llvm-project/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
Ulrich Weigand deed1b0664 [SystemZ] Fix address parsing in HLASM mode
When parsing an address that contains only a single register
for an instruction that actually has both a base and an index
register, the parsed register is treated as base by AsmParser.

This is correct when emulating the GNU assembler, but not when
emulating HLASM, as the latter treat the register as index in
this case.
2024-12-03 19:34:10 +01:00

1732 lines
59 KiB
C++

//===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/SystemZGNUInstPrinter.h"
#include "MCTargetDesc/SystemZMCAsmInfo.h"
#include "MCTargetDesc/SystemZMCTargetDesc.h"
#include "SystemZTargetStreamer.h"
#include "TargetInfo/SystemZTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCAsmParserExtension.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SMLoc.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <memory>
#include <string>
using namespace llvm;
// Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol
// is true any MCExpr is accepted (address displacement).
static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue,
bool AllowSymbol = false) {
if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
int64_t Value = CE->getValue();
return Value >= MinValue && Value <= MaxValue;
}
return AllowSymbol;
}
namespace {
enum RegisterKind {
GR32Reg,
GRH32Reg,
GR64Reg,
GR128Reg,
FP32Reg,
FP64Reg,
FP128Reg,
VR32Reg,
VR64Reg,
VR128Reg,
AR32Reg,
CR64Reg,
};
enum MemoryKind {
BDMem,
BDXMem,
BDLMem,
BDRMem,
BDVMem
};
class SystemZOperand : public MCParsedAsmOperand {
private:
enum OperandKind {
KindInvalid,
KindToken,
KindReg,
KindImm,
KindImmTLS,
KindMem
};
OperandKind Kind;
SMLoc StartLoc, EndLoc;
// A string of length Length, starting at Data.
struct TokenOp {
const char *Data;
unsigned Length;
};
// LLVM register Num, which has kind Kind. In some ways it might be
// easier for this class to have a register bank (general, floating-point
// or access) and a raw register number (0-15). This would postpone the
// interpretation of the operand to the add*() methods and avoid the need
// for context-dependent parsing. However, we do things the current way
// because of the virtual getReg() method, which needs to distinguish
// between (say) %r0 used as a single register and %r0 used as a pair.
// Context-dependent parsing can also give us slightly better error
// messages when invalid pairs like %r1 are used.
struct RegOp {
RegisterKind Kind;
unsigned Num;
};
// Base + Disp + Index, where Base and Index are LLVM registers or 0.
// MemKind says what type of memory this is and RegKind says what type
// the base register has (GR32Reg or GR64Reg). Length is the operand
// length for D(L,B)-style operands, otherwise it is null.
struct MemOp {
unsigned Base : 12;
unsigned Index : 12;
unsigned MemKind : 4;
unsigned RegKind : 4;
const MCExpr *Disp;
union {
const MCExpr *Imm;
unsigned Reg;
} Length;
};
// Imm is an immediate operand, and Sym is an optional TLS symbol
// for use with a __tls_get_offset marker relocation.
struct ImmTLSOp {
const MCExpr *Imm;
const MCExpr *Sym;
};
union {
TokenOp Token;
RegOp Reg;
const MCExpr *Imm;
ImmTLSOp ImmTLS;
MemOp Mem;
};
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible. Null MCExpr = 0.
if (!Expr)
Inst.addOperand(MCOperand::createImm(0));
else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
public:
SystemZOperand(OperandKind Kind, SMLoc StartLoc, SMLoc EndLoc)
: Kind(Kind), StartLoc(StartLoc), EndLoc(EndLoc) {}
// Create particular kinds of operand.
