
|
|
case RISCV::XNOR: return RISCV::PseudoCCXNOR; break;
|
|
|
|
case RISCV::NDS_BFOS: return RISCV::PseudoCCNDS_BFOS; break;
|
|
case RISCV::NDS_BFOZ: return RISCV::PseudoCCNDS_BFOZ; break;
|
|
}
|
|
|
|
return RISCV::INSTRUCTION_LIST_END;
|
|
}
|
|
|
|
/// Identify instructions that can be folded into a CCMOV instruction, and
|
|
/// return the defining instruction.
|
|
static MachineInstr *canFoldAsPredicatedOp(Register Reg,
|
|
const MachineRegisterInfo &MRI,
|
|
const TargetInstrInfo *TII) {
|
|
if (!Reg.isVirtual())
|
|
return nullptr;
|
|
if (!MRI.hasOneNonDBGUse(Reg))
|
|
return nullptr;
|
|
MachineInstr *MI = MRI.getVRegDef(Reg);
|
|
if (!MI)
|
|
return nullptr;
|
|
// Check if MI can be predicated and folded into the CCMOV.
|
|
if (getPredicatedOpcode(MI->getOpcode()) == RISCV::INSTRUCTION_LIST_END)
|
|
return nullptr;
|
|
// Don't predicate li idiom.
|
|
if (MI->getOpcode() == RISCV::ADDI && MI->getOperand(1).isReg() &&
|
|
MI->getOperand(1).getReg() == RISCV::X0)
|
|
return nullptr;
|
|
// Check if MI has any other defs or physreg uses.
|
|
for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) {
|
|
// Reject frame index operands, PEI can't handle the predicated pseudos.
|
|
if (MO.isFI() || MO.isCPI() || MO.isJTI())
|
|
return nullptr;
|
|
if (!MO.isReg())
|
|
continue;
|
|
// MI can't have any tied operands, that would conflict with predication.
|
|
if (MO.isTied())
|
|
return nullptr;
|
|
if (MO.isDef())
|
|
return nullptr;
|
|
// Allow constant physregs.
|
|
if (MO.getReg().isPhysical() && !MRI.isConstantPhysReg(MO.getReg()))
|
|
return nullptr;
|
|
}
|
|
bool DontMoveAcrossStores = true;
|
|
if (!MI->isSafeToMove(DontMoveAcrossStores))
|
|
return nullptr;
|
|
return MI;
|
|
}
|
|
|
|
bool RISCVInstrInfo::analyzeSelect(const MachineInstr &MI,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
unsigned &TrueOp, unsigned &FalseOp,
|
|
bool &Optimizable) const {
|
|
assert(MI.getOpcode() == RISCV::PseudoCCMOVGPR &&
|
|
"Unknown select instruction");
|
|
// CCMOV operands:
|
|
// 0: Def.
|
|
// 1: LHS of compare.
|
|
// 2: RHS of compare.
|
|
// 3: Condition code.
|
|
// 4: False use.
|
|
// 5: True use.
|
|
TrueOp = 5;
|
|
FalseOp = 4;
|
|
Cond.push_back(MI.getOperand(1));
|
|
Cond.push_back(MI.getOperand(2));
|
|
Cond.push_back(MI.getOperand(3));
|
|
// We can only fold when we support short forward branch opt.
|
|
Optimizable = STI.hasShortForwardBranchOpt();
|
|
return false;
|
|
}
|
|
|
|
MachineInstr *
|
|
RISCVInstrInfo::optimizeSelect(MachineInstr &MI,
|
|
SmallPtrSetImpl<MachineInstr *> &SeenMIs,
|
|
bool PreferFalse) const {
|
|
assert(MI.getOpcode() == RISCV::PseudoCCMOVGPR &&
|
|
"Unknown select instruction");
|
|
if (!STI.hasShortForwardBranchOpt())
|
|
return nullptr;
|
|
|
|
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
MachineInstr *DefMI =
|
|
canFoldAsPredicatedOp(MI.getOperand(5).getReg(), MRI, this);
|
|
bool Invert = !DefMI;
|
|
if (!DefMI)
|
|
DefMI = canFoldAsPredicatedOp(MI.getOperand(4).getReg(), MRI, this);
|
|
if (!DefMI)
|
|
return nullptr;
|
|
|
|
// Find new register class to use.
|
|
MachineOperand FalseReg = MI.getOperand(Invert ? 5 : 4);
|
|
Register DestReg = MI.getOperand(0).getReg();
|
|
const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
|
|
if (!MRI.constrainRegClass(DestReg, PreviousClass))
|
|
return nullptr;
|
|
|
|
unsigned PredOpc = getPredicatedOpcode(DefMI->getOpcode());
|
|
assert(PredOpc != RISCV::INSTRUCTION_LIST_END && "Unexpected opcode!");
|
|
|
|
// Create a new predicated version of DefMI.
|
|
MachineInstrBuilder NewMI =
|
|
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(PredOpc), DestReg);
|
|
|
|
// Copy the condition portion.
|
|
NewMI.add(MI.getOperand(1));
|
|
NewMI.add(MI.getOperand(2));
|
|
|
|
// Add condition code, inverting if necessary.
|
|
auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
|
|
if (Invert)
|
|
CC = RISCVCC::getOppositeBranchCondition(CC);
|
|
NewMI.addImm(CC);
|
|
|
|
// Copy the false register.
|
|
NewMI.add(FalseReg);
|
|
|
|
// Copy all the DefMI operands.
|
|
const MCInstrDesc &DefDesc = DefMI->getDesc();
|
|
for (unsigned i = 1, e = DefDesc.getNumOperands(); i != e; ++i)
|
|
NewMI.add(DefMI->getOperand(i));
|
|
|
|
// Update SeenMIs set: register newly created MI and erase removed DefMI.
|
|
SeenMIs.insert(NewMI);
|
|
SeenMIs.erase(DefMI);
|
|
|
|
// If MI is inside a loop, and DefMI is outside the loop, then kill flags on
|
|
// DefMI would be invalid when transferred inside the loop. Checking for a
|
|
// loop is expensive, but at least remove kill flags if they are in different
|
|
// BBs.
|
|
if (DefMI->getParent() != MI.getParent())
|
|
NewMI->clearKillInfo();
|
|
|
|
// The caller will erase MI, but not DefMI.
|
|
DefMI->eraseFromParent();
|
|
return NewMI;
|
|
}
|
|
|
|
unsigned RISCVInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
|
|
if (MI.isMetaInstruction())
|
|
return 0;
|
|
|
|
unsigned Opcode = MI.getOpcode();
|
|
|
|
if (Opcode == TargetOpcode::INLINEASM ||
|
|
Opcode == TargetOpcode::INLINEASM_BR) {
|
|
const MachineFunction &MF = *MI.getParent()->getParent();
|
|
return getInlineAsmLength(MI.getOperand(0).getSymbolName(),
|
|
*MF.getTarget().getMCAsmInfo());
|
|
}
|
|
|
|
if (!MI.memoperands_empty()) {
|
|
MachineMemOperand *MMO = *(MI.memoperands_begin());
|
|
if (STI.hasStdExtZihintntl() && MMO->isNonTemporal()) {
|
|
if (STI.hasStdExtZca()) {
|
|
if (isCompressibleInst(MI, STI))
|
|
return 4; // c.ntl.all + c.load/c.store
|
|
return 6; // c.ntl.all + load/store
|
|
}
|
|
return 8; // ntl.all + load/store
|
|
}
|
|
}
|
|
|
|
if (Opcode == TargetOpcode::BUNDLE)
|
|
return getInstBundleLength(MI);
|
|
|
|
if (MI.getParent() && MI.getParent()->getParent()) {
|
|
if (isCompressibleInst(MI, STI))
|
|
return 2;
|
|
}
|
|
|
|
switch (Opcode) {
|
|
case RISCV::PseudoMV_FPR16INX:
|
|
case RISCV::PseudoMV_FPR32INX:
|
|
// MV is always compressible to either c.mv or c.li rd, 0.
|
|
return STI.hasStdExtZca() ? 2 : 4;
|
|
case TargetOpcode::STACKMAP:
|
|
// The upper bound for a stackmap intrinsic is the full length of its shadow
|
|
return StackMapOpers(&MI).getNumPatchBytes();
|
|
case TargetOpcode::PATCHPOINT:
|
|
// The size of the patchpoint intrinsic is the number of bytes requested
|
|
return PatchPointOpers(&MI).getNumPatchBytes();
|
|
case TargetOpcode::STATEPOINT: {
|
|
// The size of the statepoint intrinsic is the number of bytes requested
|
|
unsigned NumBytes = StatepointOpers(&MI).getNumPatchBytes();
|
|
// No patch bytes means at most a PseudoCall is emitted
|
|
return std::max(NumBytes, 8U);
|
|
}
|
|
case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
|
|
case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
|
|
case TargetOpcode::PATCHABLE_TAIL_CALL: {
|
|
const MachineFunction &MF = *MI.getParent()->getParent();
|
|
const Function &F = MF.getFunction();
|
|
if (Opcode == TargetOpcode::PATCHABLE_FUNCTION_ENTER &&
|
|
F.hasFnAttribute("patchable-function-entry")) {
|
|
unsigned Num;
|
|
if (F.getFnAttribute("patchable-function-entry")
|
|
.getValueAsString()
|
|
.getAsInteger(10, Num))
|
|
return get(Opcode).getSize();
|
|
|
|
// Number of C.NOP or NOP
|
|
return (STI.hasStdExtZca() ? 2 : 4) * Num;
|
|
}
|
|
// XRay uses C.JAL + 21 or 33 C.NOP for each sled in RV32 and RV64,
|
|
// respectively.
|
|
return STI.is64Bit() ? 68 : 44;
|
|
}
|
|
default:
|
|
return get(Opcode).getSize();
|
|
}
|
|
}
|
|
|
|
unsigned RISCVInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
|
|
unsigned Size = 0;
|
|
MachineBasicBlock::const_instr_iterator I = MI.getIterator();
|
|
MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
|
|
while (++I != E && I->isInsideBundle()) {
|
|
assert(!I->isBundle() && "No nested bundle!");
|
|
Size += getInstSizeInBytes(*I);
|
|
}
|
|
return Size;
|
|
}
|
|
|
|
bool RISCVInstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const {
|
|
const unsigned Opcode = MI.getOpcode();
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case RISCV::FSGNJ_D:
|
|
case RISCV::FSGNJ_S:
|
|
case RISCV::FSGNJ_H:
|
|
case RISCV::FSGNJ_D_INX:
|
|
case RISCV::FSGNJ_D_IN32X:
|
|
case RISCV::FSGNJ_S_INX:
|
|
case RISCV::FSGNJ_H_INX:
|
|
// The canonical floating-point move is fsgnj rd, rs, rs.
|
|
return MI.getOperand(1).isReg() && MI.getOperand(2).isReg() &&
|
|
MI.getOperand(1).getReg() == MI.getOperand(2).getReg();
|
|
case RISCV::ADDI:
|
|
case RISCV::ORI:
|
|
case RISCV::XORI:
|
|
return (MI.getOperand(1).isReg() &&
|
|
MI.getOperand(1).getReg() == RISCV::X0) ||
|
|
(MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0);
|
|
}
|
|
return MI.isAsCheapAsAMove();
|
|
}
|
|
|
|
std::optional<DestSourcePair>
|
|
RISCVInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
|
|
if (MI.isMoveReg())
|
|
return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
break;
|
|
case RISCV::ADD:
|
|
case RISCV::OR:
|
|
case RISCV::XOR:
|
|
if (MI.getOperand(1).isReg() && MI.getOperand(1).getReg() == RISCV::X0 &&
|
|
MI.getOperand(2).isReg())
|
|
return DestSourcePair{MI.getOperand(0), MI.getOperand(2)};
|
|
if (MI.getOperand(2).isReg() && MI.getOperand(2).getReg() == RISCV::X0 &&
|
|
MI.getOperand(1).isReg())
|
|
return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
|
|
break;
|
|
case RISCV::ADDI:
|
|
// Operand 1 can be a frameindex but callers expect registers
|
|
if (MI.getOperand(1).isReg() && MI.getOperand(2).isImm() &&
|
|
MI.getOperand(2).getImm() == 0)
|
|
return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
|
|
break;
|
|
case RISCV::SUB:
|
|
if (MI.getOperand(2).isReg() && MI.getOperand(2).getReg() == RISCV::X0 &&
|
|
MI.getOperand(1).isReg())
|
|
return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
|
|
break;
|
|
case RISCV::SH1ADD:
|
|
case RISCV::SH1ADD_UW:
|
|
case RISCV::SH2ADD:
|
|
case RISCV::SH2ADD_UW:
|
|
case RISCV::SH3ADD:
|
|
case RISCV::SH3ADD_UW:
|
|
if (MI.getOperand(1).isReg() && MI.getOperand(1).getReg() == RISCV::X0 &&
|
|
MI.getOperand(2).isReg())
|
|
return DestSourcePair{MI.getOperand(0), MI.getOperand(2)};
|
|
break;
|
|
case RISCV::FSGNJ_D:
|
|
case RISCV::FSGNJ_S:
|
|
case RISCV::FSGNJ_H:
|
|
case RISCV::FSGNJ_D_INX:
|
|
case RISCV::FSGNJ_D_IN32X:
|
|
case RISCV::FSGNJ_S_INX:
|
|
case RISCV::FSGNJ_H_INX:
|
|
// The canonical floating-point move is fsgnj rd, rs, rs.
|
|
if (MI.getOperand(1).isReg() && MI.getOperand(2).isReg() &&
|
|
MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
|
|
return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
|
|
break;
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
MachineTraceStrategy RISCVInstrInfo::getMachineCombinerTraceStrategy() const {
|
|
if (ForceMachineCombinerStrategy.getNumOccurrences() == 0) {
|
|
// The option is unused. Choose Local strategy only for in-order cores. When
|
|
// scheduling model is unspecified, use MinInstrCount strategy as more
|
|
// generic one.
|
|
const auto &SchedModel = STI.getSchedModel();
|
|
return (!SchedModel.hasInstrSchedModel() || SchedModel.isOutOfOrder())
|
|
? MachineTraceStrategy::TS_MinInstrCount
|
|
: MachineTraceStrategy::TS_Local;
|
|
}
|
|
// The strategy was forced by the option.
|
|
return ForceMachineCombinerStrategy;
|
|
}
|
|
|
|
void RISCVInstrInfo::finalizeInsInstrs(
|
|
MachineInstr &Root, unsigned &Pattern,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs) const {
|
|
int16_t FrmOpIdx =
|
|
RISCV::getNamedOperandIdx(Root.getOpcode(), RISCV::OpName::frm);
|
|
if (FrmOpIdx < 0) {
|
|
assert(all_of(InsInstrs,
|
|
[](MachineInstr *MI) {
|
|
return RISCV::getNamedOperandIdx(MI->getOpcode(),
|
|
RISCV::OpName::frm) < 0;
|
|
}) &&
|
|
"New instructions require FRM whereas the old one does not have it");
|
|
return;
|
|
}
|
|
|
|
const MachineOperand &FRM = Root.getOperand(FrmOpIdx);
|
|
MachineFunction &MF = *Root.getMF();
|
|
|
|
for (auto *NewMI : InsInstrs) {
|
|
// We'd already added the FRM operand.
|
|
if (static_cast<unsigned>(RISCV::getNamedOperandIdx(
|
|
NewMI->getOpcode(), RISCV::OpName::frm)) != NewMI->getNumOperands())
|
|
continue;
|
|
MachineInstrBuilder MIB(MF, NewMI);
|
|
MIB.add(FRM);
|
|
if (FRM.getImm() == RISCVFPRndMode::DYN)
|
|
MIB.addUse(RISCV::FRM, RegState::Implicit);
|
|
}
|
|
}
|
|
|
|
static bool isFADD(unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
return false;
|
|
case RISCV::FADD_H:
|
|
case RISCV::FADD_S:
|
|
case RISCV::FADD_D:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool isFSUB(unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
return false;
|
|
case RISCV::FSUB_H:
|
|
case RISCV::FSUB_S:
|
|
case RISCV::FSUB_D:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool isFMUL(unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
return false;
|
|
case RISCV::FMUL_H:
|
|
case RISCV::FMUL_S:
|
|
case RISCV::FMUL_D:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool RISCVInstrInfo::isVectorAssociativeAndCommutative(const MachineInstr &Inst,
|
|
bool Invert) const {
|
|
#define OPCODE_LMUL_CASE(OPC) \
|
|
case RISCV::OPC##_M1: \
|
|
case RISCV::OPC##_M2: \
|
|
case RISCV::OPC##_M4: \
|
|
case RISCV::OPC##_M8: \
|
|
case RISCV::OPC##_MF2: \
|
|
case RISCV::OPC##_MF4: \
|
|
case RISCV::OPC##_MF8
|
|
|
|
#define OPCODE_LMUL_MASK_CASE(OPC) \
|
|
case RISCV::OPC##_M1_MASK: \
|
|
case RISCV::OPC##_M2_MASK: \
|
|
case RISCV::OPC##_M4_MASK: \
|
|
case RISCV::OPC##_M8_MASK: \
|
|
case RISCV::OPC##_MF2_MASK: \
|
|
case RISCV::OPC##_MF4_MASK: \
|
|
case RISCV::OPC##_MF8_MASK
|
|
|
|
unsigned Opcode = Inst.getOpcode();
|
|
if (Invert) {
|
|
if (auto InvOpcode = getInverseOpcode(Opcode))
|
|
Opcode = *InvOpcode;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// clang-format off
|
|
switch (Opcode) {
|
|
default:
|
|
return false;
|
|
OPCODE_LMUL_CASE(PseudoVADD_VV):
|
|
OPCODE_LMUL_MASK_CASE(PseudoVADD_VV):
|
|
OPCODE_LMUL_CASE(PseudoVMUL_VV):
|
|
OPCODE_LMUL_MASK_CASE(PseudoVMUL_VV):
|
|
return true;
|
|
}
|
|
// clang-format on
|
|
|
|
#undef OPCODE_LMUL_MASK_CASE
|
|
#undef OPCODE_LMUL_CASE
|
|
}
|
|
|
|
bool RISCVInstrInfo::areRVVInstsReassociable(const MachineInstr &Root,
|
|
const MachineInstr &Prev) const {
|
|
if (!areOpcodesEqualOrInverse(Root.getOpcode(), Prev.getOpcode()))
|
|
return false;
|
|
|
|
assert(Root.getMF() == Prev.getMF());
|
|
const MachineRegisterInfo *MRI = &Root.getMF()->getRegInfo();
|
|
const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
|
|
|
|
// Make sure vtype operands are also the same.
