llvm-project/clang/test/Analysis/malloc-annotations.c
Pavel Skripkin 9abf6d3506
[analyzer] [MallocChecker] Assume functions with ownership_returns return unknown memory (#110115)
There is no good way to tell CSA if function with `ownership_returns`
attribute returns initialized or not initialized memory. To make FP rate
lower, let's assume that memory returned from such functions is unknown
and do not reason about it.

In future it would be great to add a way to annotate such behavior
2024-09-26 15:45:08 +03:00

290 lines
7.0 KiB
C

// RUN: %clang_analyze_cc1 -verify \
// RUN: -analyzer-checker=core \
// RUN: -analyzer-checker=alpha.deadcode.UnreachableCode \
// RUN: -analyzer-checker=alpha.core.CastSize \
// RUN: -analyzer-checker=unix.Malloc \
// RUN: -analyzer-checker=debug.ExprInspection \
// RUN: -analyzer-config unix.DynamicMemoryModeling:Optimistic=true %s
typedef __typeof(sizeof(int)) size_t;
void *malloc(size_t);
void free(void *);
void *realloc(void *ptr, size_t size);
void *calloc(size_t nmemb, size_t size);
void __attribute((ownership_returns(malloc))) *my_malloc(size_t);
void __attribute((ownership_takes(malloc, 1))) my_free(void *);
void my_freeBoth(void *, void *)
__attribute((ownership_holds(malloc, 1, 2)));
void __attribute((ownership_returns(malloc, 1))) *my_malloc2(size_t);
void __attribute((ownership_holds(malloc, 1))) my_hold(void *);
// Duplicate attributes are silly, but not an error.
// Duplicate attribute has no extra effect.
// If two are of different kinds, that is an error and reported as such.
void __attribute((ownership_holds(malloc, 1)))
__attribute((ownership_holds(malloc, 1)))
__attribute((ownership_holds(malloc, 3))) my_hold2(void *, void *, void *);
__attribute((ownership_returns(user_malloc, 1))) void *user_malloc(size_t);
__attribute((ownership_takes(user_malloc, 1))) void user_free(void *);
void clang_analyzer_dump(int);
void *my_malloc3(size_t);
void *myglobalpointer;
struct stuff {
void *somefield;
};
struct stuff myglobalstuff;
void f1(void) {
int *p = malloc(12);
return; // expected-warning{{Potential leak of memory pointed to by}}
}
void f2(void) {
int *p = malloc(12);
free(p);
free(p); // expected-warning{{Attempt to free released memory}}
}
void f2_realloc_0(void) {
int *p = malloc(12);
realloc(p,0);
realloc(p,0); // expected-warning{{Attempt to free released memory}}
}
void f2_realloc_1(void) {
int *p = malloc(12);
int *q = realloc(p,0); // no-warning
}
// ownership attributes tests
void naf1(void) {
int *p = my_malloc3(12);
return; // no-warning
}
void n2af1(void) {
int *p = my_malloc2(12);
return; // expected-warning{{Potential leak of memory pointed to by}}
}
void af1(void) {
int *p = my_malloc(12);
return; // expected-warning{{Potential leak of memory pointed to by}}
}
void af1_b(void) {
int *p = my_malloc(12);
} // expected-warning{{Potential leak of memory pointed to by}}
void af1_c(void) {
myglobalpointer = my_malloc(12); // no-warning
}
void af1_d(void) {
struct stuff mystuff;
mystuff.somefield = my_malloc(12);
} // expected-warning{{Potential leak of memory pointed to by}}
// Test that we can pass out allocated memory via pointer-to-pointer.
void af1_e(void **pp) {
*pp = my_malloc(42); // no-warning
}
void af1_f(struct stuff *somestuff) {
somestuff->somefield = my_malloc(12); // no-warning
}
// Allocating memory for a field via multiple indirections to our arguments is OK.
void af1_g(struct stuff **pps) {
*pps = my_malloc(sizeof(struct stuff)); // no-warning
(*pps)->somefield = my_malloc(42); // no-warning
}
void af2(void) {
int *p = my_malloc(12);
my_free(p);
free(p); // expected-warning{{Attempt to free released memory}}
}
void af2b(void) {