static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
SMLoc EndLoc) {
return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
}
static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc);
Op->Token.Data = Str.data();
Op->Token.Length = Str.size();
return Op;
}
static std::unique_ptr<SystemZOperand>
createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
Op->Reg.Kind = Kind;
Op->Reg.Num = Num;
return Op;
}
static std::unique_ptr<SystemZOperand>
createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
Op->Imm = Expr;
return Op;
}
static std::unique_ptr<SystemZOperand>
createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
Op->Mem.MemKind = MemKind;
Op->Mem.RegKind = RegKind;
Op->Mem.Base = Base;
Op->Mem.Index = Index;
Op->Mem.Disp = Disp;
if (MemKind == BDLMem)
Op->Mem.Length.Imm = LengthImm;
if (MemKind == BDRMem)
Op->Mem.Length.Reg = LengthReg;
return Op;
}
static std::unique_ptr<SystemZOperand>
createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
SMLoc StartLoc, SMLoc EndLoc) {
auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
Op->ImmTLS.Imm = Imm;
Op->ImmTLS.Sym = Sym;
return Op;
}
// Token operands
bool isToken() const override {
return Kind == KindToken;
}
StringRef getToken() const {
assert(Kind == KindToken && "Not a token");
return StringRef(Token.Data, Token.Length);
}
// Register operands.
bool isReg() const override {
return Kind == KindReg;
}
bool isReg(RegisterKind RegKind) const {
return Kind == KindReg && Reg.Kind == RegKind;
}
MCRegister getReg() const override {
assert(Kind == KindReg && "Not a register");
return Reg.Num;
}
// Immediate operands.
bool isImm() const override {
return Kind == KindImm;
}
bool isImm(int64_t MinValue, int64_t MaxValue) const {
return Kind == KindImm && inRange(Imm, MinValue, MaxValue, true);
}
const MCExpr *getImm() const {
assert(Kind == KindImm && "Not an immediate");
return Imm;
}
// Immediate operands with optional TLS symbol.
bool isImmTLS() const {
return Kind == KindImmTLS;
}
const ImmTLSOp getImmTLS() const {
assert(Kind == KindImmTLS && "Not a TLS immediate");
return ImmTLS;
}
// Memory operands.
bool isMem() const override {
return Kind == KindMem;
}
bool isMem(MemoryKind MemKind) const {
return (Kind == KindMem &&
(Mem.MemKind == MemKind ||
// A BDMem can be treated as a BDXMem in which the index
// register field is 0.
(Mem.MemKind == BDMem && MemKind == BDXMem)));
}
bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
return isMem(MemKind) && Mem.RegKind == RegKind;
}
bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff, true);
}
bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287, true);
}
bool isMemDisp12Len4(RegisterKind RegKind) const {
return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10);
}
bool isMemDisp12Len8(RegisterKind RegKind) const {
return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
}
const MemOp& getMem() const {
assert(Kind == KindMem && "Not a Mem operand");
return Mem;
}
// Override MCParsedAsmOperand.
SMLoc getStartLoc() const override { return StartLoc; }
SMLoc getEndLoc() const override { return EndLoc; }
void print(raw_ostream &OS) const override;
/// getLocRange - Get the range between the first and last token of this
/// operand.
SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
// Used by the TableGen code to add particular types of operand
// to an instruction.
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands");
addExpr(Inst, getImm());
}
void addBDAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands");
assert(isMem(BDMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
}
void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands");
assert(isMem(BDXMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
Inst.addOperand(MCOperand::createReg(Mem.Index));
}
void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands");
assert(isMem(BDLMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
addExpr(Inst, Mem.Length.Imm);
}
void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands");
assert(isMem(BDRMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
}
void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands");
assert(isMem(BDVMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
Inst.addOperand(MCOperand::createReg(Mem.Index));
}
void addImmTLSOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands");
assert(Kind == KindImmTLS && "Invalid operand type");
addExpr(Inst, ImmTLS.Imm);
if (ImmTLS.Sym)
addExpr(Inst, ImmTLS.Sym);
}
// Used by the TableGen code to check for particular operand types.