|
|
const MCInstrDesc &Desc = get(Root.getOpcode());
|
|
const uint64_t TSFlags = Desc.TSFlags;
|
|
|
|
auto checkImmOperand = [&](unsigned OpIdx) {
|
|
return Root.getOperand(OpIdx).getImm() == Prev.getOperand(OpIdx).getImm();
|
|
};
|
|
|
|
auto checkRegOperand = [&](unsigned OpIdx) {
|
|
return Root.getOperand(OpIdx).getReg() == Prev.getOperand(OpIdx).getReg();
|
|
};
|
|
|
|
// PassThru
|
|
// TODO: Potentially we can loosen the condition to consider Root to be
|
|
// associable with Prev if Root has NoReg as passthru. In which case we
|
|
// also need to loosen the condition on vector policies between these.
|
|
if (!checkRegOperand(1))
|
|
return false;
|
|
|
|
// SEW
|
|
if (RISCVII::hasSEWOp(TSFlags) &&
|
|
!checkImmOperand(RISCVII::getSEWOpNum(Desc)))
|
|
return false;
|
|
|
|
// Mask
|
|
if (RISCVII::usesMaskPolicy(TSFlags)) {
|
|
const MachineBasicBlock *MBB = Root.getParent();
|
|
const MachineBasicBlock::const_reverse_iterator It1(&Root);
|
|
const MachineBasicBlock::const_reverse_iterator It2(&Prev);
|
|
Register MI1VReg;
|
|
|
|
bool SeenMI2 = false;
|
|
for (auto End = MBB->rend(), It = It1; It != End; ++It) {
|
|
if (It == It2) {
|
|
SeenMI2 = true;
|
|
if (!MI1VReg.isValid())
|
|
// There is no V0 def between Root and Prev; they're sharing the
|
|
// same V0.
|
|
break;
|
|
}
|
|
|
|
if (It->modifiesRegister(RISCV::V0, TRI)) {
|
|
Register SrcReg = It->getOperand(1).getReg();
|
|
// If it's not VReg it'll be more difficult to track its defs, so
|
|
// bailing out here just to be safe.
|
|
if (!SrcReg.isVirtual())
|
|
return false;
|
|
|
|
if (!MI1VReg.isValid()) {
|
|
// This is the V0 def for Root.
|
|
MI1VReg = SrcReg;
|
|
continue;
|
|
}
|
|
|
|
// Some random mask updates.
|
|
if (!SeenMI2)
|
|
continue;
|
|
|
|
// This is the V0 def for Prev; check if it's the same as that of
|
|
// Root.
|
|
if (MI1VReg != SrcReg)
|
|
return false;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we haven't encountered Prev, it's likely that this function was
|
|
// called in a wrong way (e.g. Root is before Prev).
|
|
assert(SeenMI2 && "Prev is expected to appear before Root");
|
|
}
|
|
|
|
// Tail / Mask policies
|
|
if (RISCVII::hasVecPolicyOp(TSFlags) &&
|
|
!checkImmOperand(RISCVII::getVecPolicyOpNum(Desc)))
|
|
return false;
|
|
|
|
// VL
|
|
if (RISCVII::hasVLOp(TSFlags)) {
|
|
unsigned OpIdx = RISCVII::getVLOpNum(Desc);
|
|
const MachineOperand &Op1 = Root.getOperand(OpIdx);
|
|
const MachineOperand &Op2 = Prev.getOperand(OpIdx);
|
|
if (Op1.getType() != Op2.getType())
|
|
return false;
|
|
switch (Op1.getType()) {
|
|
case MachineOperand::MO_Register:
|
|
if (Op1.getReg() != Op2.getReg())
|
|
return false;
|
|
break;
|
|
case MachineOperand::MO_Immediate:
|
|
if (Op1.getImm() != Op2.getImm())
|
|
return false;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unrecognized VL operand type");
|
|
}
|
|
}
|
|
|
|
// Rounding modes
|
|
if (RISCVII::hasRoundModeOp(TSFlags) &&
|
|
!checkImmOperand(RISCVII::getVLOpNum(Desc) - 1))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Most of our RVV pseudos have passthru operand, so the real operands
|
|
// start from index = 2.
|
|
bool RISCVInstrInfo::hasReassociableVectorSibling(const MachineInstr &Inst,
|
|
bool &Commuted) const {
|
|
const MachineBasicBlock *MBB = Inst.getParent();
|
|
const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
|
|
assert(RISCVII::isFirstDefTiedToFirstUse(get(Inst.getOpcode())) &&
|
|
"Expect the present of passthrough operand.");
|
|
MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
|
|
MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(3).getReg());
|
|
|
|
// If only one operand has the same or inverse opcode and it's the second
|
|
// source operand, the operands must be commuted.
|
|
Commuted = !areRVVInstsReassociable(Inst, *MI1) &&
|
|
areRVVInstsReassociable(Inst, *MI2);
|
|
if (Commuted)
|
|
std::swap(MI1, MI2);
|
|
|
|
return areRVVInstsReassociable(Inst, *MI1) &&
|
|
(isVectorAssociativeAndCommutative(*MI1) ||
|
|
isVectorAssociativeAndCommutative(*MI1, /* Invert */ true)) &&
|
|
hasReassociableOperands(*MI1, MBB) &&
|
|
MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
|
|
}
|
|
|
|
bool RISCVInstrInfo::hasReassociableOperands(
|
|
const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
|
|
if (!isVectorAssociativeAndCommutative(Inst) &&
|
|
!isVectorAssociativeAndCommutative(Inst, /*Invert=*/true))
|
|
return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
|
|
|
|
const MachineOperand &Op1 = Inst.getOperand(2);
|
|
const MachineOperand &Op2 = Inst.getOperand(3);
|
|
const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
|
|
|
|
// We need virtual register definitions for the operands that we will
|
|
// reassociate.
|
|
MachineInstr *MI1 = nullptr;
|
|
MachineInstr *MI2 = nullptr;
|
|
if (Op1.isReg() && Op1.getReg().isVirtual())
|
|
MI1 = MRI.getUniqueVRegDef(Op1.getReg());
|
|
if (Op2.isReg() && Op2.getReg().isVirtual())
|
|
MI2 = MRI.getUniqueVRegDef(Op2.getReg());
|
|
|
|
// And at least one operand must be defined in MBB.
|
|
return MI1 && MI2 && (MI1->getParent() == MBB || MI2->getParent() == MBB);
|
|
}
|
|
|
|
void RISCVInstrInfo::getReassociateOperandIndices(
|
|
const MachineInstr &Root, unsigned Pattern,
|
|
std::array<unsigned, 5> &OperandIndices) const {
|
|
TargetInstrInfo::getReassociateOperandIndices(Root, Pattern, OperandIndices);
|
|
if (RISCV::getRVVMCOpcode(Root.getOpcode())) {
|
|
// Skip the passthrough operand, so increment all indices by one.
|
|
for (unsigned I = 0; I < 5; ++I)
|
|
++OperandIndices[I];
|
|
}
|
|
}
|
|
|
|
bool RISCVInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
|
|
bool &Commuted) const {
|
|
if (isVectorAssociativeAndCommutative(Inst) ||
|
|
isVectorAssociativeAndCommutative(Inst, /*Invert=*/true))
|
|
return hasReassociableVectorSibling(Inst, Commuted);
|
|
|
|
if (!TargetInstrInfo::hasReassociableSibling(Inst, Commuted))
|
|
return false;
|
|
|
|
const MachineRegisterInfo &MRI = Inst.getMF()->getRegInfo();
|
|
unsigned OperandIdx = Commuted ? 2 : 1;
|
|
const MachineInstr &Sibling =
|
|
*MRI.getVRegDef(Inst.getOperand(OperandIdx).getReg());
|
|
|
|
int16_t InstFrmOpIdx =
|
|
RISCV::getNamedOperandIdx(Inst.getOpcode(), RISCV::OpName::frm);
|
|
int16_t SiblingFrmOpIdx =
|
|
RISCV::getNamedOperandIdx(Sibling.getOpcode(), RISCV::OpName::frm);
|
|
|
|
return (InstFrmOpIdx < 0 && SiblingFrmOpIdx < 0) ||
|
|
RISCV::hasEqualFRM(Inst, Sibling);
|
|
}
|
|
|
|
bool RISCVInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst,
|
|
bool Invert) const {
|
|
if (isVectorAssociativeAndCommutative(Inst, Invert))
|
|
return true;
|
|
|
|
unsigned Opc = Inst.getOpcode();
|
|
if (Invert) {
|
|
auto InverseOpcode = getInverseOpcode(Opc);
|
|
if (!InverseOpcode)
|
|
return false;
|
|
Opc = *InverseOpcode;
|
|
}
|
|
|
|
if (isFADD(Opc) || isFMUL(Opc))
|
|
return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
|
|
Inst.getFlag(MachineInstr::MIFlag::FmNsz);
|
|
|
|
switch (Opc) {
|
|
default:
|
|
return false;
|
|
case RISCV::ADD:
|
|
case RISCV::ADDW:
|
|
case RISCV::AND:
|
|
case RISCV::OR:
|
|
case RISCV::XOR:
|
|
// From RISC-V ISA spec, if both the high and low bits of the same product
|
|
// are required, then the recommended code sequence is:
|
|
//
|
|
// MULH[[S]U] rdh, rs1, rs2
|
|
// MUL rdl, rs1, rs2
|
|
// (source register specifiers must be in same order and rdh cannot be the
|
|
// same as rs1 or rs2)
|
|
//
|
|
// Microarchitectures can then fuse these into a single multiply operation
|
|
// instead of performing two separate multiplies.
|
|
// MachineCombiner may reassociate MUL operands and lose the fusion
|
|
// opportunity.
|
|
case RISCV::MUL:
|
|
case RISCV::MULW:
|
|
case RISCV::MIN:
|
|
case RISCV::MINU:
|
|
case RISCV::MAX:
|
|
case RISCV::MAXU:
|
|
case RISCV::FMIN_H:
|
|
case RISCV::FMIN_S:
|
|
case RISCV::FMIN_D:
|
|
case RISCV::FMAX_H:
|
|
case RISCV::FMAX_S:
|
|
case RISCV::FMAX_D:
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
std::optional<unsigned>
|
|
RISCVInstrInfo::getInverseOpcode(unsigned Opcode) const {
|
|
#define RVV_OPC_LMUL_CASE(OPC, INV) \
|
|
case RISCV::OPC##_M1: \
|
|
return RISCV::INV##_M1; \
|
|
case RISCV::OPC##_M2: \
|
|
return RISCV::INV##_M2; \
|
|
case RISCV::OPC##_M4: \
|
|
return RISCV::INV##_M4; \
|
|
case RISCV::OPC##_M8: \
|
|
return RISCV::INV##_M8; \
|
|
case RISCV::OPC##_MF2: \
|
|
return RISCV::INV##_MF2; \
|
|
case RISCV::OPC##_MF4: \
|
|
return RISCV::INV##_MF4; \
|
|
case RISCV::OPC##_MF8: \
|
|
return RISCV::INV##_MF8
|
|
|
|
#define RVV_OPC_LMUL_MASK_CASE(OPC, INV) \
|
|
case RISCV::OPC##_M1_MASK: \
|
|
return RISCV::INV##_M1_MASK; \
|
|
case RISCV::OPC##_M2_MASK: \
|
|
return RISCV::INV##_M2_MASK; \
|
|
case RISCV::OPC##_M4_MASK: \
|
|
return RISCV::INV##_M4_MASK; \
|
|
case RISCV::OPC##_M8_MASK: \
|
|
return RISCV::INV##_M8_MASK; \
|
|
case RISCV::OPC##_MF2_MASK: \
|
|
return RISCV::INV##_MF2_MASK; \
|
|
case RISCV::OPC##_MF4_MASK: \
|
|
return RISCV::INV##_MF4_MASK; \
|
|
case RISCV::OPC##_MF8_MASK: \
|
|
return RISCV::INV##_MF8_MASK
|
|
|
|
switch (Opcode) {
|
|
default:
|
|
return std::nullopt;
|
|
case RISCV::FADD_H:
|
|
return RISCV::FSUB_H;
|
|
case RISCV::FADD_S:
|
|
return RISCV::FSUB_S;
|
|
case RISCV::FADD_D:
|
|
return RISCV::FSUB_D;
|
|
case RISCV::FSUB_H:
|
|
return RISCV::FADD_H;
|
|
case RISCV::FSUB_S:
|
|
return RISCV::FADD_S;
|
|
case RISCV::FSUB_D:
|
|
return RISCV::FADD_D;
|
|
case RISCV::ADD:
|
|
return RISCV::SUB;
|
|
case RISCV::SUB:
|
|
return RISCV::ADD;
|
|
case RISCV::ADDW:
|
|
return RISCV::SUBW;
|
|
case RISCV::SUBW:
|
|
return RISCV::ADDW;
|
|
// clang-format off
|
|
RVV_OPC_LMUL_CASE(PseudoVADD_VV, PseudoVSUB_VV);
|
|
RVV_OPC_LMUL_MASK_CASE(PseudoVADD_VV, PseudoVSUB_VV);
|
|
RVV_OPC_LMUL_CASE(PseudoVSUB_VV, PseudoVADD_VV);
|
|
RVV_OPC_LMUL_MASK_CASE(PseudoVSUB_VV, PseudoVADD_VV);
|
|
// clang-format on
|
|
}
|
|
|
|
#undef RVV_OPC_LMUL_MASK_CASE
|
|
#undef RVV_OPC_LMUL_CASE
|
|
}
|
|
|
|
static bool canCombineFPFusedMultiply(const MachineInstr &Root,
|
|
const MachineOperand &MO,
|
|
bool DoRegPressureReduce) {
|
|
if (!MO.isReg() || !MO.getReg().isVirtual())
|
|
return false;
|
|
const MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
|
|
MachineInstr *MI = MRI.getVRegDef(MO.getReg());
|
|
if (!MI || !isFMUL(MI->getOpcode()))
|
|
return false;
|
|
|
|
if (!Root.getFlag(MachineInstr::MIFlag::FmContract) ||
|
|
!MI->getFlag(MachineInstr::MIFlag::FmContract))
|
|
return false;
|
|
|
|
// Try combining even if fmul has more than one use as it eliminates
|
|
// dependency between fadd(fsub) and fmul. However, it can extend liveranges
|
|
// for fmul operands, so reject the transformation in register pressure
|
|
// reduction mode.
|
|
if (DoRegPressureReduce && !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
|
|
return false;
|
|
|
|
// Do not combine instructions from different basic blocks.
|
|
if (Root.getParent() != MI->getParent())
|
|
return false;
|
|
return RISCV::hasEqualFRM(Root, *MI);
|
|
}
|
|
|
|
static bool getFPFusedMultiplyPatterns(MachineInstr &Root,
|
|
SmallVectorImpl<unsigned> &Patterns,
|
|
bool DoRegPressureReduce) {
|
|
unsigned Opc = Root.getOpcode();
|
|
bool IsFAdd = isFADD(Opc);
|
|
if (!IsFAdd && !isFSUB(Opc))
|
|
return false;
|
|
bool Added = false;
|
|
if (canCombineFPFusedMultiply(Root, Root.getOperand(1),
|
|
DoRegPressureReduce)) {
|
|
Patterns.push_back(IsFAdd ? RISCVMachineCombinerPattern::FMADD_AX
|
|
: RISCVMachineCombinerPattern::FMSUB);
|
|
Added = true;
|
|
}
|
|
if (canCombineFPFusedMultiply(Root, Root.getOperand(2),
|
|
DoRegPressureReduce)) {
|
|
Patterns.push_back(IsFAdd ? RISCVMachineCombinerPattern::FMADD_XA
|
|
: RISCVMachineCombinerPattern::FNMSUB);
|
|
Added = true;
|
|
}
|
|
return Added;
|
|
}
|
|
|
|
static bool getFPPatterns(MachineInstr &Root,
|
|
SmallVectorImpl<unsigned> &Patterns,
|
|
bool DoRegPressureReduce) {
|
|
return getFPFusedMultiplyPatterns(Root, Patterns, DoRegPressureReduce);
|
|
}
|
|
|
|
/// Utility routine that checks if \param MO is defined by an
|
|
/// \param CombineOpc instruction in the basic block \param MBB
|
|
static const MachineInstr *canCombine(const MachineBasicBlock &MBB,
|
|
const MachineOperand &MO,
|
|
unsigned CombineOpc) {
|
|
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
const MachineInstr *MI = nullptr;
|
|
|
|
if (MO.isReg() && MO.getReg().isVirtual())
|
|
MI = MRI.getUniqueVRegDef(MO.getReg());
|
|
// And it needs to be in the trace (otherwise, it won't have a depth).
|
|
if (!MI || MI->getParent() != &MBB || MI->getOpcode() != CombineOpc)
|
|
return nullptr;
|
|
// Must only used by the user we combine with.
|
|
if (!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
|
|
return nullptr;
|
|
|
|
return MI;
|
|
}
|
|
|
|
/// Utility routine that checks if \param MO is defined by a SLLI in \param
|
|
/// MBB that can be combined by splitting across 2 SHXADD instructions. The
|
|
/// first SHXADD shift amount is given by \param OuterShiftAmt.
|
|
static bool canCombineShiftIntoShXAdd(const MachineBasicBlock &MBB,
|
|
const MachineOperand &MO,
|
|
unsigned OuterShiftAmt) {
|
|
const MachineInstr *ShiftMI = canCombine(MBB, MO, RISCV::SLLI);
|
|
if (!ShiftMI)
|
|
return false;
|
|
|
|
unsigned InnerShiftAmt = ShiftMI->getOperand(2).getImm();
|
|
if (InnerShiftAmt < OuterShiftAmt || (InnerShiftAmt - OuterShiftAmt) > 3)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Returns the shift amount from a SHXADD instruction. Returns 0 if the
|
|
// instruction is not a SHXADD.
|
|
static unsigned getSHXADDShiftAmount(unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
return 0;
|
|
case RISCV::SH1ADD:
|
|
return 1;
|
|
case RISCV::SH2ADD:
|
|
return 2;
|
|
case RISCV::SH3ADD:
|
|
return 3;
|
|
}
|
|
}
|
|
|
|
// Returns the shift amount from a SHXADD.UW instruction. Returns 0 if the
|
|
// instruction is not a SHXADD.UW.
|
|
static unsigned getSHXADDUWShiftAmount(unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
return 0;
|
|
case RISCV::SH1ADD_UW:
|
|
return 1;
|
|
case RISCV::SH2ADD_UW:
|
|
return 2;
|
|
case RISCV::SH3ADD_UW:
|
|
return 3;
|
|
}
|
|
}
|
|
|
|
// Look for opportunities to combine (sh3add Z, (add X, (slli Y, 5))) into
|
|
// (sh3add (sh2add Y, Z), X).