int *p = my_malloc(12);
free(p);
my_free(p); // expected-warning{{Attempt to free released memory}}
}
void af2c(void) {
int *p = my_malloc(12);
free(p);
my_hold(p); // expected-warning{{Attempt to free released memory}}
}
void af2d(void) {
int *p = my_malloc(12);
free(p);
my_hold2(0, 0, p); // expected-warning{{Attempt to free released memory}}
}
// No leak if malloc returns null.
void af2e(void) {
int *p = my_malloc(12);
if (!p)
return; // no-warning
free(p); // no-warning
}
// This case inflicts a possible double-free.
void af3(void) {
int *p = my_malloc(12);
my_hold(p);
free(p); // expected-warning{{Attempt to free non-owned memory}}
}
int * af4(void) {
int *p = my_malloc(12);
my_free(p);
return p; // expected-warning{{Use of memory after it is freed}}
}
// This case is (possibly) ok, be conservative
int * af5(void) {
int *p = my_malloc(12);
my_hold(p);
return p; // no-warning
}
// This case tests that storing malloc'ed memory to a static variable which is
// then returned is not leaked. In the absence of known contracts for functions
// or inter-procedural analysis, this is a conservative answer.
int *f3(void) {
static int *p = 0;
p = malloc(12);
return p; // no-warning
}
// This case tests that storing malloc'ed memory to a static global variable
// which is then returned is not leaked. In the absence of known contracts for
// functions or inter-procedural analysis, this is a conservative answer.
static int *p_f4 = 0;
int *f4(void) {
p_f4 = malloc(12);
return p_f4; // no-warning
}
int *f5(void) {
int *q = malloc(12);
q = realloc(q, 20);
return q; // no-warning
}
void f6(void) {
int *p = malloc(12);
if (!p)
return; // no-warning
else
free(p);
}
void f6_realloc(void) {
int *p = malloc(12);
if (!p)
return; // no-warning
else
realloc(p,0);
}
char *doit2(void);
void pr6069(void) {
char *buf = doit2();
free(buf);
}
void pr6293(void) {
free(0);
}
void f7(void) {
char *x = (char*) malloc(4);
free(x);
x[0] = 'a'; // expected-warning{{Use of memory after it is freed}}
}
void f7_realloc(void) {
char *x = (char*) malloc(4);
realloc(x,0);
x[0] = 'a'; // expected-warning{{Use of memory after it is freed}}
}
void PR6123(void) {
int *x = malloc(11); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}}
}
void PR7217(void) {
int *buf = malloc(2); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}}
buf[1] = 'c'; // not crash
}
void mallocCastToVoid(void) {
void *p = malloc(2);
const void *cp = p; // not crash
free(p);
}
void mallocCastToFP(void) {
void *p = malloc(2);
void (*fp)(void) = p; // not crash
free(p);
}
// This tests that malloc() buffers are undefined by default
char mallocGarbage (void) {
char *buf = malloc(2);
char result = buf[1]; // expected-warning{{undefined}}
free(buf);
return result;
}
// This tests that calloc() buffers need to be freed
void callocNoFree (void) {
char *buf = calloc(2,2);
return; // expected-warning{{Potential leak of memory pointed to by}}
}
// These test that calloc() buffers are zeroed by default
char callocZeroesGood (void) {
char *buf = calloc(2,2);
char result = buf[3]; // no-warning
if (buf[1] == 0) {
free(buf);
}
return result; // no-warning
}
char callocZeroesBad (void) {
char *buf = calloc(2,2);
char result = buf[3]; // no-warning
if (buf[1] != 0) {
free(buf); // expected-warning{{never executed}}
}
return result; // expected-warning{{Potential leak of memory pointed to by}}
}
void testMultipleFreeAnnotations(void) {
int *p = malloc(12);
int *q = malloc(12);
my_freeBoth(p, q);
}
void testNoUninitAttr(void) {
int *p = user_malloc(sizeof(int));
int read = p[0]; // no-warning
clang_analyzer_dump(p[0]); // expected-warning{{Unknown}}
user_free(p);
}