bool isGR32() const { return isReg(GR32Reg); }
bool isGRH32() const { return isReg(GRH32Reg); }
bool isGRX32() const { return false; }
bool isGR64() const { return isReg(GR64Reg); }
bool isGR128() const { return isReg(GR128Reg); }
bool isADDR32() const { return isReg(GR32Reg); }
bool isADDR64() const { return isReg(GR64Reg); }
bool isADDR128() const { return false; }
bool isFP32() const { return isReg(FP32Reg); }
bool isFP64() const { return isReg(FP64Reg); }
bool isFP128() const { return isReg(FP128Reg); }
bool isVR32() const { return isReg(VR32Reg); }
bool isVR64() const { return isReg(VR64Reg); }
bool isVF128() const { return false; }
bool isVR128() const { return isReg(VR128Reg); }
bool isAR32() const { return isReg(AR32Reg); }
bool isCR64() const { return isReg(CR64Reg); }
bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); }
bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); }
bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); }
bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); }
bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); }
bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); }
bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); }
bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); }
bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); }
bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); }
bool isU1Imm() const { return isImm(0, 1); }
bool isU2Imm() const { return isImm(0, 3); }
bool isU3Imm() const { return isImm(0, 7); }
bool isU4Imm() const { return isImm(0, 15); }
bool isU8Imm() const { return isImm(0, 255); }
bool isS8Imm() const { return isImm(-128, 127); }
bool isU12Imm() const { return isImm(0, 4095); }
bool isU16Imm() const { return isImm(0, 65535); }
bool isS16Imm() const { return isImm(-32768, 32767); }
bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
};
class SystemZAsmParser : public MCTargetAsmParser {
#define GET_ASSEMBLER_HEADER
#include "SystemZGenAsmMatcher.inc"
private:
MCAsmParser &Parser;
enum RegisterGroup {
RegGR,
RegFP,
RegV,
RegAR,
RegCR
};
struct Register {
RegisterGroup Group;
unsigned Num;
SMLoc StartLoc, EndLoc;
};
SystemZTargetStreamer &getTargetStreamer() {
assert(getParser().getStreamer().getTargetStreamer() &&
"do not have a target streamer");
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<SystemZTargetStreamer &>(TS);
}
bool parseRegister(Register &Reg, bool RequirePercent,
bool RestoreOnFailure = false);
bool parseIntegerRegister(Register &Reg, RegisterGroup Group);
ParseStatus parseRegister(OperandVector &Operands, RegisterKind Kind);
ParseStatus parseAnyRegister(OperandVector &Operands);
bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2,
Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length,
bool HasLength = false, bool HasVectorIndex = false);
bool parseAddressRegister(Register &Reg);
bool ParseDirectiveInsn(SMLoc L);
bool ParseDirectiveMachine(SMLoc L);
bool ParseGNUAttribute(SMLoc L);
ParseStatus parseAddress(OperandVector &Operands, MemoryKind MemKind,
RegisterKind RegKind);
ParseStatus parsePCRel(OperandVector &Operands, int64_t MinVal,
int64_t MaxVal, bool AllowTLS);
bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
// Both the hlasm and gnu variants still rely on the basic gnu asm
// format with respect to inputs, clobbers, outputs etc.
//
// However, calling the overriden getAssemblerDialect() method in
// AsmParser is problematic. It either returns the AssemblerDialect field
// in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is
// unset, otherwise it returns the private AssemblerDialect field in
// AsmParser.
//
// The problematic part is because, we forcibly set the inline asm dialect
// in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query
// to the overriden getAssemblerDialect function in AsmParser.cpp, will
// not return the assembler dialect set in the respective MCAsmInfo instance.
//
// For this purpose, we explicitly query the SystemZMCAsmInfo instance
// here, to get the "correct" assembler dialect, and use it in various
// functions.
unsigned getMAIAssemblerDialect() {
return Parser.getContext().getAsmInfo()->getAssemblerDialect();
}
// An alphabetic character in HLASM is a letter from 'A' through 'Z',
// or from 'a' through 'z', or '$', '_','#', or '@'.
inline bool isHLASMAlpha(char C) {
return isAlpha(C) || llvm::is_contained("_@#$", C);
}
// A digit in HLASM is a number from 0 to 9.
inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); }
// Are we parsing using the AD_HLASM dialect?
inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; }
// Are we parsing using the AD_GNU dialect?
inline bool isParsingGNU() { return getMAIAssemblerDialect() == AD_GNU; }
public:
SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
const MCInstrInfo &MII,
const MCTargetOptions &Options)
: MCTargetAsmParser(Options, sti, MII), Parser(parser) {
MCAsmParserExtension::Initialize(Parser);
// Alias the .word directive to .short.
parser.addAliasForDirective(".word", ".short");
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
}
// Override MCTargetAsmParser.