|
|
static bool getSHXADDPatterns(const MachineInstr &Root,
|
|
SmallVectorImpl<unsigned> &Patterns) {
|
|
unsigned ShiftAmt = getSHXADDShiftAmount(Root.getOpcode());
|
|
if (!ShiftAmt)
|
|
return false;
|
|
|
|
const MachineBasicBlock &MBB = *Root.getParent();
|
|
|
|
const MachineInstr *AddMI = canCombine(MBB, Root.getOperand(2), RISCV::ADD);
|
|
if (!AddMI)
|
|
return false;
|
|
|
|
bool Found = false;
|
|
if (canCombineShiftIntoShXAdd(MBB, AddMI->getOperand(1), ShiftAmt)) {
|
|
Patterns.push_back(RISCVMachineCombinerPattern::SHXADD_ADD_SLLI_OP1);
|
|
Found = true;
|
|
}
|
|
if (canCombineShiftIntoShXAdd(MBB, AddMI->getOperand(2), ShiftAmt)) {
|
|
Patterns.push_back(RISCVMachineCombinerPattern::SHXADD_ADD_SLLI_OP2);
|
|
Found = true;
|
|
}
|
|
|
|
return Found;
|
|
}
|
|
|
|
CombinerObjective RISCVInstrInfo::getCombinerObjective(unsigned Pattern) const {
|
|
switch (Pattern) {
|
|
case RISCVMachineCombinerPattern::FMADD_AX:
|
|
case RISCVMachineCombinerPattern::FMADD_XA:
|
|
case RISCVMachineCombinerPattern::FMSUB:
|
|
case RISCVMachineCombinerPattern::FNMSUB:
|
|
return CombinerObjective::MustReduceDepth;
|
|
default:
|
|
return TargetInstrInfo::getCombinerObjective(Pattern);
|
|
}
|
|
}
|
|
|
|
bool RISCVInstrInfo::getMachineCombinerPatterns(
|
|
MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns,
|
|
bool DoRegPressureReduce) const {
|
|
|
|
if (getFPPatterns(Root, Patterns, DoRegPressureReduce))
|
|
return true;
|
|
|
|
if (getSHXADDPatterns(Root, Patterns))
|
|
return true;
|
|
|
|
return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
|
|
DoRegPressureReduce);
|
|
}
|
|
|
|
static unsigned getFPFusedMultiplyOpcode(unsigned RootOpc, unsigned Pattern) {
|
|
switch (RootOpc) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
case RISCV::FADD_H:
|
|
return RISCV::FMADD_H;
|
|
case RISCV::FADD_S:
|
|
return RISCV::FMADD_S;
|
|
case RISCV::FADD_D:
|
|
return RISCV::FMADD_D;
|
|
case RISCV::FSUB_H:
|
|
return Pattern == RISCVMachineCombinerPattern::FMSUB ? RISCV::FMSUB_H
|
|
: RISCV::FNMSUB_H;
|
|
case RISCV::FSUB_S:
|
|
return Pattern == RISCVMachineCombinerPattern::FMSUB ? RISCV::FMSUB_S
|
|
: RISCV::FNMSUB_S;
|
|
case RISCV::FSUB_D:
|
|
return Pattern == RISCVMachineCombinerPattern::FMSUB ? RISCV::FMSUB_D
|
|
: RISCV::FNMSUB_D;
|
|
}
|
|
}
|
|
|
|
static unsigned getAddendOperandIdx(unsigned Pattern) {
|
|
switch (Pattern) {
|
|
default:
|
|
llvm_unreachable("Unexpected pattern");
|
|
case RISCVMachineCombinerPattern::FMADD_AX:
|
|
case RISCVMachineCombinerPattern::FMSUB:
|
|
return 2;
|
|
case RISCVMachineCombinerPattern::FMADD_XA:
|
|
case RISCVMachineCombinerPattern::FNMSUB:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static void combineFPFusedMultiply(MachineInstr &Root, MachineInstr &Prev,
|
|
unsigned Pattern,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
SmallVectorImpl<MachineInstr *> &DelInstrs) {
|
|
MachineFunction *MF = Root.getMF();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
|
|
|
|
MachineOperand &Mul1 = Prev.getOperand(1);
|
|
MachineOperand &Mul2 = Prev.getOperand(2);
|
|
MachineOperand &Dst = Root.getOperand(0);
|
|
MachineOperand &Addend = Root.getOperand(getAddendOperandIdx(Pattern));
|
|
|
|
Register DstReg = Dst.getReg();
|
|
unsigned FusedOpc = getFPFusedMultiplyOpcode(Root.getOpcode(), Pattern);
|
|
uint32_t IntersectedFlags = Root.getFlags() & Prev.getFlags();
|
|
DebugLoc MergedLoc =
|
|
DILocation::getMergedLocation(Root.getDebugLoc(), Prev.getDebugLoc());
|
|
|
|
bool Mul1IsKill = Mul1.isKill();
|
|
bool Mul2IsKill = Mul2.isKill();
|
|
bool AddendIsKill = Addend.isKill();
|
|
|
|
// We need to clear kill flags since we may be extending the live range past
|
|
// a kill. If the mul had kill flags, we can preserve those since we know
|
|
// where the previous range stopped.
|
|
MRI.clearKillFlags(Mul1.getReg());
|
|
MRI.clearKillFlags(Mul2.getReg());
|
|
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*MF, MergedLoc, TII->get(FusedOpc), DstReg)
|
|
.addReg(Mul1.getReg(), getKillRegState(Mul1IsKill))
|
|
.addReg(Mul2.getReg(), getKillRegState(Mul2IsKill))
|
|
.addReg(Addend.getReg(), getKillRegState(AddendIsKill))
|
|
.setMIFlags(IntersectedFlags);
|
|
|
|
InsInstrs.push_back(MIB);
|
|
if (MRI.hasOneNonDBGUse(Prev.getOperand(0).getReg()))
|
|
DelInstrs.push_back(&Prev);
|
|
DelInstrs.push_back(&Root);
|
|
}
|
|
|
|
// Combine patterns like (sh3add Z, (add X, (slli Y, 5))) to
|
|
// (sh3add (sh2add Y, Z), X) if the shift amount can be split across two
|
|
// shXadd instructions. The outer shXadd keeps its original opcode.
|
|
static void
|
|
genShXAddAddShift(MachineInstr &Root, unsigned AddOpIdx,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
SmallVectorImpl<MachineInstr *> &DelInstrs,
|
|
DenseMap<Register, unsigned> &InstrIdxForVirtReg) {
|
|
MachineFunction *MF = Root.getMF();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
|
|
|
|
unsigned OuterShiftAmt = getSHXADDShiftAmount(Root.getOpcode());
|
|
assert(OuterShiftAmt != 0 && "Unexpected opcode");
|
|
|
|
MachineInstr *AddMI = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
|
|
MachineInstr *ShiftMI =
|
|
MRI.getUniqueVRegDef(AddMI->getOperand(AddOpIdx).getReg());
|
|
|
|
unsigned InnerShiftAmt = ShiftMI->getOperand(2).getImm();
|
|
assert(InnerShiftAmt >= OuterShiftAmt && "Unexpected shift amount");
|
|
|
|
unsigned InnerOpc;
|
|
switch (InnerShiftAmt - OuterShiftAmt) {
|
|
default:
|
|
llvm_unreachable("Unexpected shift amount");
|
|
case 0:
|
|
InnerOpc = RISCV::ADD;
|
|
break;
|
|
case 1:
|
|
InnerOpc = RISCV::SH1ADD;
|
|
break;
|
|
case 2:
|
|
InnerOpc = RISCV::SH2ADD;
|
|
break;
|
|
case 3:
|
|
InnerOpc = RISCV::SH3ADD;
|
|
break;
|
|
}
|
|
|
|
const MachineOperand &X = AddMI->getOperand(3 - AddOpIdx);
|
|
const MachineOperand &Y = ShiftMI->getOperand(1);
|
|
const MachineOperand &Z = Root.getOperand(1);
|
|
|
|
Register NewVR = MRI.createVirtualRegister(&RISCV::GPRRegClass);
|
|
|
|
auto MIB1 = BuildMI(*MF, MIMetadata(Root), TII->get(InnerOpc), NewVR)
|
|
.addReg(Y.getReg(), getKillRegState(Y.isKill()))
|
|
.addReg(Z.getReg(), getKillRegState(Z.isKill()));
|
|
auto MIB2 = BuildMI(*MF, MIMetadata(Root), TII->get(Root.getOpcode()),
|
|
Root.getOperand(0).getReg())
|
|
.addReg(NewVR, RegState::Kill)
|
|
.addReg(X.getReg(), getKillRegState(X.isKill()));
|
|
|
|
InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
|
|
InsInstrs.push_back(MIB1);
|
|
InsInstrs.push_back(MIB2);
|
|
DelInstrs.push_back(ShiftMI);
|
|
DelInstrs.push_back(AddMI);
|
|
DelInstrs.push_back(&Root);
|
|
}
|
|
|
|
void RISCVInstrInfo::genAlternativeCodeSequence(
|
|
MachineInstr &Root, unsigned Pattern,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
SmallVectorImpl<MachineInstr *> &DelInstrs,
|
|
DenseMap<Register, unsigned> &InstrIdxForVirtReg) const {
|
|
MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
|
|
switch (Pattern) {
|
|
default:
|
|
TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
|
|
DelInstrs, InstrIdxForVirtReg);
|
|
return;
|
|
case RISCVMachineCombinerPattern::FMADD_AX:
|
|
case RISCVMachineCombinerPattern::FMSUB: {
|
|
MachineInstr &Prev = *MRI.getVRegDef(Root.getOperand(1).getReg());
|
|
combineFPFusedMultiply(Root, Prev, Pattern, InsInstrs, DelInstrs);
|
|
return;
|
|
}
|
|
case RISCVMachineCombinerPattern::FMADD_XA:
|
|
case RISCVMachineCombinerPattern::FNMSUB: {
|
|
MachineInstr &Prev = *MRI.getVRegDef(Root.getOperand(2).getReg());
|
|
combineFPFusedMultiply(Root, Prev, Pattern, InsInstrs, DelInstrs);
|
|
return;
|
|
}
|
|
case RISCVMachineCombinerPattern::SHXADD_ADD_SLLI_OP1:
|
|
genShXAddAddShift(Root, 1, InsInstrs, DelInstrs, InstrIdxForVirtReg);
|
|
return;
|
|
case RISCVMachineCombinerPattern::SHXADD_ADD_SLLI_OP2:
|
|
genShXAddAddShift(Root, 2, InsInstrs, DelInstrs, InstrIdxForVirtReg);
|
|
return;
|
|
}
|
|
}
|
|
|
|
bool RISCVInstrInfo::verifyInstruction(const MachineInstr &MI,
|
|
StringRef &ErrInfo) const {
|
|
MCInstrDesc const &Desc = MI.getDesc();
|
|
|
|
for (const auto &[Index, Operand] : enumerate(Desc.operands())) {
|
|
unsigned OpType = Operand.OperandType;
|
|
if (OpType >= RISCVOp::OPERAND_FIRST_RISCV_IMM &&
|
|
OpType <= RISCVOp::OPERAND_LAST_RISCV_IMM) {
|
|
const MachineOperand &MO = MI.getOperand(Index);
|
|
if (MO.isReg()) {
|
|
ErrInfo = "Expected a non-register operand.";
|
|
return false;
|
|
}
|
|
if (MO.isImm()) {
|
|
int64_t Imm = MO.getImm();
|
|
bool Ok;
|
|
switch (OpType) {
|
|
default:
|
|
llvm_unreachable("Unexpected operand type");
|
|
|
|
// clang-format off
|
|
#define CASE_OPERAND_UIMM(NUM) \
|
|
case RISCVOp::OPERAND_UIMM##NUM: \
|
|
Ok = isUInt<NUM>(Imm); \
|
|
break;
|
|
#define CASE_OPERAND_SIMM(NUM) \
|
|
case RISCVOp::OPERAND_SIMM##NUM: \
|
|
Ok = isInt<NUM>(Imm); \
|
|
break;
|
|
CASE_OPERAND_UIMM(1)
|
|
CASE_OPERAND_UIMM(2)
|
|
CASE_OPERAND_UIMM(3)
|
|
CASE_OPERAND_UIMM(4)
|
|
CASE_OPERAND_UIMM(5)
|
|
CASE_OPERAND_UIMM(6)
|
|
CASE_OPERAND_UIMM(7)
|
|
CASE_OPERAND_UIMM(8)
|
|
CASE_OPERAND_UIMM(9)
|
|
CASE_OPERAND_UIMM(10)
|
|
CASE_OPERAND_UIMM(12)
|
|
CASE_OPERAND_UIMM(16)
|
|
CASE_OPERAND_UIMM(20)
|
|
CASE_OPERAND_UIMM(32)
|
|
CASE_OPERAND_UIMM(48)
|
|
CASE_OPERAND_UIMM(64)
|
|
// clang-format on
|
|
case RISCVOp::OPERAND_UIMM2_LSB0:
|
|
Ok = isShiftedUInt<1, 1>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMM5_LSB0:
|
|
Ok = isShiftedUInt<4, 1>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMM5_NONZERO:
|
|
Ok = isUInt<5>(Imm) && (Imm != 0);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMM5_GT3:
|
|
Ok = isUInt<5>(Imm) && (Imm > 3);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMM5_PLUS1:
|
|
Ok = (isUInt<5>(Imm) && (Imm != 0)) || (Imm == 32);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMM6_LSB0:
|
|
Ok = isShiftedUInt<5, 1>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMM7_LSB00:
|
|
Ok = isShiftedUInt<5, 2>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMM7_LSB000:
|
|
Ok = isShiftedUInt<4, 3>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMM8_LSB00:
|
|
Ok = isShiftedUInt<6, 2>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMM8_LSB000:
|
|
Ok = isShiftedUInt<5, 3>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMM8_GE32:
|
|
Ok = isUInt<8>(Imm) && Imm >= 32;
|
|
break;
|
|
case RISCVOp::OPERAND_UIMM9_LSB000:
|
|
Ok = isShiftedUInt<6, 3>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_SIMM10_LSB0000_NONZERO:
|
|
Ok = isShiftedInt<6, 4>(Imm) && (Imm != 0);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMM10_LSB00_NONZERO:
|
|
Ok = isShiftedUInt<8, 2>(Imm) && (Imm != 0);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMM16_NONZERO:
|
|
Ok = isUInt<16>(Imm) && (Imm != 0);
|
|
break;
|
|
case RISCVOp::OPERAND_THREE:
|
|
Ok = Imm == 3;
|
|
break;
|
|
case RISCVOp::OPERAND_FOUR:
|
|
Ok = Imm == 4;
|
|
break;
|
|
// clang-format off
|
|
CASE_OPERAND_SIMM(5)
|
|
CASE_OPERAND_SIMM(6)
|
|
CASE_OPERAND_SIMM(11)
|
|
CASE_OPERAND_SIMM(12)
|
|
CASE_OPERAND_SIMM(26)
|
|
// clang-format on
|
|
case RISCVOp::OPERAND_SIMM5_PLUS1:
|
|
Ok = (isInt<5>(Imm) && Imm != -16) || Imm == 16;
|
|
break;
|
|
case RISCVOp::OPERAND_SIMM5_NONZERO:
|
|
Ok = isInt<5>(Imm) && (Imm != 0);
|
|
break;
|
|
case RISCVOp::OPERAND_SIMM6_NONZERO:
|
|
Ok = Imm != 0 && isInt<6>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_VTYPEI10:
|
|
Ok = isUInt<10>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_VTYPEI11:
|
|
Ok = isUInt<11>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_SIMM12_LSB00000:
|
|
Ok = isShiftedInt<7, 5>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_SIMM16_NONZERO:
|
|
Ok = isInt<16>(Imm) && (Imm != 0);
|
|
break;
|
|
case RISCVOp::OPERAND_SIMM20_LI:
|
|
Ok = isInt<20>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_BARE_SIMM32:
|
|
Ok = isInt<32>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMMLOG2XLEN:
|
|
Ok = STI.is64Bit() ? isUInt<6>(Imm) : isUInt<5>(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_UIMMLOG2XLEN_NONZERO:
|
|
Ok = STI.is64Bit() ? isUInt<6>(Imm) : isUInt<5>(Imm);
|
|
Ok = Ok && Imm != 0;
|
|
break;
|
|
case RISCVOp::OPERAND_CLUI_IMM:
|
|
Ok = (isUInt<5>(Imm) && Imm != 0) ||
|
|
(Imm >= 0xfffe0 && Imm <= 0xfffff);
|
|
break;
|
|
case RISCVOp::OPERAND_RVKRNUM:
|
|
Ok = Imm >= 0 && Imm <= 10;
|
|
break;
|
|
case RISCVOp::OPERAND_RVKRNUM_0_7:
|
|
Ok = Imm >= 0 && Imm <= 7;
|
|
break;
|
|
case RISCVOp::OPERAND_RVKRNUM_1_10:
|
|
Ok = Imm >= 1 && Imm <= 10;
|
|
break;
|
|
case RISCVOp::OPERAND_RVKRNUM_2_14:
|
|
Ok = Imm >= 2 && Imm <= 14;
|
|
break;
|
|
case RISCVOp::OPERAND_RLIST:
|
|
Ok = Imm >= RISCVZC::RA && Imm <= RISCVZC::RA_S0_S11;
|
|
break;
|
|
case RISCVOp::OPERAND_RLIST_S0:
|
|
Ok = Imm >= RISCVZC::RA_S0 && Imm <= RISCVZC::RA_S0_S11;
|
|
break;
|
|
case RISCVOp::OPERAND_STACKADJ:
|
|
Ok = Imm >= 0 && Imm <= 48 && Imm % 16 == 0;
|
|
break;
|
|
case RISCVOp::OPERAND_FRMARG:
|
|
Ok = RISCVFPRndMode::isValidRoundingMode(Imm);
|
|
break;
|
|
case RISCVOp::OPERAND_RTZARG:
|
|
Ok = Imm == RISCVFPRndMode::RTZ;
|
|
break;
|
|
case RISCVOp::OPERAND_COND_CODE:
|
|
Ok = Imm >= 0 && Imm < RISCVCC::COND_INVALID;
|
|
break;
|
|
case RISCVOp::OPERAND_VEC_POLICY:
|
|
Ok = (Imm &
|
|
(RISCVVType::TAIL_AGNOSTIC | RISCVVType::MASK_AGNOSTIC)) == Imm;
|
|
break;
|
|
case RISCVOp::OPERAND_SEW:
|
|
Ok = (isUInt<5>(Imm) && RISCVVType::isValidSEW(1 << Imm));
|
|
break;
|
|
case RISCVOp::OPERAND_SEW_MASK:
|
|
Ok = Imm == 0;
|
|
break;
|
|
case RISCVOp::OPERAND_VEC_RM:
|
|
assert(RISCVII::hasRoundModeOp(Desc.TSFlags));
|
|
if (RISCVII::usesVXRM(Desc.TSFlags))
|
|
Ok = isUInt<2>(Imm);
|
|
else
|
|
Ok = RISCVFPRndMode::isValidRoundingMode(Imm);
|
|
break;
|
|
}
|
|
if (!Ok) {
|
|
ErrInfo = "Invalid immediate";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const uint64_t TSFlags = Desc.TSFlags;
|
|
if (RISCVII::hasVLOp(TSFlags)) {
|
|
const MachineOperand &Op = MI.getOperand(RISCVII::getVLOpNum(Desc));
|
|
if (!Op.isImm() && !Op.isReg()) {
|
|
ErrInfo = "Invalid operand type for VL operand";
|
|
return false;
|
|
}
|
|
if (Op.isReg() && Op.getReg() != RISCV::NoRegister) {
|
|
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
auto *RC = MRI.getRegClass(Op.getReg());
|
|
if (!RISCV::GPRRegClass.hasSubClassEq(RC)) {
|
|
ErrInfo = "Invalid register class for VL operand";
|
|
return false;
|
|
}
|
|
}
|
|
if (!RISCVII::hasSEWOp(TSFlags)) {
|
|
ErrInfo = "VL operand w/o SEW operand?";
|
|
return false;
|
|
}
|
|
}
|
|
if (RISCVII::hasSEWOp(TSFlags)) {
|
|
unsigned OpIdx = RISCVII::getSEWOpNum(Desc);
|
|
if (!MI.getOperand(OpIdx).isImm()) {
|
|
ErrInfo = "SEW value expected to be an immediate";
|
|
return false;
|
|
}
|
|
uint64_t Log2SEW = MI.getOperand(OpIdx).getImm();
|
|
if (Log2SEW > 31) {
|
|
ErrInfo = "Unexpected SEW value";
|
|
return false;
|
|
}
|
|
unsigned SEW = Log2SEW ? 1 << Log2SEW : 8;
|
|
if (!RISCVVType::isValidSEW(SEW)) {
|
|
ErrInfo = "Unexpected SEW value";
|
|
return false;
|
|
}
|
|
}
|
|
if (RISCVII::hasVecPolicyOp(TSFlags)) {
|
|
unsigned OpIdx = RISCVII::getVecPolicyOpNum(Desc);
|
|
if (!MI.getOperand(OpIdx).isImm()) {
|
|
ErrInfo = "Policy operand expected to be an immediate";
|
|
return false;
|
|
}
|
|
uint64_t Policy = MI.getOperand(OpIdx).getImm();
|
|
if (Policy > (RISCVVType::TAIL_AGNOSTIC | RISCVVType::MASK_AGNOSTIC)) {
|
|
ErrInfo = "Invalid Policy Value";
|
|
return false;
|
|
}
|
|
if (!RISCVII::hasVLOp(TSFlags)) {
|
|
ErrInfo = "policy operand w/o VL operand?";
|
|
return false;
|
|
}
|
|
|
|
// VecPolicy operands can only exist on instructions with passthru/merge
|
|
// arguments. Note that not all arguments with passthru have vec policy
|
|
// operands- some instructions have implicit policies.
|
|
unsigned UseOpIdx;
|
|
if (!MI.isRegTiedToUseOperand(0, &UseOpIdx)) {
|
|
ErrInfo = "policy operand w/o tied operand?";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (int Idx = RISCVII::getFRMOpNum(Desc);
|
|
Idx >= 0 && MI.getOperand(Idx).getImm() == RISCVFPRndMode::DYN &&
|
|
!MI.readsRegister(RISCV::FRM, /*TRI=*/nullptr)) {
|
|
ErrInfo = "dynamic rounding mode should read FRM";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RISCVInstrInfo::canFoldIntoAddrMode(const MachineInstr &MemI, Register Reg,
|
|
const MachineInstr &AddrI,
|
|
ExtAddrMode &AM) const {
|
|
switch (MemI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
case RISCV::LB:
|
|
case RISCV::LBU:
|
|
case RISCV::LH:
|
|
case RISCV::LH_INX:
|
|
case RISCV::LHU:
|
|
case RISCV::LW:
|
|
case RISCV::LW_INX:
|
|
case RISCV::LWU:
|
|
case RISCV::LD:
|
|
case RISCV::LD_RV32:
|
|
case RISCV::FLH:
|
|
case RISCV::FLW:
|
|
case RISCV::FLD:
|
|
case RISCV::SB:
|
|
case RISCV::SH:
|
|
case RISCV::SH_INX:
|
|
case RISCV::SW:
|
|
case RISCV::SW_INX:
|
|
case RISCV::SD:
|
|
case RISCV::SD_RV32:
|
|
case RISCV::FSH:
|
|
case RISCV::FSW:
|
|
case RISCV::FSD:
|
|
break;
|
|
}
|
|
|
|
if (MemI.getOperand(0).getReg() == Reg)
|
|
return false;
|
|
|
|
if (AddrI.getOpcode() != RISCV::ADDI || !AddrI.getOperand(1).isReg() ||
|
|
!AddrI.getOperand(2).isImm())
|
|
return false;
|
|
|
|
int64_t OldOffset = MemI.getOperand(2).getImm();
|
|
int64_t Disp = AddrI.getOperand(2).getImm();
|
|
int64_t NewOffset = OldOffset + Disp;
|
|
if (!STI.is64Bit())
|
|
NewOffset = SignExtend64<32>(NewOffset);
|
|
|
|
if (!isInt<12>(NewOffset))
|
|
return false;
|
|
|
|
AM.BaseReg = AddrI.getOperand(1).getReg();
|
|
AM.ScaledReg = 0;
|
|
AM.Scale = 0;
|
|
AM.Displacement = NewOffset;
|
|
AM.Form = ExtAddrMode::Formula::Basic;
|
|
return true;
|
|
}
|
|
|
|
MachineInstr *RISCVInstrInfo::emitLdStWithAddr(MachineInstr &MemI,
|
|
const ExtAddrMode &AM) const {
|
|
|
|
const DebugLoc &DL = MemI.getDebugLoc();
|
|
MachineBasicBlock &MBB = *MemI.getParent();
|
|
|
|
assert(AM.ScaledReg == 0 && AM.Scale == 0 &&
|
|
"Addressing mode not supported for folding");
|
|
|
|
return BuildMI(MBB, MemI, DL, get(MemI.getOpcode()))
|
|
.addReg(MemI.getOperand(0).getReg(),
|
|
MemI.mayLoad() ? RegState::Define : 0)
|
|
.addReg(AM.BaseReg)
|
|
.addImm(AM.Displacement)
|
|
.setMemRefs(MemI.memoperands())
|
|
.setMIFlags(MemI.getFlags());
|
|
}
|
|
|
|
// TODO: At the moment, MIPS introduced paring of instructions operating with
|
|
// word or double word. This should be extended with more instructions when more
|
|
// vendors support load/store pairing.
|
|
bool RISCVInstrInfo::isPairableLdStInstOpc(unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
return false;
|
|
case RISCV::SW:
|
|
case RISCV::SD:
|
|
case RISCV::LD:
|
|
case RISCV::LW:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool RISCVInstrInfo::isLdStSafeToPair(const MachineInstr &LdSt,
|
|
const TargetRegisterInfo *TRI) {
|
|
// If this is a volatile load/store, don't mess with it.
|
|
if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3)
|
|
return false;
|
|
|
|
if (LdSt.getOperand(1).isFI())
|
|
return true;
|
|
|
|
assert(LdSt.getOperand(1).isReg() && "Expected a reg operand.");
|
|
// Can't cluster if the instruction modifies the base register
|
|
// or it is update form. e.g. ld x5,8(x5)
|
|
if (LdSt.modifiesRegister(LdSt.getOperand(1).getReg(), TRI))
|
|
return false;
|
|
|
|
if (!LdSt.getOperand(2).isImm())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RISCVInstrInfo::getMemOperandsWithOffsetWidth(
|
|
const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
|
|
int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
|
|
const TargetRegisterInfo *TRI) const {
|
|
if (!LdSt.mayLoadOrStore())
|
|
return false;
|
|
|
|
// Conservatively, only handle scalar loads/stores for now.
|
|
switch (LdSt.getOpcode()) {
|
|
case RISCV::LB:
|
|
case RISCV::LBU:
|
|
case RISCV::SB:
|
|
case RISCV::LH:
|
|
case RISCV::LH_INX:
|
|
case RISCV::LHU:
|
|
case RISCV::FLH:
|
|
case RISCV::SH:
|
|
case RISCV::SH_INX:
|
|
case RISCV::FSH:
|
|
case RISCV::LW:
|
|
case RISCV::LW_INX:
|
|
case RISCV::LWU:
|
|
case RISCV::FLW:
|
|
case RISCV::SW:
|
|
case RISCV::SW_INX:
|
|
case RISCV::FSW:
|
|
case RISCV::LD:
|
|
case RISCV::LD_RV32:
|
|
case RISCV::FLD:
|
|
case RISCV::SD:
|
|
case RISCV::SD_RV32:
|
|
case RISCV::FSD:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
const MachineOperand *BaseOp;
|
|
OffsetIsScalable = false;
|
|
if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
|
|
return false;
|
|
BaseOps.push_back(BaseOp);
|
|
return true;
|
|
}
|
|
|
|
// TODO: This was copied from SIInstrInfo. Could it be lifted to a common
|
|
// helper?
|
|
static bool memOpsHaveSameBasePtr(const MachineInstr &MI1,
|
|
ArrayRef<const MachineOperand *> BaseOps1,
|
|
const MachineInstr &MI2,
|
|
ArrayRef<const MachineOperand *> BaseOps2) {
|
|
// Only examine the first "base" operand of each instruction, on the
|
|
// assumption that it represents the real base address of the memory access.
|
|
// Other operands are typically offsets or indices from this base address.
|
|
if (BaseOps1.front()->isIdenticalTo(*BaseOps2.front()))
|
|
return true;
|
|
|
|
if (!MI1.hasOneMemOperand() || !MI2.hasOneMemOperand())
|
|
return false;
|
|
|
|
auto MO1 = *MI1.memoperands_begin();
|
|
auto MO2 = *MI2.memoperands_begin();
|
|
if (MO1->getAddrSpace() != MO2->getAddrSpace())
|
|
return false;
|
|
|
|
auto Base1 = MO1->getValue();
|
|
auto Base2 = MO2->getValue();
|
|
if (!Base1 || !Base2)
|
|
return false;
|
|
Base1 = getUnderlyingObject(Base1);
|
|
Base2 = getUnderlyingObject(Base2);
|
|
|
|
if (isa<UndefValue>(Base1) || isa<UndefValue>(Base2))
|
|
return false;
|
|
|
|
return Base1 == Base2;
|
|
}
|
|
|
|
bool RISCVInstrInfo::shouldClusterMemOps(
|
|
ArrayRef<const MachineOperand *> BaseOps1, int64_t Offset1,
|
|
bool OffsetIsScalable1, ArrayRef<const MachineOperand *> BaseOps2,
|
|
int64_t Offset2, bool OffsetIsScalable2, unsigned ClusterSize,
|
|
unsigned NumBytes) const {
|
|
// If the mem ops (to be clustered) do not have the same base ptr, then they
|
|
// should not be clustered
|
|
if (!BaseOps1.empty() && !BaseOps2.empty()) {
|
|
const MachineInstr &FirstLdSt = *BaseOps1.front()->getParent();
|
|
const MachineInstr &SecondLdSt = *BaseOps2.front()->getParent();
|
|
if (!memOpsHaveSameBasePtr(FirstLdSt, BaseOps1, SecondLdSt, BaseOps2))
|
|
return false;
|
|
} else if (!BaseOps1.empty() || !BaseOps2.empty()) {
|
|
// If only one base op is empty, they do not have the same base ptr
|
|
return false;
|
|
}
|
|
|
|
unsigned CacheLineSize =
|
|
BaseOps1.front()->getParent()->getMF()->getSubtarget().getCacheLineSize();
|
|
// Assume a cache line size of 64 bytes if no size is set in RISCVSubtarget.
|
|
CacheLineSize = CacheLineSize ? CacheLineSize : 64;
|
|
// Cluster if the memory operations are on the same or a neighbouring cache
|
|
// line, but limit the maximum ClusterSize to avoid creating too much
|
|
// additional register pressure.
|
|
return ClusterSize <= 4 && std::abs(Offset1 - Offset2) < CacheLineSize;
|
|
}
|
|
|
|
// Set BaseReg (the base register operand), Offset (the byte offset being
|
|
// accessed) and the access Width of the passed instruction that reads/writes
|
|
// memory. Returns false if the instruction does not read/write memory or the
|
|
// BaseReg/Offset/Width can't be determined. Is not guaranteed to always
|
|
// recognise base operands and offsets in all cases.
|
|
// TODO: Add an IsScalable bool ref argument (like the equivalent AArch64
|
|
// function) and set it as appropriate.
|
|
bool RISCVInstrInfo::getMemOperandWithOffsetWidth(
|
|
const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
|
|
LocationSize &Width, const TargetRegisterInfo *TRI) const {
|
|
if (!LdSt.mayLoadOrStore())
|
|
return false;
|
|
|
|
// Here we assume the standard RISC-V ISA, which uses a base+offset
|
|
// addressing mode. You'll need to relax these conditions to support custom
|
|
// load/store instructions.
|
|
if (LdSt.getNumExplicitOperands() != 3)
|
|
return false;
|
|
if ((!LdSt.getOperand(1).isReg() && !LdSt.getOperand(1).isFI()) ||
|
|
!LdSt.getOperand(2).isImm())
|
|
return false;
|
|
|
|
if (!LdSt.hasOneMemOperand())
|
|
return false;
|
|
|
|
Width = (*LdSt.memoperands_begin())->getSize();
|
|
BaseReg = &LdSt.getOperand(1);
|
|
Offset = LdSt.getOperand(2).getImm();
|
|
return true;
|
|
}
|
|
|
|
bool RISCVInstrInfo::areMemAccessesTriviallyDisjoint(
|
|
const MachineInstr &MIa, const MachineInstr &MIb) const {
|
|
assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
|
|
assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
|
|
|
|
if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
|
|
MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
|
|
return false;
|
|
|
|
// Retrieve the base register, offset from the base register and width. Width
|
|
// is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
|
|
// base registers are identical, and the offset of a lower memory access +
|
|
// the width doesn't overlap the offset of a higher memory access,
|
|
// then the memory accesses are different.
|
|
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
|
|
const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
|
|
int64_t OffsetA = 0, OffsetB = 0;
|
|
LocationSize WidthA = LocationSize::precise(0),
|
|
WidthB = LocationSize::precise(0);
|
|
if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
|
|
getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
|
|
if (BaseOpA->isIdenticalTo(*BaseOpB)) {
|
|
int LowOffset = std::min(OffsetA, OffsetB);
|
|
int HighOffset = std::max(OffsetA, OffsetB);
|
|
LocationSize LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
|
|
if (LowWidth.hasValue() &&
|
|
LowOffset + (int)LowWidth.getValue() <= HighOffset)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::pair<unsigned, unsigned>
|
|
RISCVInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
|
|
const unsigned Mask = RISCVII::MO_DIRECT_FLAG_MASK;
|
|
return std::make_pair(TF & Mask, TF & ~Mask);
|
|
}
|
|
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
RISCVInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
|
|
using namespace RISCVII;
|
|
static const std::pair<unsigned, const char *> TargetFlags[] = {
|
|
{MO_CALL, "riscv-call"},
|
|
{MO_LO, "riscv-lo"},
|
|
{MO_HI, "riscv-hi"},
|
|
{MO_PCREL_LO, "riscv-pcrel-lo"},
|
|
{MO_PCREL_HI, "riscv-pcrel-hi"},
|
|
{MO_GOT_HI, "riscv-got-hi"},
|
|
{MO_TPREL_LO, "riscv-tprel-lo"},
|
|
{MO_TPREL_HI, "riscv-tprel-hi"},
|
|
{MO_TPREL_ADD, "riscv-tprel-add"},
|
|
{MO_TLS_GOT_HI, "riscv-tls-got-hi"},
|
|
{MO_TLS_GD_HI, "riscv-tls-gd-hi"},
|
|
{MO_TLSDESC_HI, "riscv-tlsdesc-hi"},
|
|
{MO_TLSDESC_LOAD_LO, "riscv-tlsdesc-load-lo"},
|
|
{MO_TLSDESC_ADD_LO, "riscv-tlsdesc-add-lo"},
|
|
{MO_TLSDESC_CALL, "riscv-tlsdesc-call"}};
|
|
return ArrayRef(TargetFlags);
|
|
}
|
|
bool RISCVInstrInfo::isFunctionSafeToOutlineFrom(
|
|
MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
|
|
const Function &F = MF.getFunction();
|
|
|
|
// Can F be deduplicated by the linker? If it can, don't outline from it.
|
|
if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
|
|
return false;
|
|
|
|
// Don't outline from functions with section markings; the program could
|
|
// expect that all the code is in the named section.
|
|
if (F.hasSection())
|
|
return false;
|
|
|
|
// It's safe to outline from MF.
|
|
return true;
|
|
}
|
|
|
|
bool RISCVInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
|
|
unsigned &Flags) const {
|
|
// More accurate safety checking is done in getOutliningCandidateInfo.
|
|
return TargetInstrInfo::isMBBSafeToOutlineFrom(MBB, Flags);
|
|
}
|
|
|
|
// Enum values indicating how an outlined call should be constructed.
|
|
enum MachineOutlinerConstructionID {
|
|
MachineOutlinerTailCall,
|
|
MachineOutlinerDefault
|
|
};
|
|
|
|
bool RISCVInstrInfo::shouldOutlineFromFunctionByDefault(
|
|
MachineFunction &MF) const {
|
|
return MF.getFunction().hasMinSize();
|
|
}
|
|
|
|
static bool isCandidatePatchable(const MachineBasicBlock &MBB) {
|
|
const MachineFunction *MF = MBB.getParent();
|
|
const Function &F = MF->getFunction();
|
|
return F.getFnAttribute("fentry-call").getValueAsBool() ||
|
|
F.hasFnAttribute("patchable-function-entry");
|
|
}
|
|
|
|
static bool isMIReadsReg(const MachineInstr &MI, const TargetRegisterInfo *TRI,
|
|
MCRegister RegNo) {
|
|
return MI.readsRegister(RegNo, TRI) ||
|
|
MI.getDesc().hasImplicitUseOfPhysReg(RegNo);
|
|
}
|
|
|
|
static bool isMIModifiesReg(const MachineInstr &MI,
|
|
const TargetRegisterInfo *TRI, MCRegister RegNo) {
|
|
return MI.modifiesRegister(RegNo, TRI) ||
|
|
MI.getDesc().hasImplicitDefOfPhysReg(RegNo);
|
|
}
|
|
|
|
static bool cannotInsertTailCall(const MachineBasicBlock &MBB) {
|
|
if (!MBB.back().isReturn())
|
|
return true;
|
|
if (isCandidatePatchable(MBB))
|
|
return true;
|
|
|
|
// If the candidate reads the pre-set register
|
|
// that can be used for expanding PseudoTAIL instruction,
|
|
// then we cannot insert tail call.