ParseStatus parseDirective(AsmToken DirectiveID) override;
bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
bool RequirePercent, bool RestoreOnFailure);
ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
SMLoc &EndLoc) override;
bool parseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
bool isLabel(AsmToken &Token) override;
// Used by the TableGen code to parse particular operand types.
ParseStatus parseGR32(OperandVector &Operands) {
return parseRegister(Operands, GR32Reg);
}
ParseStatus parseGRH32(OperandVector &Operands) {
return parseRegister(Operands, GRH32Reg);
}
ParseStatus parseGRX32(OperandVector &Operands) {
llvm_unreachable("GRX32 should only be used for pseudo instructions");
}
ParseStatus parseGR64(OperandVector &Operands) {
return parseRegister(Operands, GR64Reg);
}
ParseStatus parseGR128(OperandVector &Operands) {
return parseRegister(Operands, GR128Reg);
}
ParseStatus parseADDR32(OperandVector &Operands) {
// For the AsmParser, we will accept %r0 for ADDR32 as well.
return parseRegister(Operands, GR32Reg);
}
ParseStatus parseADDR64(OperandVector &Operands) {
// For the AsmParser, we will accept %r0 for ADDR64 as well.
return parseRegister(Operands, GR64Reg);
}
ParseStatus parseADDR128(OperandVector &Operands) {
llvm_unreachable("Shouldn't be used as an operand");
}
ParseStatus parseFP32(OperandVector &Operands) {
return parseRegister(Operands, FP32Reg);
}
ParseStatus parseFP64(OperandVector &Operands) {
return parseRegister(Operands, FP64Reg);
}
ParseStatus parseFP128(OperandVector &Operands) {
return parseRegister(Operands, FP128Reg);
}
ParseStatus parseVR32(OperandVector &Operands) {
return parseRegister(Operands, VR32Reg);
}
ParseStatus parseVR64(OperandVector &Operands) {
return parseRegister(Operands, VR64Reg);
}
ParseStatus parseVF128(OperandVector &Operands) {
llvm_unreachable("Shouldn't be used as an operand");
}
ParseStatus parseVR128(OperandVector &Operands) {
return parseRegister(Operands, VR128Reg);
}
ParseStatus parseAR32(OperandVector &Operands) {
return parseRegister(Operands, AR32Reg);
}
ParseStatus parseCR64(OperandVector &Operands) {
return parseRegister(Operands, CR64Reg);
}
ParseStatus parseAnyReg(OperandVector &Operands) {
return parseAnyRegister(Operands);
}
ParseStatus parseBDAddr32(OperandVector &Operands) {
return parseAddress(Operands, BDMem, GR32Reg);
}
ParseStatus parseBDAddr64(OperandVector &Operands) {
return parseAddress(Operands, BDMem, GR64Reg);
}
ParseStatus parseBDXAddr64(OperandVector &Operands) {
return parseAddress(Operands, BDXMem, GR64Reg);
}
ParseStatus parseBDLAddr64(OperandVector &Operands) {
return parseAddress(Operands, BDLMem, GR64Reg);
}
ParseStatus parseBDRAddr64(OperandVector &Operands) {
return parseAddress(Operands, BDRMem, GR64Reg);
}
ParseStatus parseBDVAddr64(OperandVector &Operands) {
return parseAddress(Operands, BDVMem, GR64Reg);
}
ParseStatus parsePCRel12(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false);
}
ParseStatus parsePCRel16(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
}
ParseStatus parsePCRel24(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false);
}
ParseStatus parsePCRel32(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
}
ParseStatus parsePCRelTLS16(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
}
ParseStatus parsePCRelTLS32(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
}
};
} // end anonymous namespace
#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#define GET_MNEMONIC_SPELL_CHECKER
#include "SystemZGenAsmMatcher.inc"
// Used for the .insn directives; contains information needed to parse the
// operands in the directive.
struct InsnMatchEntry {
StringRef Format;
uint64_t Opcode;
int32_t NumOperands;
MatchClassKind OperandKinds[7];
};
// For equal_range comparison.
struct CompareInsn {
bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
return LHS.Format < RHS;
}
bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
return LHS < RHS.Format;
}
bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
return LHS.Format < RHS.Format;
}
};
// Table initializing information for parsing the .insn directive.
static struct InsnMatchEntry InsnMatchTable[] = {
/* Format, Opcode, NumOperands, OperandKinds */
{ "e", SystemZ::InsnE, 1,
{ MCK_U16Imm } },
{ "ri", SystemZ::InsnRI, 3,
{ MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
{ "rie", SystemZ::InsnRIE, 4,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
{ "ril", SystemZ::InsnRIL, 3,
{ MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
{ "rilu", SystemZ::InsnRILU, 3,
{ MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
{ "ris", SystemZ::InsnRIS, 5,
{ MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
{ "rr", SystemZ::InsnRR, 3,
{ MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
{ "rre", SystemZ::InsnRRE, 3,
{ MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
{ "rrf", SystemZ::InsnRRF, 5,
{ MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
{ "rrs", SystemZ::InsnRRS, 5,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
{ "rs", SystemZ::InsnRS, 4,
{ MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
{ "rse", SystemZ::InsnRSE, 4,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
{ "rsi", SystemZ::InsnRSI, 4,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
{ "rsy", SystemZ::InsnRSY, 4,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
{ "rx", SystemZ::InsnRX, 3,
{ MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
{ "rxe", SystemZ::InsnRXE, 3,
{ MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
{ "rxf", SystemZ::InsnRXF, 4,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
{ "rxy", SystemZ::InsnRXY, 3,
{ MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
{ "s", SystemZ::InsnS, 2,
{ MCK_U32Imm, MCK_BDAddr64Disp12 } },
{ "si", SystemZ::InsnSI, 3,
{ MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
{ "sil", SystemZ::InsnSIL, 3,
{ MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
{ "siy", SystemZ::InsnSIY, 3,
{ MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
{ "ss", SystemZ::InsnSS, 4,
{ MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
{ "sse", SystemZ::InsnSSE, 3,
{ MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
{ "ssf", SystemZ::InsnSSF, 4,
{ MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
{ "vri", SystemZ::InsnVRI, 6,
{ MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } },
{ "vrr", SystemZ::InsnVRR, 7,
{ MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm,
MCK_U4Imm } },
{ "vrs", SystemZ::InsnVRS, 5,
{ MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } },
{ "vrv", SystemZ::InsnVRV, 4,
{ MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } },
{ "vrx", SystemZ::InsnVRX, 4,
{ MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } },
{ "vsi", SystemZ::InsnVSI, 4,
{ MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } }
};
static void printMCExpr(const MCExpr *E, raw_ostream &OS) {
if (!E)
return;
if (auto *CE = dyn_cast<MCConstantExpr>(E))
OS << *CE;
else if (auto *UE = dyn_cast<MCUnaryExpr>(E))
OS << *UE;
else if (auto *BE = dyn_cast<MCBinaryExpr>(E))
OS << *BE;
else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E))
OS << *SRE;
else
OS << *E;
}
void SystemZOperand::print(raw_ostream &OS) const {
switch (Kind) {
case KindToken:
OS << "Token:" << getToken();
break;
case KindReg:
OS << "Reg:" << SystemZGNUInstPrinter::getRegisterName(getReg());
break;
case KindImm:
OS << "Imm:";
printMCExpr(getImm(), OS);
break;
case KindImmTLS:
OS << "ImmTLS:";
printMCExpr(getImmTLS().Imm, OS);
if (getImmTLS().Sym) {
OS << ", ";
printMCExpr(getImmTLS().Sym, OS);
}
break;
case KindMem: {
const MemOp &Op = getMem();
OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp);
if (Op.Base) {
OS << "(";
if (Op.MemKind == BDLMem)
OS << *cast<MCConstantExpr>(Op.Length.Imm) << ",";
else if (Op.MemKind == BDRMem)
OS << SystemZGNUInstPrinter::getRegisterName(Op.Length.Reg) << ",";
if (Op.Index)
OS << SystemZGNUInstPrinter::getRegisterName(Op.Index) << ",";
OS << SystemZGNUInstPrinter::getRegisterName(Op.Base);
OS << ")";
}
break;
}
case KindInvalid:
break;
}
}
// Parse one register of the form %<prefix><number>.