|
|
const TargetSubtargetInfo &STI = MBB.getParent()->getSubtarget();
|
|
MCRegister TailExpandUseRegNo =
|
|
RISCVII::getTailExpandUseRegNo(STI.getFeatureBits());
|
|
for (const MachineInstr &MI : MBB) {
|
|
if (isMIReadsReg(MI, STI.getRegisterInfo(), TailExpandUseRegNo))
|
|
return true;
|
|
if (isMIModifiesReg(MI, STI.getRegisterInfo(), TailExpandUseRegNo))
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool analyzeCandidate(outliner::Candidate &C) {
|
|
// If last instruction is return then we can rely on
|
|
// the verification already performed in the getOutliningTypeImpl.
|
|
if (C.back().isReturn()) {
|
|
assert(!cannotInsertTailCall(*C.getMBB()) &&
|
|
"The candidate who uses return instruction must be outlined "
|
|
"using tail call");
|
|
return false;
|
|
}
|
|
|
|
// Filter out candidates where the X5 register (t0) can't be used to setup
|
|
// the function call.
|
|
const TargetRegisterInfo *TRI = C.getMF()->getSubtarget().getRegisterInfo();
|
|
if (llvm::any_of(C, [TRI](const MachineInstr &MI) {
|
|
return isMIModifiesReg(MI, TRI, RISCV::X5);
|
|
}))
|
|
return true;
|
|
|
|
return !C.isAvailableAcrossAndOutOfSeq(RISCV::X5, *TRI);
|
|
}
|
|
|
|
std::optional<std::unique_ptr<outliner::OutlinedFunction>>
|
|
RISCVInstrInfo::getOutliningCandidateInfo(
|
|
const MachineModuleInfo &MMI,
|
|
std::vector<outliner::Candidate> &RepeatedSequenceLocs,
|
|
unsigned MinRepeats) const {
|
|
|
|
// Analyze each candidate and erase the ones that are not viable.
|
|
llvm::erase_if(RepeatedSequenceLocs, analyzeCandidate);
|
|
|
|
// If the sequence doesn't have enough candidates left, then we're done.
|
|
if (RepeatedSequenceLocs.size() < MinRepeats)
|
|
return std::nullopt;
|
|
|
|
// Each RepeatedSequenceLoc is identical.
|
|
outliner::Candidate &Candidate = RepeatedSequenceLocs[0];
|
|
unsigned InstrSizeCExt =
|
|
Candidate.getMF()->getSubtarget<RISCVSubtarget>().hasStdExtZca() ? 2 : 4;
|
|
unsigned CallOverhead = 0, FrameOverhead = 0;
|
|
|
|
MachineOutlinerConstructionID MOCI = MachineOutlinerDefault;
|
|
if (Candidate.back().isReturn()) {
|
|
MOCI = MachineOutlinerTailCall;
|
|
// tail call = auipc + jalr in the worst case without linker relaxation.
|
|
// FIXME: This code suggests the JALR can be compressed - how?
|
|
CallOverhead = 4 + InstrSizeCExt;
|
|
// Using tail call we move ret instruction from caller to callee.
|
|
FrameOverhead = 0;
|
|
} else {
|
|
// call t0, function = 8 bytes.
|
|
CallOverhead = 8;
|
|
// jr t0 = 4 bytes, 2 bytes if compressed instructions are enabled.
|
|
FrameOverhead = InstrSizeCExt;
|
|
}
|
|
|
|
for (auto &C : RepeatedSequenceLocs)
|
|
C.setCallInfo(MOCI, CallOverhead);
|
|
|
|
unsigned SequenceSize = 0;
|
|
for (auto &MI : Candidate)
|
|
SequenceSize += getInstSizeInBytes(MI);
|
|
|
|
return std::make_unique<outliner::OutlinedFunction>(
|
|
RepeatedSequenceLocs, SequenceSize, FrameOverhead, MOCI);
|
|
}
|
|
|
|
outliner::InstrType
|
|
RISCVInstrInfo::getOutliningTypeImpl(const MachineModuleInfo &MMI,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
unsigned Flags) const {
|
|
MachineInstr &MI = *MBBI;
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
const TargetRegisterInfo *TRI =
|
|
MBB->getParent()->getSubtarget().getRegisterInfo();
|
|
const auto &F = MI.getMF()->getFunction();
|
|
|
|
// We can manually strip out CFI instructions later.
|
|
if (MI.isCFIInstruction())
|
|
// If current function has exception handling code, we can't outline &
|
|
// strip these CFI instructions since it may break .eh_frame section
|
|
// needed in unwinding.
|
|
return F.needsUnwindTableEntry() ? outliner::InstrType::Illegal
|
|
: outliner::InstrType::Invisible;
|
|
|
|
if (cannotInsertTailCall(*MBB) &&
|
|
(MI.isReturn() || isMIModifiesReg(MI, TRI, RISCV::X5)))
|
|
return outliner::InstrType::Illegal;
|
|
|
|
// Make sure the operands don't reference something unsafe.
|
|
for (const auto &MO : MI.operands()) {
|
|
|
|
// pcrel-hi and pcrel-lo can't put in separate sections, filter that out
|
|
// if any possible.
|
|
if (MO.getTargetFlags() == RISCVII::MO_PCREL_LO &&
|
|
(MI.getMF()->getTarget().getFunctionSections() || F.hasComdat() ||
|
|
F.hasSection() || F.getSectionPrefix()))
|
|
return outliner::InstrType::Illegal;
|
|
}
|
|
|
|
return outliner::InstrType::Legal;
|
|
}
|
|
|
|
void RISCVInstrInfo::buildOutlinedFrame(
|
|
MachineBasicBlock &MBB, MachineFunction &MF,
|
|
const outliner::OutlinedFunction &OF) const {
|
|
|
|
// Strip out any CFI instructions
|
|
bool Changed = true;
|
|
while (Changed) {
|
|
Changed = false;
|
|
auto I = MBB.begin();
|
|
auto E = MBB.end();
|
|
for (; I != E; ++I) {
|
|
if (I->isCFIInstruction()) {
|
|
I->removeFromParent();
|
|
Changed = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (OF.FrameConstructionID == MachineOutlinerTailCall)
|
|
return;
|
|
|
|
MBB.addLiveIn(RISCV::X5);
|
|
|
|
// Add in a return instruction to the end of the outlined frame.
|
|
MBB.insert(MBB.end(), BuildMI(MF, DebugLoc(), get(RISCV::JALR))
|
|
.addReg(RISCV::X0, RegState::Define)
|
|
.addReg(RISCV::X5)
|
|
.addImm(0));
|
|
}
|
|
|
|
MachineBasicBlock::iterator RISCVInstrInfo::insertOutlinedCall(
|
|
Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
|
|
MachineFunction &MF, outliner::Candidate &C) const {
|
|
|
|
if (C.CallConstructionID == MachineOutlinerTailCall) {
|
|
It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(RISCV::PseudoTAIL))
|
|
.addGlobalAddress(M.getNamedValue(MF.getName()),
|
|
/*Offset=*/0, RISCVII::MO_CALL));
|
|
return It;
|
|
}
|
|
|
|
// Add in a call instruction to the outlined function at the given location.
|
|
It = MBB.insert(It,
|
|
BuildMI(MF, DebugLoc(), get(RISCV::PseudoCALLReg), RISCV::X5)
|
|
.addGlobalAddress(M.getNamedValue(MF.getName()), 0,
|
|
RISCVII::MO_CALL));
|
|
return It;
|
|
}
|
|
|
|
std::optional<RegImmPair> RISCVInstrInfo::isAddImmediate(const MachineInstr &MI,
|
|
Register Reg) const {
|
|
// TODO: Handle cases where Reg is a super- or sub-register of the
|
|
// destination register.
|
|
const MachineOperand &Op0 = MI.getOperand(0);
|
|
if (!Op0.isReg() || Reg != Op0.getReg())
|
|
return std::nullopt;
|
|
|
|
// Don't consider ADDIW as a candidate because the caller may not be aware
|
|
// of its sign extension behaviour.
|
|
if (MI.getOpcode() == RISCV::ADDI && MI.getOperand(1).isReg() &&
|
|
MI.getOperand(2).isImm())
|
|
return RegImmPair{MI.getOperand(1).getReg(), MI.getOperand(2).getImm()};
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
// MIR printer helper function to annotate Operands with a comment.
|
|
std::string RISCVInstrInfo::createMIROperandComment(
|
|
const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
|
|
const TargetRegisterInfo *TRI) const {
|
|
// Print a generic comment for this operand if there is one.
|
|
std::string GenericComment =
|
|
TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
|
|
if (!GenericComment.empty())
|
|
return GenericComment;
|
|
|
|
// If not, we must have an immediate operand.
|
|
if (!Op.isImm())
|
|
return std::string();
|
|
|
|
const MCInstrDesc &Desc = MI.getDesc();
|
|
if (OpIdx >= Desc.getNumOperands())
|
|
return std::string();
|
|
|
|
std::string Comment;
|
|
raw_string_ostream OS(Comment);
|
|
|
|
const MCOperandInfo &OpInfo = Desc.operands()[OpIdx];
|
|
|
|
// Print the full VType operand of vsetvli/vsetivli instructions, and the SEW
|
|
// operand of vector codegen pseudos.
|
|
switch (OpInfo.OperandType) {
|
|
case RISCVOp::OPERAND_VTYPEI10:
|
|
case RISCVOp::OPERAND_VTYPEI11: {
|
|
unsigned Imm = Op.getImm();
|
|
RISCVVType::printVType(Imm, OS);
|
|
break;
|
|
}
|
|
case RISCVOp::OPERAND_SEW:
|
|
case RISCVOp::OPERAND_SEW_MASK: {
|
|
unsigned Log2SEW = Op.getImm();
|
|
unsigned SEW = Log2SEW ? 1 << Log2SEW : 8;
|
|
assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");
|
|
OS << "e" << SEW;
|
|
break;
|
|
}
|
|
case RISCVOp::OPERAND_VEC_POLICY:
|
|
unsigned Policy = Op.getImm();
|
|
assert(Policy <= (RISCVVType::TAIL_AGNOSTIC | RISCVVType::MASK_AGNOSTIC) &&
|
|
"Invalid Policy Value");
|
|
OS << (Policy & RISCVVType::TAIL_AGNOSTIC ? "ta" : "tu") << ", "
|
|
<< (Policy & RISCVVType::MASK_AGNOSTIC ? "ma" : "mu");
|
|
break;
|
|
}
|
|
|
|
return Comment;
|
|
}
|
|
|
|
// clang-format off
|
|
#define CASE_RVV_OPCODE_UNMASK_LMUL(OP, LMUL) \
|
|
RISCV::Pseudo##OP##_##LMUL
|
|
|
|
#define CASE_RVV_OPCODE_MASK_LMUL(OP, LMUL) \
|
|
RISCV::Pseudo##OP##_##LMUL##_MASK
|
|
|
|
#define CASE_RVV_OPCODE_LMUL(OP, LMUL) \
|
|
CASE_RVV_OPCODE_UNMASK_LMUL(OP, LMUL): \
|
|
case CASE_RVV_OPCODE_MASK_LMUL(OP, LMUL)
|
|
|
|
#define CASE_RVV_OPCODE_UNMASK_WIDEN(OP) \
|
|
CASE_RVV_OPCODE_UNMASK_LMUL(OP, MF8): \
|
|
case CASE_RVV_OPCODE_UNMASK_LMUL(OP, MF4): \
|
|
case CASE_RVV_OPCODE_UNMASK_LMUL(OP, MF2): \
|
|
case CASE_RVV_OPCODE_UNMASK_LMUL(OP, M1): \
|
|
case CASE_RVV_OPCODE_UNMASK_LMUL(OP, M2): \
|
|
case CASE_RVV_OPCODE_UNMASK_LMUL(OP, M4)
|
|
|
|
#define CASE_RVV_OPCODE_UNMASK(OP) \
|
|
CASE_RVV_OPCODE_UNMASK_WIDEN(OP): \
|
|
case CASE_RVV_OPCODE_UNMASK_LMUL(OP, M8)
|
|
|
|
#define CASE_RVV_OPCODE_MASK_WIDEN(OP) \
|
|
CASE_RVV_OPCODE_MASK_LMUL(OP, MF8): \
|
|
case CASE_RVV_OPCODE_MASK_LMUL(OP, MF4): \
|
|
case CASE_RVV_OPCODE_MASK_LMUL(OP, MF2): \
|
|
case CASE_RVV_OPCODE_MASK_LMUL(OP, M1): \
|
|
case CASE_RVV_OPCODE_MASK_LMUL(OP, M2): \
|
|
case CASE_RVV_OPCODE_MASK_LMUL(OP, M4)
|
|
|
|
#define CASE_RVV_OPCODE_MASK(OP) \
|
|
CASE_RVV_OPCODE_MASK_WIDEN(OP): \
|
|
case CASE_RVV_OPCODE_MASK_LMUL(OP, M8)
|
|
|
|
#define CASE_RVV_OPCODE_WIDEN(OP) \
|
|
CASE_RVV_OPCODE_UNMASK_WIDEN(OP): \
|
|
case CASE_RVV_OPCODE_MASK_WIDEN(OP)
|
|
|
|
#define CASE_RVV_OPCODE(OP) \
|
|
CASE_RVV_OPCODE_UNMASK(OP): \
|
|
case CASE_RVV_OPCODE_MASK(OP)
|
|
// clang-format on
|
|
|
|
// clang-format off
|
|
#define CASE_VMA_OPCODE_COMMON(OP, TYPE, LMUL) \
|
|
RISCV::PseudoV##OP##_##TYPE##_##LMUL
|
|
|
|
#define CASE_VMA_OPCODE_LMULS(OP, TYPE) \
|
|
CASE_VMA_OPCODE_COMMON(OP, TYPE, MF8): \
|
|
case CASE_VMA_OPCODE_COMMON(OP, TYPE, MF4): \
|
|
case CASE_VMA_OPCODE_COMMON(OP, TYPE, MF2): \
|
|
case CASE_VMA_OPCODE_COMMON(OP, TYPE, M1): \
|
|
case CASE_VMA_OPCODE_COMMON(OP, TYPE, M2): \
|
|
case CASE_VMA_OPCODE_COMMON(OP, TYPE, M4): \
|
|
case CASE_VMA_OPCODE_COMMON(OP, TYPE, M8)
|
|
|
|
// VFMA instructions are SEW specific.
|
|
#define CASE_VFMA_OPCODE_COMMON(OP, TYPE, LMUL, SEW) \
|
|
RISCV::PseudoV##OP##_##TYPE##_##LMUL##_##SEW
|
|
|
|
#define CASE_VFMA_OPCODE_LMULS_M1(OP, TYPE, SEW) \
|
|
CASE_VFMA_OPCODE_COMMON(OP, TYPE, M1, SEW): \
|
|
case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M2, SEW): \
|
|
case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M4, SEW): \
|
|
case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M8, SEW)
|
|
|
|
#define CASE_VFMA_OPCODE_LMULS_MF2(OP, TYPE, SEW) \
|
|
CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF2, SEW): \
|
|
case CASE_VFMA_OPCODE_LMULS_M1(OP, TYPE, SEW)
|
|
|
|
#define CASE_VFMA_OPCODE_LMULS_MF4(OP, TYPE, SEW) \
|
|
CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF4, SEW): \
|
|
case CASE_VFMA_OPCODE_LMULS_MF2(OP, TYPE, SEW)
|
|
|
|
#define CASE_VFMA_OPCODE_VV(OP) \
|
|
CASE_VFMA_OPCODE_LMULS_MF4(OP, VV, E16): \
|
|
case CASE_VFMA_OPCODE_LMULS_MF2(OP, VV, E32): \
|
|
case CASE_VFMA_OPCODE_LMULS_M1(OP, VV, E64)
|
|
|
|
#define CASE_VFMA_SPLATS(OP) \
|
|
CASE_VFMA_OPCODE_LMULS_MF4(OP, VFPR16, E16): \
|
|
case CASE_VFMA_OPCODE_LMULS_MF2(OP, VFPR32, E32): \
|
|
case CASE_VFMA_OPCODE_LMULS_M1(OP, VFPR64, E64)
|
|
// clang-format on
|
|
|
|
bool RISCVInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
|
|
unsigned &SrcOpIdx1,
|
|
unsigned &SrcOpIdx2) const {
|
|
const MCInstrDesc &Desc = MI.getDesc();
|
|
if (!Desc.isCommutable())
|
|
return false;
|
|
|
|
switch (MI.getOpcode()) {
|
|
case RISCV::TH_MVEQZ:
|
|
case RISCV::TH_MVNEZ:
|
|
// We can't commute operands if operand 2 (i.e., rs1 in
|
|
// mveqz/mvnez rd,rs1,rs2) is the zero-register (as it is
|
|
// not valid as the in/out-operand 1).
|
|
if (MI.getOperand(2).getReg() == RISCV::X0)
|
|
return false;
|
|
// Operands 1 and 2 are commutable, if we switch the opcode.
|
|
return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2);
|
|
case RISCV::TH_MULA:
|
|
case RISCV::TH_MULAW:
|
|
case RISCV::TH_MULAH:
|
|
case RISCV::TH_MULS:
|
|
case RISCV::TH_MULSW:
|
|
case RISCV::TH_MULSH:
|
|
// Operands 2 and 3 are commutable.
|
|
return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
|
|
case RISCV::PseudoCCMOVGPRNoX0:
|
|
case RISCV::PseudoCCMOVGPR:
|
|
// Operands 4 and 5 are commutable.
|
|
return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 4, 5);
|
|
case CASE_RVV_OPCODE(VADD_VV):
|
|
case CASE_RVV_OPCODE(VAND_VV):
|
|
case CASE_RVV_OPCODE(VOR_VV):
|
|
case CASE_RVV_OPCODE(VXOR_VV):
|
|
case CASE_RVV_OPCODE_MASK(VMSEQ_VV):
|
|
case CASE_RVV_OPCODE_MASK(VMSNE_VV):
|
|
case CASE_RVV_OPCODE(VMIN_VV):
|
|
case CASE_RVV_OPCODE(VMINU_VV):
|
|
case CASE_RVV_OPCODE(VMAX_VV):
|
|
case CASE_RVV_OPCODE(VMAXU_VV):
|
|
case CASE_RVV_OPCODE(VMUL_VV):
|
|
case CASE_RVV_OPCODE(VMULH_VV):
|
|
case CASE_RVV_OPCODE(VMULHU_VV):
|
|
case CASE_RVV_OPCODE_WIDEN(VWADD_VV):
|
|
case CASE_RVV_OPCODE_WIDEN(VWADDU_VV):
|
|
case CASE_RVV_OPCODE_WIDEN(VWMUL_VV):
|
|
case CASE_RVV_OPCODE_WIDEN(VWMULU_VV):
|
|
case CASE_RVV_OPCODE_WIDEN(VWMACC_VV):
|
|
case CASE_RVV_OPCODE_WIDEN(VWMACCU_VV):
|
|
case CASE_RVV_OPCODE_UNMASK(VADC_VVM):
|
|
case CASE_RVV_OPCODE(VSADD_VV):
|
|
case CASE_RVV_OPCODE(VSADDU_VV):
|
|
case CASE_RVV_OPCODE(VAADD_VV):
|
|
case CASE_RVV_OPCODE(VAADDU_VV):
|
|
case CASE_RVV_OPCODE(VSMUL_VV):
|
|
// Operands 2 and 3 are commutable.
|
|
return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
|
|
case CASE_VFMA_SPLATS(FMADD):
|
|
case CASE_VFMA_SPLATS(FMSUB):
|
|
case CASE_VFMA_SPLATS(FMACC):
|
|
case CASE_VFMA_SPLATS(FMSAC):
|
|
case CASE_VFMA_SPLATS(FNMADD):
|
|
case CASE_VFMA_SPLATS(FNMSUB):
|
|
case CASE_VFMA_SPLATS(FNMACC):
|
|
case CASE_VFMA_SPLATS(FNMSAC):
|
|
case CASE_VFMA_OPCODE_VV(FMACC):
|
|
case CASE_VFMA_OPCODE_VV(FMSAC):
|
|
case CASE_VFMA_OPCODE_VV(FNMACC):
|
|
case CASE_VFMA_OPCODE_VV(FNMSAC):
|
|
case CASE_VMA_OPCODE_LMULS(MADD, VX):
|
|
case CASE_VMA_OPCODE_LMULS(NMSUB, VX):
|
|
case CASE_VMA_OPCODE_LMULS(MACC, VX):
|
|
case CASE_VMA_OPCODE_LMULS(NMSAC, VX):
|
|
case CASE_VMA_OPCODE_LMULS(MACC, VV):
|
|
case CASE_VMA_OPCODE_LMULS(NMSAC, VV): {
|
|
// If the tail policy is undisturbed we can't commute.
|
|
assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags));
|
|
if ((MI.getOperand(RISCVII::getVecPolicyOpNum(MI.getDesc())).getImm() &
|
|
1) == 0)
|
|
return false;
|
|
|
|
// For these instructions we can only swap operand 1 and operand 3 by
|
|
// changing the opcode.
|
|
unsigned CommutableOpIdx1 = 1;
|
|
unsigned CommutableOpIdx2 = 3;
|
|
if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
|
|
CommutableOpIdx2))
|
|
return false;
|
|
return true;
|
|
}
|
|
case CASE_VFMA_OPCODE_VV(FMADD):
|
|
case CASE_VFMA_OPCODE_VV(FMSUB):
|
|
case CASE_VFMA_OPCODE_VV(FNMADD):
|
|
case CASE_VFMA_OPCODE_VV(FNMSUB):
|
|
case CASE_VMA_OPCODE_LMULS(MADD, VV):
|
|
case CASE_VMA_OPCODE_LMULS(NMSUB, VV): {
|
|
// If the tail policy is undisturbed we can't commute.
|
|
assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags));
|
|
if ((MI.getOperand(RISCVII::getVecPolicyOpNum(MI.getDesc())).getImm() &
|
|
1) == 0)
|
|
return false;
|
|
|
|
// For these instructions we have more freedom. We can commute with the
|
|
// other multiplicand or with the addend/subtrahend/minuend.
|
|
|
|
// Any fixed operand must be from source 1, 2 or 3.
|
|
if (SrcOpIdx1 != CommuteAnyOperandIndex && SrcOpIdx1 > 3)
|
|
return false;
|
|
if (SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx2 > 3)
|
|
return false;
|
|
|
|
// It both ops are fixed one must be the tied source.
|
|
if (SrcOpIdx1 != CommuteAnyOperandIndex &&
|
|
SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx1 != 1 && SrcOpIdx2 != 1)
|
|
return false;
|
|
|
|
// Look for two different register operands assumed to be commutable
|
|
// regardless of the FMA opcode. The FMA opcode is adjusted later if
|
|
// needed.
|
|
if (SrcOpIdx1 == CommuteAnyOperandIndex ||
|
|
SrcOpIdx2 == CommuteAnyOperandIndex) {
|
|
// At least one of operands to be commuted is not specified and
|
|
// this method is free to choose appropriate commutable operands.
|
|
unsigned CommutableOpIdx1 = SrcOpIdx1;
|
|
if (SrcOpIdx1 == SrcOpIdx2) {
|
|
// Both of operands are not fixed. Set one of commutable
|
|
// operands to the tied source.
|
|
CommutableOpIdx1 = 1;
|
|
} else if (SrcOpIdx1 == CommuteAnyOperandIndex) {
|
|
// Only one of the operands is not fixed.
|
|
CommutableOpIdx1 = SrcOpIdx2;
|
|
}
|
|
|
|
// CommutableOpIdx1 is well defined now. Let's choose another commutable
|
|
// operand and assign its index to CommutableOpIdx2.
|
|
unsigned CommutableOpIdx2;
|
|
if (CommutableOpIdx1 != 1) {
|
|
// If we haven't already used the tied source, we must use it now.
|
|
CommutableOpIdx2 = 1;
|
|
} else {
|
|
Register Op1Reg = MI.getOperand(CommutableOpIdx1).getReg();
|
|
|
|
// The commuted operands should have different registers.
|
|
// Otherwise, the commute transformation does not change anything and
|
|
// is useless. We use this as a hint to make our decision.
|
|
if (Op1Reg != MI.getOperand(2).getReg())
|
|
CommutableOpIdx2 = 2;
|
|
else
|
|
CommutableOpIdx2 = 3;
|
|
}
|
|
|
|
// Assign the found pair of commutable indices to SrcOpIdx1 and
|
|
// SrcOpIdx2 to return those values.
|
|
if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
|
|
CommutableOpIdx2))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
|
|
}
|
|
|
|
// clang-format off
|
|
#define CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, LMUL) \
|
|
case RISCV::PseudoV##OLDOP##_##TYPE##_##LMUL: \
|
|
Opc = RISCV::PseudoV##NEWOP##_##TYPE##_##LMUL; \
|
|
break;
|
|
|
|
#define CASE_VMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, TYPE) \
|
|
CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF8) \
|
|
CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF4) \
|
|
CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF2) \
|
|
CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M1) \
|
|
CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M2) \
|
|
CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M4) \
|
|
CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M8)
|
|
|
|
// VFMA depends on SEW.
|
|
#define CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, LMUL, SEW) \
|
|
case RISCV::PseudoV##OLDOP##_##TYPE##_##LMUL##_##SEW: \
|
|
Opc = RISCV::PseudoV##NEWOP##_##TYPE##_##LMUL##_##SEW; \
|
|
break;
|
|
|
|
#define CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE, SEW) \
|
|
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M1, SEW) \
|
|
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M2, SEW) \
|
|
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M4, SEW) \
|
|
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M8, SEW)
|
|
|
|
#define CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE, SEW) \
|
|
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF2, SEW) \
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE, SEW)
|
|
|
|
#define CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE, SEW) \
|
|
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF4, SEW) \
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE, SEW)
|
|
|
|
#define CASE_VFMA_CHANGE_OPCODE_VV(OLDOP, NEWOP) \
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, VV, E16) \
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, VV, E32) \
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, VV, E64)
|
|
|
|
#define CASE_VFMA_CHANGE_OPCODE_SPLATS(OLDOP, NEWOP) \
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, VFPR16, E16) \
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, VFPR32, E32) \
|
|
CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, VFPR64, E64)
|
|
// clang-format on
|
|
|
|
MachineInstr *RISCVInstrInfo::commuteInstructionImpl(MachineInstr &MI,
|
|
bool NewMI,
|
|
unsigned OpIdx1,
|
|
unsigned OpIdx2) const {
|
|
auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
|
|
if (NewMI)
|
|
return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
|
|
return MI;
|
|
};
|
|
|
|
switch (MI.getOpcode()) {
|
|
case RISCV::TH_MVEQZ:
|
|
case RISCV::TH_MVNEZ: {
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.setDesc(get(MI.getOpcode() == RISCV::TH_MVEQZ ? RISCV::TH_MVNEZ
|
|
: RISCV::TH_MVEQZ));
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, false, OpIdx1,
|
|
OpIdx2);
|
|
}
|
|
case RISCV::PseudoCCMOVGPRNoX0:
|
|
case RISCV::PseudoCCMOVGPR: {
|
|
// CCMOV can be commuted by inverting the condition.
|
|
auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
|
|
CC = RISCVCC::getOppositeBranchCondition(CC);
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.getOperand(3).setImm(CC);
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI*/ false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
case CASE_VFMA_SPLATS(FMACC):
|
|
case CASE_VFMA_SPLATS(FMADD):
|
|
case CASE_VFMA_SPLATS(FMSAC):
|
|
case CASE_VFMA_SPLATS(FMSUB):
|
|
case CASE_VFMA_SPLATS(FNMACC):
|
|
case CASE_VFMA_SPLATS(FNMADD):
|
|
case CASE_VFMA_SPLATS(FNMSAC):
|
|
case CASE_VFMA_SPLATS(FNMSUB):
|
|
case CASE_VFMA_OPCODE_VV(FMACC):
|
|
case CASE_VFMA_OPCODE_VV(FMSAC):
|
|
case CASE_VFMA_OPCODE_VV(FNMACC):
|
|
case CASE_VFMA_OPCODE_VV(FNMSAC):
|
|
case CASE_VMA_OPCODE_LMULS(MADD, VX):
|
|
case CASE_VMA_OPCODE_LMULS(NMSUB, VX):
|
|
case CASE_VMA_OPCODE_LMULS(MACC, VX):
|
|
case CASE_VMA_OPCODE_LMULS(NMSAC, VX):
|
|
case CASE_VMA_OPCODE_LMULS(MACC, VV):
|
|
case CASE_VMA_OPCODE_LMULS(NMSAC, VV): {
|
|
// It only make sense to toggle these between clobbering the
|
|
// addend/subtrahend/minuend one of the multiplicands.
|
|
assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index");
|
|
assert((OpIdx1 == 3 || OpIdx2 == 3) && "Unexpected opcode index");
|
|
unsigned Opc;
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
CASE_VFMA_CHANGE_OPCODE_SPLATS(FMACC, FMADD)
|
|
CASE_VFMA_CHANGE_OPCODE_SPLATS(FMADD, FMACC)
|
|
CASE_VFMA_CHANGE_OPCODE_SPLATS(FMSAC, FMSUB)
|
|
CASE_VFMA_CHANGE_OPCODE_SPLATS(FMSUB, FMSAC)
|
|
CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMACC, FNMADD)
|
|
CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMADD, FNMACC)
|
|
CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMSAC, FNMSUB)
|
|
CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMSUB, FNMSAC)
|
|
CASE_VFMA_CHANGE_OPCODE_VV(FMACC, FMADD)
|
|
CASE_VFMA_CHANGE_OPCODE_VV(FMSAC, FMSUB)
|
|
CASE_VFMA_CHANGE_OPCODE_VV(FNMACC, FNMADD)
|
|
CASE_VFMA_CHANGE_OPCODE_VV(FNMSAC, FNMSUB)
|
|
CASE_VMA_CHANGE_OPCODE_LMULS(MACC, MADD, VX)
|
|
CASE_VMA_CHANGE_OPCODE_LMULS(MADD, MACC, VX)
|
|
CASE_VMA_CHANGE_OPCODE_LMULS(NMSAC, NMSUB, VX)
|
|
CASE_VMA_CHANGE_OPCODE_LMULS(NMSUB, NMSAC, VX)
|
|
CASE_VMA_CHANGE_OPCODE_LMULS(MACC, MADD, VV)
|
|
CASE_VMA_CHANGE_OPCODE_LMULS(NMSAC, NMSUB, VV)
|
|
}
|
|
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.setDesc(get(Opc));
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
case CASE_VFMA_OPCODE_VV(FMADD):
|
|
case CASE_VFMA_OPCODE_VV(FMSUB):
|
|
case CASE_VFMA_OPCODE_VV(FNMADD):
|
|
case CASE_VFMA_OPCODE_VV(FNMSUB):
|
|
case CASE_VMA_OPCODE_LMULS(MADD, VV):
|
|
case CASE_VMA_OPCODE_LMULS(NMSUB, VV): {
|
|
assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index");
|
|
// If one of the operands, is the addend we need to change opcode.
|
|
// Otherwise we're just swapping 2 of the multiplicands.
|
|
if (OpIdx1 == 3 || OpIdx2 == 3) {
|
|
unsigned Opc;
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
CASE_VFMA_CHANGE_OPCODE_VV(FMADD, FMACC)
|
|
CASE_VFMA_CHANGE_OPCODE_VV(FMSUB, FMSAC)
|
|
CASE_VFMA_CHANGE_OPCODE_VV(FNMADD, FNMACC)
|
|
CASE_VFMA_CHANGE_OPCODE_VV(FNMSUB, FNMSAC)
|
|
CASE_VMA_CHANGE_OPCODE_LMULS(MADD, MACC, VV)
|
|
CASE_VMA_CHANGE_OPCODE_LMULS(NMSUB, NMSAC, VV)
|
|
}
|
|
|
|
auto &WorkingMI = cloneIfNew(MI);
|
|
WorkingMI.setDesc(get(Opc));
|
|
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
|
|
OpIdx1, OpIdx2);
|
|
}
|
|
// Let the default code handle it.
|
|
break;
|
|
}
|
|
}
|
|
|
|
return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
|
|
}
|
|
|
|
#undef CASE_VMA_CHANGE_OPCODE_COMMON
|
|
#undef CASE_VMA_CHANGE_OPCODE_LMULS
|
|
#undef CASE_VFMA_CHANGE_OPCODE_COMMON
|
|
#undef CASE_VFMA_CHANGE_OPCODE_LMULS_M1
|
|
#undef CASE_VFMA_CHANGE_OPCODE_LMULS_MF2
|
|
#undef CASE_VFMA_CHANGE_OPCODE_LMULS_MF4
|
|
#undef CASE_VFMA_CHANGE_OPCODE_VV
|
|
#undef CASE_VFMA_CHANGE_OPCODE_SPLATS
|
|
|
|
#undef CASE_RVV_OPCODE_UNMASK_LMUL
|
|
#undef CASE_RVV_OPCODE_MASK_LMUL
|
|
#undef CASE_RVV_OPCODE_LMUL
|
|
#undef CASE_RVV_OPCODE_UNMASK_WIDEN
|
|
#undef CASE_RVV_OPCODE_UNMASK
|
|
#undef CASE_RVV_OPCODE_MASK_WIDEN
|
|
#undef CASE_RVV_OPCODE_MASK
|
|
#undef CASE_RVV_OPCODE_WIDEN
|
|
#undef CASE_RVV_OPCODE
|
|
|
|
#undef CASE_VMA_OPCODE_COMMON
|
|
#undef CASE_VMA_OPCODE_LMULS
|
|
#undef CASE_VFMA_OPCODE_COMMON
|
|
#undef CASE_VFMA_OPCODE_LMULS_M1
|
|
#undef CASE_VFMA_OPCODE_LMULS_MF2
|
|
#undef CASE_VFMA_OPCODE_LMULS_MF4
|
|
#undef CASE_VFMA_OPCODE_VV
|
|
#undef CASE_VFMA_SPLATS
|
|
|
|
bool RISCVInstrInfo::simplifyInstruction(MachineInstr &MI) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
break;
|
|
case RISCV::ADD:
|
|
case RISCV::OR:
|
|
case RISCV::XOR:
|
|
// Normalize (so we hit the next if clause).
|
|
// add/[x]or rd, zero, rs => add/[x]or rd, rs, zero
|
|
if (MI.getOperand(1).getReg() == RISCV::X0)
|
|
commuteInstruction(MI);
|
|
// add/[x]or rd, rs, zero => addi rd, rs, 0
|
|
if (MI.getOperand(2).getReg() == RISCV::X0) {
|
|
MI.getOperand(2).ChangeToImmediate(0);
|
|
MI.setDesc(get(RISCV::ADDI));
|
|
return true;
|
|
}
|
|
// xor rd, rs, rs => addi rd, zero, 0
|
|
if (MI.getOpcode() == RISCV::XOR &&
|
|
MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) {
|
|
MI.getOperand(1).setReg(RISCV::X0);
|
|
MI.getOperand(2).ChangeToImmediate(0);
|
|
MI.setDesc(get(RISCV::ADDI));
|
|
return true;
|
|
}
|
|
break;
|
|
case RISCV::ORI:
|
|
case RISCV::XORI:
|
|
// [x]ori rd, zero, N => addi rd, zero, N
|
|
if (MI.getOperand(1).getReg() == RISCV::X0) {
|
|
MI.setDesc(get(RISCV::ADDI));
|
|
return true;
|
|
}
|
|
break;
|
|
case RISCV::SUB:
|
|
// sub rd, rs, zero => addi rd, rs, 0
|
|
if (MI.getOperand(2).getReg() == RISCV::X0) {
|
|
MI.getOperand(2).ChangeToImmediate(0);
|
|
MI.setDesc(get(RISCV::ADDI));
|
|
return true;
|
|
}
|
|
break;
|
|
case RISCV::SUBW:
|
|
// subw rd, rs, zero => addiw rd, rs, 0
|
|
if (MI.getOperand(2).getReg() == RISCV::X0) {
|
|
MI.getOperand(2).ChangeToImmediate(0);
|
|
MI.setDesc(get(RISCV::ADDIW));
|
|
return true;
|
|
}
|
|
break;
|
|
case RISCV::ADDW:
|
|
// Normalize (so we hit the next if clause).