bool SystemZAsmParser::parseRegister(Register &Reg, bool RequirePercent,
bool RestoreOnFailure) {
const AsmToken &PercentTok = Parser.getTok();
bool HasPercent = PercentTok.is(AsmToken::Percent);
Reg.StartLoc = PercentTok.getLoc();
if (RequirePercent && PercentTok.isNot(AsmToken::Percent))
return Error(PercentTok.getLoc(), "register expected");
if (HasPercent) {
Parser.Lex(); // Eat percent token.
}
// Expect a register name.
if (Parser.getTok().isNot(AsmToken::Identifier)) {
if (RestoreOnFailure && HasPercent)
getLexer().UnLex(PercentTok);
return Error(Reg.StartLoc,
HasPercent ? "invalid register" : "register expected");
}
// Check that there's a prefix.
StringRef Name = Parser.getTok().getString();
if (Name.size() < 2) {
if (RestoreOnFailure && HasPercent)
getLexer().UnLex(PercentTok);
return Error(Reg.StartLoc, "invalid register");
}
char Prefix = Name[0];
// Treat the rest of the register name as a register number.
if (Name.substr(1).getAsInteger(10, Reg.Num)) {
if (RestoreOnFailure && HasPercent)
getLexer().UnLex(PercentTok);
return Error(Reg.StartLoc, "invalid register");
}
// Look for valid combinations of prefix and number.
if (Prefix == 'r' && Reg.Num < 16)
Reg.Group = RegGR;
else if (Prefix == 'f' && Reg.Num < 16)
Reg.Group = RegFP;
else if (Prefix == 'v' && Reg.Num < 32)
Reg.Group = RegV;
else if (Prefix == 'a' && Reg.Num < 16)
Reg.Group = RegAR;
else if (Prefix == 'c' && Reg.Num < 16)
Reg.Group = RegCR;
else {
if (RestoreOnFailure && HasPercent)
getLexer().UnLex(PercentTok);
return Error(Reg.StartLoc, "invalid register");
}
Reg.EndLoc = Parser.getTok().getLoc();
Parser.Lex();
return false;
}
// Parse a register of kind Kind and add it to Operands.
ParseStatus SystemZAsmParser::parseRegister(OperandVector &Operands,
RegisterKind Kind) {
Register Reg;
RegisterGroup Group;
switch (Kind) {
case GR32Reg:
case GRH32Reg:
case GR64Reg:
case GR128Reg:
Group = RegGR;
break;
case FP32Reg:
case FP64Reg:
case FP128Reg:
Group = RegFP;
break;
case VR32Reg:
case VR64Reg:
case VR128Reg:
Group = RegV;
break;
case AR32Reg:
Group = RegAR;
break;
case CR64Reg:
Group = RegCR;
break;
}
// Handle register names of the form %<prefix><number>
if (isParsingGNU() && Parser.getTok().is(AsmToken::Percent)) {
if (parseRegister(Reg, /*RequirePercent=*/true))
return ParseStatus::Failure;
// Check the parsed register group "Reg.Group" with the expected "Group"
// Have to error out if user specified wrong prefix.