|
|
// addw rd, zero, rs => addw rd, rs, zero
|
|
if (MI.getOperand(1).getReg() == RISCV::X0)
|
|
commuteInstruction(MI);
|
|
// addw rd, rs, zero => addiw rd, rs, 0
|
|
if (MI.getOperand(2).getReg() == RISCV::X0) {
|
|
MI.getOperand(2).ChangeToImmediate(0);
|
|
MI.setDesc(get(RISCV::ADDIW));
|
|
return true;
|
|
}
|
|
break;
|
|
case RISCV::SH1ADD:
|
|
case RISCV::SH1ADD_UW:
|
|
case RISCV::SH2ADD:
|
|
case RISCV::SH2ADD_UW:
|
|
case RISCV::SH3ADD:
|
|
case RISCV::SH3ADD_UW:
|
|
// shNadd[.uw] rd, zero, rs => addi rd, rs, 0
|
|
if (MI.getOperand(1).getReg() == RISCV::X0) {
|
|
MI.removeOperand(1);
|
|
MI.addOperand(MachineOperand::CreateImm(0));
|
|
MI.setDesc(get(RISCV::ADDI));
|
|
return true;
|
|
}
|
|
// shNadd[.uw] rd, rs, zero => slli[.uw] rd, rs, N
|
|
if (MI.getOperand(2).getReg() == RISCV::X0) {
|
|
MI.removeOperand(2);
|
|
unsigned Opc = MI.getOpcode();
|
|
if (Opc == RISCV::SH1ADD_UW || Opc == RISCV::SH2ADD_UW ||
|
|
Opc == RISCV::SH3ADD_UW) {
|
|
MI.addOperand(MachineOperand::CreateImm(getSHXADDUWShiftAmount(Opc)));
|
|
MI.setDesc(get(RISCV::SLLI_UW));
|
|
return true;
|
|
}
|
|
MI.addOperand(MachineOperand::CreateImm(getSHXADDShiftAmount(Opc)));
|
|
MI.setDesc(get(RISCV::SLLI));
|
|
return true;
|
|
}
|
|
break;
|
|
case RISCV::AND:
|
|
case RISCV::MUL:
|
|
case RISCV::MULH:
|
|
case RISCV::MULHSU:
|
|
case RISCV::MULHU:
|
|
case RISCV::MULW:
|
|
// and rd, zero, rs => addi rd, zero, 0
|
|
// mul* rd, zero, rs => addi rd, zero, 0
|
|
// and rd, rs, zero => addi rd, zero, 0
|
|
// mul* rd, rs, zero => addi rd, zero, 0
|
|
if (MI.getOperand(1).getReg() == RISCV::X0 ||
|
|
MI.getOperand(2).getReg() == RISCV::X0) {
|
|
MI.getOperand(1).setReg(RISCV::X0);
|
|
MI.getOperand(2).ChangeToImmediate(0);
|
|
MI.setDesc(get(RISCV::ADDI));
|
|
return true;
|
|
}
|
|
break;
|
|
case RISCV::ANDI:
|
|
// andi rd, zero, C => addi rd, zero, 0
|
|
if (MI.getOperand(1).getReg() == RISCV::X0) {
|
|
MI.getOperand(2).setImm(0);
|
|
MI.setDesc(get(RISCV::ADDI));
|
|
return true;
|
|
}
|
|
break;
|
|
case RISCV::SLL:
|
|
case RISCV::SRL:
|
|
case RISCV::SRA:
|
|
// shift rd, zero, rs => addi rd, zero, 0
|
|
if (MI.getOperand(1).getReg() == RISCV::X0) {
|
|
MI.getOperand(2).ChangeToImmediate(0);
|
|
MI.setDesc(get(RISCV::ADDI));
|
|
return true;
|
|
}
|
|
// shift rd, rs, zero => addi rd, rs, 0
|
|
if (MI.getOperand(2).getReg() == RISCV::X0) {
|
|
MI.getOperand(2).ChangeToImmediate(0);
|
|
MI.setDesc(get(RISCV::ADDI));
|
|
return true;
|
|
}
|
|
break;
|
|
case RISCV::SLLW:
|
|
case RISCV::SRLW:
|
|
case RISCV::SRAW:
|
|
// shiftw rd, zero, rs => addi rd, zero, 0
|
|
if (MI.getOperand(1).getReg() == RISCV::X0) {
|
|
MI.getOperand(2).ChangeToImmediate(0);
|
|
MI.setDesc(get(RISCV::ADDI));
|
|
return true;
|
|
}
|
|
break;
|
|
case RISCV::SLLI:
|
|
case RISCV::SRLI:
|
|
case RISCV::SRAI:
|
|
case RISCV::SLLIW:
|
|
case RISCV::SRLIW:
|
|
case RISCV::SRAIW:
|
|
case RISCV::SLLI_UW:
|
|
// shiftimm rd, zero, N => addi rd, zero, 0
|
|
if (MI.getOperand(1).getReg() == RISCV::X0) {
|
|
MI.getOperand(2).setImm(0);
|
|
MI.setDesc(get(RISCV::ADDI));
|
|
return true;
|
|
}
|
|
break;
|
|
case RISCV::SLTU:
|
|
case RISCV::ADD_UW:
|
|
// sltu rd, zero, zero => addi rd, zero, 0
|
|
// add.uw rd, zero, zero => addi rd, zero, 0
|
|
if (MI.getOperand(1).getReg() == RISCV::X0 &&
|
|
MI.getOperand(2).getReg() == RISCV::X0) {
|
|
MI.getOperand(2).ChangeToImmediate(0);
|
|
MI.setDesc(get(RISCV::ADDI));
|
|
return true;
|
|
}
|
|
// add.uw rd, zero, rs => addi rd, rs, 0
|
|
if (MI.getOpcode() == RISCV::ADD_UW &&
|
|
MI.getOperand(1).getReg() == RISCV::X0) {
|
|
MI.removeOperand(1);
|
|
MI.addOperand(MachineOperand::CreateImm(0));
|
|
MI.setDesc(get(RISCV::ADDI));
|
|
}
|
|
break;
|
|
case RISCV::SLTIU:
|
|
// sltiu rd, zero, NZC => addi rd, zero, 1
|
|
// sltiu rd, zero, 0 => addi rd, zero, 0
|
|
if (MI.getOperand(1).getReg() == RISCV::X0) {
|
|
MI.getOperand(2).setImm(MI.getOperand(2).getImm() != 0);
|
|
MI.setDesc(get(RISCV::ADDI));
|
|
return true;
|
|
}
|
|
break;
|
|
case RISCV::SEXT_H:
|
|
case RISCV::SEXT_B:
|
|
case RISCV::ZEXT_H_RV32:
|
|
case RISCV::ZEXT_H_RV64:
|
|
// sext.[hb] rd, zero => addi rd, zero, 0
|
|
// zext.h rd, zero => addi rd, zero, 0
|
|
if (MI.getOperand(1).getReg() == RISCV::X0) {
|
|
MI.addOperand(MachineOperand::CreateImm(0));
|
|
MI.setDesc(get(RISCV::ADDI));
|
|
return true;
|
|
}
|
|
break;
|
|
case RISCV::MIN:
|
|
case RISCV::MINU:
|
|
case RISCV::MAX:
|
|
case RISCV::MAXU:
|
|
// min|max rd, rs, rs => addi rd, rs, 0
|
|
if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) {
|
|
MI.getOperand(2).ChangeToImmediate(0);
|
|
MI.setDesc(get(RISCV::ADDI));
|
|
return true;
|
|
}
|
|
break;
|
|
case RISCV::BEQ:
|
|
case RISCV::BNE:
|
|
// b{eq,ne} zero, rs, imm => b{eq,ne} rs, zero, imm
|
|
if (MI.getOperand(0).getReg() == RISCV::X0) {
|
|
MachineOperand MO0 = MI.getOperand(0);
|
|
MI.removeOperand(0);
|
|
MI.insert(MI.operands_begin() + 1, {MO0});
|
|
}
|
|
break;
|
|
case RISCV::BLTU:
|
|
// bltu zero, rs, imm => bne rs, zero, imm
|
|
if (MI.getOperand(0).getReg() == RISCV::X0) {
|
|
MachineOperand MO0 = MI.getOperand(0);
|
|
MI.removeOperand(0);
|
|
MI.insert(MI.operands_begin() + 1, {MO0});
|
|
MI.setDesc(get(RISCV::BNE));
|
|
}
|
|
break;
|
|
case RISCV::BGEU:
|
|
// bgeu zero, rs, imm => beq rs, zero, imm
|
|
if (MI.getOperand(0).getReg() == RISCV::X0) {
|
|
MachineOperand MO0 = MI.getOperand(0);
|
|
MI.removeOperand(0);
|
|
MI.insert(MI.operands_begin() + 1, {MO0});
|
|
MI.setDesc(get(RISCV::BEQ));
|
|
}
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// clang-format off
|
|
#define CASE_WIDEOP_OPCODE_COMMON(OP, LMUL) \
|
|
RISCV::PseudoV##OP##_##LMUL##_TIED
|
|
|
|
#define CASE_WIDEOP_OPCODE_LMULS(OP) \
|
|
CASE_WIDEOP_OPCODE_COMMON(OP, MF8): \
|
|
case CASE_WIDEOP_OPCODE_COMMON(OP, MF4): \
|
|
case CASE_WIDEOP_OPCODE_COMMON(OP, MF2): \
|
|
case CASE_WIDEOP_OPCODE_COMMON(OP, M1): \
|
|
case CASE_WIDEOP_OPCODE_COMMON(OP, M2): \
|
|
case CASE_WIDEOP_OPCODE_COMMON(OP, M4)
|
|
|
|
#define CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, LMUL) \
|
|
case RISCV::PseudoV##OP##_##LMUL##_TIED: \
|
|
NewOpc = RISCV::PseudoV##OP##_##LMUL; \
|
|
break;
|
|
|
|
#define CASE_WIDEOP_CHANGE_OPCODE_LMULS(OP) \
|
|
CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF8) \
|
|
CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF4) \
|
|
CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF2) \
|
|
CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M1) \
|
|
CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M2) \
|
|
CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M4)
|
|
|
|
// FP Widening Ops may by SEW aware. Create SEW aware cases for these cases.
|
|
#define CASE_FP_WIDEOP_OPCODE_COMMON(OP, LMUL, SEW) \
|
|
RISCV::PseudoV##OP##_##LMUL##_##SEW##_TIED
|
|
|
|
#define CASE_FP_WIDEOP_OPCODE_LMULS(OP) \
|
|
CASE_FP_WIDEOP_OPCODE_COMMON(OP, MF4, E16): \
|
|
case CASE_FP_WIDEOP_OPCODE_COMMON(OP, MF2, E16): \
|
|
case CASE_FP_WIDEOP_OPCODE_COMMON(OP, MF2, E32): \
|
|
case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M1, E16): \
|
|
case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M1, E32): \
|
|
case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M2, E16): \
|
|
case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M2, E32): \
|
|
case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M4, E16): \
|
|
case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M4, E32) \
|
|
|
|
#define CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, LMUL, SEW) \
|
|
case RISCV::PseudoV##OP##_##LMUL##_##SEW##_TIED: \
|
|
NewOpc = RISCV::PseudoV##OP##_##LMUL##_##SEW; \
|
|
break;
|
|
|
|
#define CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS(OP) \
|
|
CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF4, E16) \
|
|
CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF2, E16) \
|
|
CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF2, E32) \
|
|
CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M1, E16) \
|
|
CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M1, E32) \
|
|
CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M2, E16) \
|
|
CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M2, E32) \
|
|
CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M4, E16) \
|
|
CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M4, E32) \
|
|
// clang-format on
|
|
|
|
MachineInstr *RISCVInstrInfo::convertToThreeAddress(MachineInstr &MI,
|
|
LiveVariables *LV,
|
|
LiveIntervals *LIS) const {
|
|
MachineInstrBuilder MIB;
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return nullptr;
|
|
case CASE_FP_WIDEOP_OPCODE_LMULS(FWADD_WV):
|
|
case CASE_FP_WIDEOP_OPCODE_LMULS(FWSUB_WV): {
|
|
assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags) &&
|
|
MI.getNumExplicitOperands() == 7 &&
|
|
"Expect 7 explicit operands rd, rs2, rs1, rm, vl, sew, policy");
|
|
// If the tail policy is undisturbed we can't convert.
|
|
if ((MI.getOperand(RISCVII::getVecPolicyOpNum(MI.getDesc())).getImm() &
|
|
1) == 0)
|
|
return nullptr;
|
|
// clang-format off
|
|
unsigned NewOpc;
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS(FWADD_WV)
|
|
CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS(FWSUB_WV)
|
|
}
|
|
// clang-format on
|
|
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
|
|
.add(MI.getOperand(0))
|
|
.addReg(MI.getOperand(0).getReg(), RegState::Undef)
|
|
.add(MI.getOperand(1))
|
|
.add(MI.getOperand(2))
|
|
.add(MI.getOperand(3))
|
|
.add(MI.getOperand(4))
|
|
.add(MI.getOperand(5))
|
|
.add(MI.getOperand(6));
|
|
break;
|
|
}
|
|
case CASE_WIDEOP_OPCODE_LMULS(WADD_WV):
|
|
case CASE_WIDEOP_OPCODE_LMULS(WADDU_WV):
|
|
case CASE_WIDEOP_OPCODE_LMULS(WSUB_WV):
|
|
case CASE_WIDEOP_OPCODE_LMULS(WSUBU_WV): {
|
|
// If the tail policy is undisturbed we can't convert.
|
|
assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags) &&
|
|
MI.getNumExplicitOperands() == 6);
|
|
if ((MI.getOperand(RISCVII::getVecPolicyOpNum(MI.getDesc())).getImm() &
|
|
1) == 0)
|
|
return nullptr;
|
|
|
|
// clang-format off
|
|
unsigned NewOpc;
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode");
|
|
CASE_WIDEOP_CHANGE_OPCODE_LMULS(WADD_WV)
|
|
CASE_WIDEOP_CHANGE_OPCODE_LMULS(WADDU_WV)
|
|
CASE_WIDEOP_CHANGE_OPCODE_LMULS(WSUB_WV)
|
|
CASE_WIDEOP_CHANGE_OPCODE_LMULS(WSUBU_WV)
|
|
}
|
|
// clang-format on
|
|
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
|
|
.add(MI.getOperand(0))
|
|
.addReg(MI.getOperand(0).getReg(), RegState::Undef)
|
|
.add(MI.getOperand(1))
|
|
.add(MI.getOperand(2))
|
|
.add(MI.getOperand(3))
|
|
.add(MI.getOperand(4))
|
|
.add(MI.getOperand(5));
|
|
break;
|
|
}
|
|
}
|
|
MIB.copyImplicitOps(MI);
|
|
|
|
if (LV) {
|
|
unsigned NumOps = MI.getNumOperands();
|
|
for (unsigned I = 1; I < NumOps; ++I) {
|
|
MachineOperand &Op = MI.getOperand(I);
|
|
if (Op.isReg() && Op.isKill())
|
|
LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
|
|
}
|
|
}
|
|
|
|
if (LIS) {
|
|
SlotIndex Idx = LIS->ReplaceMachineInstrInMaps(MI, *MIB);
|
|
|
|
if (MI.getOperand(0).isEarlyClobber()) {
|
|
// Use operand 1 was tied to early-clobber def operand 0, so its live
|
|
// interval could have ended at an early-clobber slot. Now they are not
|
|
// tied we need to update it to the normal register slot.
|
|
LiveInterval &LI = LIS->getInterval(MI.getOperand(1).getReg());
|
|
LiveRange::Segment *S = LI.getSegmentContaining(Idx);
|
|
if (S->end == Idx.getRegSlot(true))
|
|
S->end = Idx.getRegSlot();
|
|
}
|
|
}
|
|
|
|
return MIB;
|
|
}
|
|
|
|
#undef CASE_WIDEOP_OPCODE_COMMON
|
|
#undef CASE_WIDEOP_OPCODE_LMULS
|
|
#undef CASE_WIDEOP_CHANGE_OPCODE_COMMON
|
|
#undef CASE_WIDEOP_CHANGE_OPCODE_LMULS
|
|
#undef CASE_FP_WIDEOP_OPCODE_COMMON
|
|
#undef CASE_FP_WIDEOP_OPCODE_LMULS
|
|
#undef CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON
|
|
#undef CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS
|
|
|
|
void RISCVInstrInfo::mulImm(MachineFunction &MF, MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator II, const DebugLoc &DL,
|
|
Register DestReg, uint32_t Amount,
|
|
MachineInstr::MIFlag Flag) const {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
if (llvm::has_single_bit<uint32_t>(Amount)) {
|
|
uint32_t ShiftAmount = Log2_32(Amount);
|
|
if (ShiftAmount == 0)
|
|
return;
|
|
BuildMI(MBB, II, DL, get(RISCV::SLLI), DestReg)
|
|
.addReg(DestReg, RegState::Kill)
|
|
.addImm(ShiftAmount)
|
|
.setMIFlag(Flag);
|
|
} else if (STI.hasStdExtZba() &&
|
|
((Amount % 3 == 0 && isPowerOf2_64(Amount / 3)) ||
|
|
(Amount % 5 == 0 && isPowerOf2_64(Amount / 5)) ||
|
|
(Amount % 9 == 0 && isPowerOf2_64(Amount / 9)))) {
|
|
// We can use Zba SHXADD+SLLI instructions for multiply in some cases.
|
|
unsigned Opc;
|
|
uint32_t ShiftAmount;
|
|
if (Amount % 9 == 0) {
|
|
Opc = RISCV::SH3ADD;
|
|
ShiftAmount = Log2_64(Amount / 9);
|
|
} else if (Amount % 5 == 0) {
|
|
Opc = RISCV::SH2ADD;
|
|
ShiftAmount = Log2_64(Amount / 5);
|
|
} else if (Amount % 3 == 0) {
|
|
Opc = RISCV::SH1ADD;
|
|
ShiftAmount = Log2_64(Amount / 3);
|
|
} else {
|
|
llvm_unreachable("implied by if-clause");
|
|
}
|
|
if (ShiftAmount)
|
|
BuildMI(MBB, II, DL, get(RISCV::SLLI), DestReg)
|
|
.addReg(DestReg, RegState::Kill)
|
|
.addImm(ShiftAmount)
|
|
.setMIFlag(Flag);
|
|
BuildMI(MBB, II, DL, get(Opc), DestReg)
|
|
.addReg(DestReg, RegState::Kill)
|
|
.addReg(DestReg)
|
|
.setMIFlag(Flag);
|
|
} else if (llvm::has_single_bit<uint32_t>(Amount - 1)) {
|
|
Register ScaledRegister = MRI.createVirtualRegister(&RISCV::GPRRegClass);
|
|
uint32_t ShiftAmount = Log2_32(Amount - 1);
|
|
BuildMI(MBB, II, DL, get(RISCV::SLLI), ScaledRegister)
|
|
.addReg(DestReg)
|
|
.addImm(ShiftAmount)
|
|
.setMIFlag(Flag);
|
|
BuildMI(MBB, II, DL, get(RISCV::ADD), DestReg)
|
|
.addReg(ScaledRegister, RegState::Kill)
|
|
.addReg(DestReg, RegState::Kill)
|
|
.setMIFlag(Flag);
|
|
} else if (llvm::has_single_bit<uint32_t>(Amount + 1)) {
|
|
Register ScaledRegister = MRI.createVirtualRegister(&RISCV::GPRRegClass);
|
|
uint32_t ShiftAmount = Log2_32(Amount + 1);
|
|
BuildMI(MBB, II, DL, get(RISCV::SLLI), ScaledRegister)
|
|
.addReg(DestReg)
|
|
.addImm(ShiftAmount)
|
|
.setMIFlag(Flag);
|
|
BuildMI(MBB, II, DL, get(RISCV::SUB), DestReg)
|
|
.addReg(ScaledRegister, RegState::Kill)
|
|
.addReg(DestReg, RegState::Kill)
|
|
.setMIFlag(Flag);
|
|
} else if (STI.hasStdExtZmmul()) {
|
|
Register N = MRI.createVirtualRegister(&RISCV::GPRRegClass);
|
|
movImm(MBB, II, DL, N, Amount, Flag);
|
|
BuildMI(MBB, II, DL, get(RISCV::MUL), DestReg)
|
|
.addReg(DestReg, RegState::Kill)
|
|
.addReg(N, RegState::Kill)
|
|
.setMIFlag(Flag);
|
|
} else {
|
|
Register Acc;
|
|
uint32_t PrevShiftAmount = 0;
|
|
for (uint32_t ShiftAmount = 0; Amount >> ShiftAmount; ShiftAmount++) {
|
|
if (Amount & (1U << ShiftAmount)) {
|
|
if (ShiftAmount)
|
|
BuildMI(MBB, II, DL, get(RISCV::SLLI), DestReg)
|
|
.addReg(DestReg, RegState::Kill)
|
|
.addImm(ShiftAmount - PrevShiftAmount)
|
|
.setMIFlag(Flag);
|
|
if (Amount >> (ShiftAmount + 1)) {
|
|
// If we don't have an accmulator yet, create it and copy DestReg.