switch (Group) {
case RegGR:
case RegFP:
case RegAR:
case RegCR:
if (Group != Reg.Group)
return Error(Reg.StartLoc, "invalid operand for instruction");
break;
case RegV:
if (Reg.Group != RegV && Reg.Group != RegFP)
return Error(Reg.StartLoc, "invalid operand for instruction");
break;
}
} else if (Parser.getTok().is(AsmToken::Integer)) {
if (parseIntegerRegister(Reg, Group))
return ParseStatus::Failure;
}
// Otherwise we didn't match a register operand.
else
return ParseStatus::NoMatch;
// Determine the LLVM register number according to Kind.
const unsigned *Regs;
switch (Kind) {
case GR32Reg: Regs = SystemZMC::GR32Regs; break;
case GRH32Reg: Regs = SystemZMC::GRH32Regs; break;
case GR64Reg: Regs = SystemZMC::GR64Regs; break;
case GR128Reg: Regs = SystemZMC::GR128Regs; break;
case FP32Reg: Regs = SystemZMC::FP32Regs; break;
case FP64Reg: Regs = SystemZMC::FP64Regs; break;
case FP128Reg: Regs = SystemZMC::FP128Regs; break;
case VR32Reg: Regs = SystemZMC::VR32Regs; break;
case VR64Reg: Regs = SystemZMC::VR64Regs; break;
case VR128Reg: Regs = SystemZMC::VR128Regs; break;
case AR32Reg: Regs = SystemZMC::AR32Regs; break;
case CR64Reg: Regs = SystemZMC::CR64Regs; break;
}
if (Regs[Reg.Num] == 0)
return Error(Reg.StartLoc, "invalid register pair");
Operands.push_back(
SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc));
return ParseStatus::Success;
}
// Parse any type of register (including integers) and add it to Operands.
ParseStatus SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
SMLoc StartLoc = Parser.getTok().getLoc();
// Handle integer values.
if (Parser.getTok().is(AsmToken::Integer)) {
const MCExpr *Register;
if (Parser.parseExpression(Register))
return ParseStatus::Failure;
if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
int64_t Value = CE->getValue();
if (Value < 0 || Value > 15)
return Error(StartLoc, "invalid register");
}
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
}
else {
if (isParsingHLASM())
return ParseStatus::NoMatch;
Register Reg;
if (parseRegister(Reg, /*RequirePercent=*/true))
return ParseStatus::Failure;
if (Reg.Num > 15)
return Error(StartLoc, "invalid register");
// Map to the correct register kind.
RegisterKind Kind;
unsigned RegNo;
if (Reg.Group == RegGR) {
Kind = GR64Reg;
RegNo = SystemZMC::GR64Regs[Reg.Num];
}
else if (Reg.Group == RegFP) {
Kind = FP64Reg;
RegNo = SystemZMC::FP64Regs[Reg.Num];
}
else if (Reg.Group == RegV) {
Kind = VR128Reg;
RegNo = SystemZMC::VR128Regs[Reg.Num];
}
else if (Reg.Group == RegAR) {
Kind = AR32Reg;
RegNo = SystemZMC::AR32Regs[Reg.Num];
}
else if (Reg.Group == RegCR) {
Kind = CR64Reg;
RegNo = SystemZMC::CR64Regs[Reg.Num];
}
else {
return ParseStatus::Failure;
}
Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
Reg.StartLoc, Reg.EndLoc));
}
return ParseStatus::Success;
}
bool SystemZAsmParser::parseIntegerRegister(Register &Reg,
RegisterGroup Group) {
Reg.StartLoc = Parser.getTok().getLoc();
// We have an integer token
const MCExpr *Register;
if (Parser.parseExpression(Register))
return true;
const auto *CE = dyn_cast<MCConstantExpr>(Register);
if (!CE)
return true;
int64_t MaxRegNum = (Group == RegV) ? 31 : 15;
int64_t Value = CE->getValue();
if (Value < 0 || Value > MaxRegNum) {
Error(Parser.getTok().getLoc(), "invalid register");
return true;
}
// Assign the Register Number
Reg.Num = (unsigned)Value;
Reg.Group = Group;
Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
// At this point, successfully parsed an integer register.
return false;
}
// Parse a memory operand into Reg1, Reg2, Disp, and Length.
bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
bool &HaveReg2, Register &Reg2,
const MCExpr *&Disp, const MCExpr *&Length,
bool HasLength, bool HasVectorIndex) {
// Parse the displacement, which must always be present.
if (getParser().parseExpression(Disp))
return true;
// Parse the optional base and index.