|
|
if (!Acc) {
|
|
Acc = MRI.createVirtualRegister(&RISCV::GPRRegClass);
|
|
BuildMI(MBB, II, DL, get(TargetOpcode::COPY), Acc)
|
|
.addReg(DestReg)
|
|
.setMIFlag(Flag);
|
|
} else {
|
|
BuildMI(MBB, II, DL, get(RISCV::ADD), Acc)
|
|
.addReg(Acc, RegState::Kill)
|
|
.addReg(DestReg)
|
|
.setMIFlag(Flag);
|
|
}
|
|
}
|
|
PrevShiftAmount = ShiftAmount;
|
|
}
|
|
}
|
|
assert(Acc && "Expected valid accumulator");
|
|
BuildMI(MBB, II, DL, get(RISCV::ADD), DestReg)
|
|
.addReg(DestReg, RegState::Kill)
|
|
.addReg(Acc, RegState::Kill)
|
|
.setMIFlag(Flag);
|
|
}
|
|
}
|
|
|
|
ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
|
|
RISCVInstrInfo::getSerializableMachineMemOperandTargetFlags() const {
|
|
static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] =
|
|
{{MONontemporalBit0, "riscv-nontemporal-domain-bit-0"},
|
|
{MONontemporalBit1, "riscv-nontemporal-domain-bit-1"}};
|
|
return ArrayRef(TargetFlags);
|
|
}
|
|
|
|
unsigned RISCVInstrInfo::getTailDuplicateSize(CodeGenOptLevel OptLevel) const {
|
|
return OptLevel >= CodeGenOptLevel::Aggressive
|
|
? STI.getTailDupAggressiveThreshold()
|
|
: 2;
|
|
}
|
|
|
|
bool RISCV::isRVVSpill(const MachineInstr &MI) {
|
|
// RVV lacks any support for immediate addressing for stack addresses, so be
|
|
// conservative.
|
|
unsigned Opcode = MI.getOpcode();
|
|
if (!RISCVVPseudosTable::getPseudoInfo(Opcode) &&
|
|
!getLMULForRVVWholeLoadStore(Opcode) && !isRVVSpillForZvlsseg(Opcode))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
std::optional<std::pair<unsigned, unsigned>>
|
|
RISCV::isRVVSpillForZvlsseg(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default:
|
|
return std::nullopt;
|
|
case RISCV::PseudoVSPILL2_M1:
|
|
case RISCV::PseudoVRELOAD2_M1:
|
|
return std::make_pair(2u, 1u);
|
|
case RISCV::PseudoVSPILL2_M2:
|
|
case RISCV::PseudoVRELOAD2_M2:
|
|
return std::make_pair(2u, 2u);
|
|
case RISCV::PseudoVSPILL2_M4:
|
|
case RISCV::PseudoVRELOAD2_M4:
|
|
return std::make_pair(2u, 4u);
|
|
case RISCV::PseudoVSPILL3_M1:
|
|
case RISCV::PseudoVRELOAD3_M1:
|
|
return std::make_pair(3u, 1u);
|
|
case RISCV::PseudoVSPILL3_M2:
|
|
case RISCV::PseudoVRELOAD3_M2:
|
|
return std::make_pair(3u, 2u);
|
|
case RISCV::PseudoVSPILL4_M1:
|
|
case RISCV::PseudoVRELOAD4_M1:
|
|
return std::make_pair(4u, 1u);
|
|
case RISCV::PseudoVSPILL4_M2:
|
|
case RISCV::PseudoVRELOAD4_M2:
|
|
return std::make_pair(4u, 2u);
|
|
case RISCV::PseudoVSPILL5_M1:
|
|
case RISCV::PseudoVRELOAD5_M1:
|
|
return std::make_pair(5u, 1u);
|
|
case RISCV::PseudoVSPILL6_M1:
|
|
case RISCV::PseudoVRELOAD6_M1:
|
|
return std::make_pair(6u, 1u);
|
|
case RISCV::PseudoVSPILL7_M1:
|
|
case RISCV::PseudoVRELOAD7_M1:
|
|
return std::make_pair(7u, 1u);
|
|
case RISCV::PseudoVSPILL8_M1:
|
|
case RISCV::PseudoVRELOAD8_M1:
|
|
return std::make_pair(8u, 1u);
|
|
}
|
|
}
|
|
|
|
bool RISCV::hasEqualFRM(const MachineInstr &MI1, const MachineInstr &MI2) {
|
|
int16_t MI1FrmOpIdx =
|
|
RISCV::getNamedOperandIdx(MI1.getOpcode(), RISCV::OpName::frm);
|
|
int16_t MI2FrmOpIdx =
|
|
RISCV::getNamedOperandIdx(MI2.getOpcode(), RISCV::OpName::frm);
|
|
if (MI1FrmOpIdx < 0 || MI2FrmOpIdx < 0)
|
|
return false;
|
|
MachineOperand FrmOp1 = MI1.getOperand(MI1FrmOpIdx);
|
|
MachineOperand FrmOp2 = MI2.getOperand(MI2FrmOpIdx);
|
|
return FrmOp1.getImm() == FrmOp2.getImm();
|
|
}
|
|
|
|
std::optional<unsigned>
|
|
RISCV::getVectorLowDemandedScalarBits(unsigned Opcode, unsigned Log2SEW) {
|
|
switch (Opcode) {
|
|
default:
|
|
return std::nullopt;
|
|
|
|
// 11.6. Vector Single-Width Shift Instructions
|
|
case RISCV::VSLL_VX:
|
|
case RISCV::VSRL_VX:
|
|
case RISCV::VSRA_VX:
|
|
// 12.4. Vector Single-Width Scaling Shift Instructions
|
|
case RISCV::VSSRL_VX:
|
|
case RISCV::VSSRA_VX:
|
|
// Zvbb
|
|
case RISCV::VROL_VX:
|
|
case RISCV::VROR_VX:
|
|
// Only the low lg2(SEW) bits of the shift-amount value are used.
|
|
return Log2SEW;
|
|
|
|
// 11.7 Vector Narrowing Integer Right Shift Instructions
|
|
case RISCV::VNSRL_WX:
|
|
case RISCV::VNSRA_WX:
|
|
// 12.5. Vector Narrowing Fixed-Point Clip Instructions
|
|
case RISCV::VNCLIPU_WX:
|
|
case RISCV::VNCLIP_WX:
|
|
// Zvbb
|
|
case RISCV::VWSLL_VX:
|
|
// Only the low lg2(2*SEW) bits of the shift-amount value are used.
|
|
return Log2SEW + 1;
|
|
|
|
// 11.1. Vector Single-Width Integer Add and Subtract
|
|
case RISCV::VADD_VX:
|
|
case RISCV::VSUB_VX:
|
|
case RISCV::VRSUB_VX:
|
|
// 11.2. Vector Widening Integer Add/Subtract
|
|
case RISCV::VWADDU_VX:
|
|
case RISCV::VWSUBU_VX:
|
|
case RISCV::VWADD_VX:
|
|
case RISCV::VWSUB_VX:
|
|
case RISCV::VWADDU_WX:
|
|
case RISCV::VWSUBU_WX:
|
|
case RISCV::VWADD_WX:
|
|
case RISCV::VWSUB_WX:
|
|
// 11.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
|
|
case RISCV::VADC_VXM:
|
|
case RISCV::VADC_VIM:
|
|
case RISCV::VMADC_VXM:
|
|
case RISCV::VMADC_VIM:
|
|
case RISCV::VMADC_VX:
|
|
case RISCV::VSBC_VXM:
|
|
case RISCV::VMSBC_VXM:
|
|
case RISCV::VMSBC_VX:
|
|
// 11.5 Vector Bitwise Logical Instructions
|
|
case RISCV::VAND_VX:
|
|
case RISCV::VOR_VX:
|
|
case RISCV::VXOR_VX:
|
|
// 11.8. Vector Integer Compare Instructions
|
|
case RISCV::VMSEQ_VX:
|
|
case RISCV::VMSNE_VX:
|
|
case RISCV::VMSLTU_VX:
|
|
case RISCV::VMSLT_VX:
|
|
case RISCV::VMSLEU_VX:
|
|
case RISCV::VMSLE_VX:
|
|
case RISCV::VMSGTU_VX:
|
|
case RISCV::VMSGT_VX:
|
|
// 11.9. Vector Integer Min/Max Instructions
|
|
case RISCV::VMINU_VX:
|
|
case RISCV::VMIN_VX:
|
|
case RISCV::VMAXU_VX:
|
|
case RISCV::VMAX_VX:
|
|
// 11.10. Vector Single-Width Integer Multiply Instructions
|
|
case RISCV::VMUL_VX:
|
|
case RISCV::VMULH_VX:
|
|
case RISCV::VMULHU_VX:
|
|
case RISCV::VMULHSU_VX:
|
|
// 11.11. Vector Integer Divide Instructions
|
|
case RISCV::VDIVU_VX:
|
|
case RISCV::VDIV_VX:
|
|
case RISCV::VREMU_VX:
|
|
case RISCV::VREM_VX:
|
|
// 11.12. Vector Widening Integer Multiply Instructions
|
|
case RISCV::VWMUL_VX:
|
|
case RISCV::VWMULU_VX:
|
|
case RISCV::VWMULSU_VX:
|
|
// 11.13. Vector Single-Width Integer Multiply-Add Instructions
|
|
case RISCV::VMACC_VX:
|
|
case RISCV::VNMSAC_VX:
|
|
case RISCV::VMADD_VX:
|
|
case RISCV::VNMSUB_VX:
|
|
// 11.14. Vector Widening Integer Multiply-Add Instructions
|
|
case RISCV::VWMACCU_VX:
|
|
case RISCV::VWMACC_VX:
|
|
case RISCV::VWMACCSU_VX:
|
|
case RISCV::VWMACCUS_VX:
|
|
// 11.15. Vector Integer Merge Instructions
|
|
case RISCV::VMERGE_VXM:
|
|
// 11.16. Vector Integer Move Instructions
|
|
case RISCV::VMV_V_X:
|
|
// 12.1. Vector Single-Width Saturating Add and Subtract
|
|
case RISCV::VSADDU_VX:
|
|
case RISCV::VSADD_VX:
|
|
case RISCV::VSSUBU_VX:
|
|
case RISCV::VSSUB_VX:
|
|
// 12.2. Vector Single-Width Averaging Add and Subtract
|
|
case RISCV::VAADDU_VX:
|
|
case RISCV::VAADD_VX:
|
|
case RISCV::VASUBU_VX:
|
|
case RISCV::VASUB_VX:
|
|
// 12.3. Vector Single-Width Fractional Multiply with Rounding and Saturation
|
|
case RISCV::VSMUL_VX:
|
|
// 16.1. Integer Scalar Move Instructions
|
|
case RISCV::VMV_S_X:
|
|
// Zvbb
|
|
case RISCV::VANDN_VX:
|
|
return 1U << Log2SEW;
|
|
}
|
|
}
|
|
|
|
unsigned RISCV::getRVVMCOpcode(unsigned RVVPseudoOpcode) {
|
|
const RISCVVPseudosTable::PseudoInfo *RVV =
|
|
RISCVVPseudosTable::getPseudoInfo(RVVPseudoOpcode);
|
|
if (!RVV)
|
|
return 0;
|
|
return RVV->BaseInstr;
|
|
}
|
|
|
|
unsigned RISCV::getDestLog2EEW(const MCInstrDesc &Desc, unsigned Log2SEW) {
|
|
unsigned DestEEW =
|
|
(Desc.TSFlags & RISCVII::DestEEWMask) >> RISCVII::DestEEWShift;
|
|
// EEW = 1
|
|
if (DestEEW == 0)
|
|
return 0;
|
|
// EEW = SEW * n
|
|
unsigned Scaled = Log2SEW + (DestEEW - 1);
|
|
assert(Scaled >= 3 && Scaled <= 6);
|
|
return Scaled;
|
|
}
|
|
|
|
/// Given two VL operands, do we know that LHS <= RHS?
|
|
bool RISCV::isVLKnownLE(const MachineOperand &LHS, const MachineOperand &RHS) {
|
|
if (LHS.isReg() && RHS.isReg() && LHS.getReg().isVirtual() &&
|
|
LHS.getReg() == RHS.getReg())
|
|
return true;
|
|
if (RHS.isImm() && RHS.getImm() == RISCV::VLMaxSentinel)
|
|
return true;
|
|
if (LHS.isImm() && LHS.getImm() == 0)
|
|
return true;
|
|
if (LHS.isImm() && LHS.getImm() == RISCV::VLMaxSentinel)
|
|
return false;
|
|
if (!LHS.isImm() || !RHS.isImm())
|
|
return false;
|
|
return LHS.getImm() <= RHS.getImm();
|
|
}
|
|
|
|
namespace {
|
|
class RISCVPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
|
|
const MachineInstr *LHS;
|
|
const MachineInstr *RHS;
|
|
SmallVector<MachineOperand, 3> Cond;
|
|
|
|
public:
|
|
RISCVPipelinerLoopInfo(const MachineInstr *LHS, const MachineInstr *RHS,
|
|
const SmallVectorImpl<MachineOperand> &Cond)
|
|
: LHS(LHS), RHS(RHS), Cond(Cond.begin(), Cond.end()) {}
|
|
|
|
bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
|
|
// Make the instructions for loop control be placed in stage 0.
|
|
// The predecessors of LHS/RHS are considered by the caller.
|
|
if (LHS && MI == LHS)
|
|
return true;
|
|
if (RHS && MI == RHS)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
std::optional<bool> createTripCountGreaterCondition(
|
|
int TC, MachineBasicBlock &MBB,
|
|
SmallVectorImpl<MachineOperand> &CondParam) override {
|
|
// A branch instruction will be inserted as "if (Cond) goto epilogue".
|
|
// Cond is normalized for such use.
|
|
// The predecessors of the branch are assumed to have already been inserted.
|
|
CondParam = Cond;
|
|
return {};
|
|
}
|
|
|
|
void setPreheader(MachineBasicBlock *NewPreheader) override {}
|
|
|
|
void adjustTripCount(int TripCountAdjust) override {}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
|
|
RISCVInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
|
|
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
if (analyzeBranch(*LoopBB, TBB, FBB, Cond, /*AllowModify=*/false))
|
|
return nullptr;
|
|
|
|
// Infinite loops are not supported
|
|
if (TBB == LoopBB && FBB == LoopBB)
|
|
return nullptr;
|
|
|
|
// Must be conditional branch
|
|
if (FBB == nullptr)
|
|
return nullptr;
|
|
|
|
assert((TBB == LoopBB || FBB == LoopBB) &&
|
|
"The Loop must be a single-basic-block loop");
|
|
|
|
// Normalization for createTripCountGreaterCondition()
|
|
if (TBB == LoopBB)
|
|
reverseBranchCondition(Cond);
|
|
|
|
const MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo();
|
|
auto FindRegDef = [&MRI](MachineOperand &Op) -> const MachineInstr * {
|
|
if (!Op.isReg())
|
|
return nullptr;
|
|
Register Reg = Op.getReg();
|
|
if (!Reg.isVirtual())
|
|
return nullptr;
|
|
return MRI.getVRegDef(Reg);
|
|
};
|
|
|
|
const MachineInstr *LHS = FindRegDef(Cond[1]);
|
|
const MachineInstr *RHS = FindRegDef(Cond[2]);
|
|
if (LHS && LHS->isPHI())
|
|
return nullptr;
|
|
if (RHS && RHS->isPHI())
|
|
return nullptr;
|
|
|
|
return std::make_unique<RISCVPipelinerLoopInfo>(LHS, RHS, Cond);
|
|
}
|
|
|
|
// FIXME: We should remove this if we have a default generic scheduling model.
|
|
bool RISCVInstrInfo::isHighLatencyDef(int Opc) const {
|
|
unsigned RVVMCOpcode = RISCV::getRVVMCOpcode(Opc);
|
|
Opc = RVVMCOpcode ? RVVMCOpcode : Opc;
|
|
switch (Opc) {
|
|
default:
|
|
return false;
|
|
// Integer div/rem.
|
|
case RISCV::DIV:
|
|
case RISCV::DIVW:
|
|
case RISCV::DIVU:
|
|
case RISCV::DIVUW:
|
|
case RISCV::REM:
|
|
case RISCV::REMW:
|
|
case RISCV::REMU:
|
|
case RISCV::REMUW:
|
|
// Floating-point div/sqrt.
|
|
case RISCV::FDIV_H:
|
|
case RISCV::FDIV_S:
|
|
case RISCV::FDIV_D:
|
|
case RISCV::FDIV_H_INX:
|
|
case RISCV::FDIV_S_INX:
|
|
case RISCV::FDIV_D_INX:
|
|
case RISCV::FDIV_D_IN32X:
|
|
case RISCV::FSQRT_H:
|
|
case RISCV::FSQRT_S:
|
|
case RISCV::FSQRT_D:
|
|
case RISCV::FSQRT_H_INX:
|
|
case RISCV::FSQRT_S_INX:
|
|
case RISCV::FSQRT_D_INX:
|
|
case RISCV::FSQRT_D_IN32X:
|
|
// Vector integer div/rem
|
|
case RISCV::VDIV_VV:
|
|
case RISCV::VDIV_VX:
|
|
case RISCV::VDIVU_VV:
|
|
case RISCV::VDIVU_VX:
|
|
case RISCV::VREM_VV:
|
|
case RISCV::VREM_VX:
|
|
case RISCV::VREMU_VV:
|
|
case RISCV::VREMU_VX:
|
|
// Vector floating-point div/sqrt.
|
|
case RISCV::VFDIV_VV:
|
|
case RISCV::VFDIV_VF:
|
|
case RISCV::VFRDIV_VF:
|
|
case RISCV::VFSQRT_V:
|
|
case RISCV::VFRSQRT7_V:
|
|
return true;
|
|
}
|
|
}
|