HaveReg1 = false;
HaveReg2 = false;
Length = nullptr;
// If we have a scenario as below:
// vgef %v0, 0(0), 0
// This is an example of a "BDVMem" instruction type.
//
// So when we parse this as an integer register, the register group
// needs to be tied to "RegV". Usually when the prefix is passed in
// as %<prefix><reg-number> its easy to check which group it should belong to
// However, if we're passing in just the integer there's no real way to
// "check" what register group it should belong to.
//
// When the user passes in the register as an integer, the user assumes that
// the compiler is responsible for substituting it as the right kind of
// register. Whereas, when the user specifies a "prefix", the onus is on
// the user to make sure they pass in the right kind of register.
//
// The restriction only applies to the first Register (i.e. Reg1). Reg2 is
// always a general register. Reg1 should be of group RegV if "HasVectorIndex"
// (i.e. insn is of type BDVMem) is true.
RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR;
if (getLexer().is(AsmToken::LParen)) {
Parser.Lex();
if (isParsingGNU() && getLexer().is(AsmToken::Percent)) {
// Parse the first register.
HaveReg1 = true;
if (parseRegister(Reg1, /*RequirePercent=*/true))
return true;
}
// So if we have an integer as the first token in ([tok1], ..), it could:
// 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of
// instructions)
// 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions)
else if (getLexer().is(AsmToken::Integer)) {
if (HasLength) {
// Instruction has a "Length" field, safe to parse the first token as
// the "Length" field
if (getParser().parseExpression(Length))
return true;
} else {
// Otherwise, if the instruction has no "Length" field, parse the
// token as a "Register". We don't have to worry about whether the
// instruction is invalid here, because the caller will take care of
// error reporting.
HaveReg1 = true;
if (parseIntegerRegister(Reg1, RegGroup))
return true;
}
} else {
// If its not an integer or a percent token, then if the instruction
// is reported to have a "Length" then, parse it as "Length".
if (HasLength) {
if (getParser().parseExpression(Length))
return true;
}
}
// Check whether there's a second register.
if (getLexer().is(AsmToken::Comma)) {
Parser.Lex();
HaveReg2 = true;
if (getLexer().is(AsmToken::Integer)) {
if (parseIntegerRegister(Reg2, RegGR))
return true;
} else if (isParsingGNU()) {
if (Parser.getTok().is(AsmToken::Percent)) {
if (parseRegister(Reg2, /*RequirePercent=*/true))
return true;
} else {
// GAS allows ",)" to indicate a missing base register.
Reg2.Num = 0;
Reg2.Group = RegGR;
Reg2.StartLoc = Reg2.EndLoc = Parser.getTok().getLoc();
}
}
}
// Consume the closing bracket.
if (getLexer().isNot(AsmToken::RParen))
return Error(Parser.getTok().getLoc(), "unexpected token in address");
Parser.Lex();
}
return false;
}
// Verify that Reg is a valid address register (base or index).
bool
SystemZAsmParser::parseAddressRegister(Register &Reg) {
if (Reg.Group == RegV) {
Error(Reg.StartLoc, "invalid use of vector addressing");
return true;
}
if (Reg.Group != RegGR) {
Error(Reg.StartLoc, "invalid address register");
return true;
}
return false;
}
// Parse a memory operand and add it to Operands. The other arguments
// are as above.
ParseStatus SystemZAsmParser::parseAddress(OperandVector &Operands,
MemoryKind MemKind,
RegisterKind RegKind) {
SMLoc StartLoc = Parser.getTok().getLoc();
unsigned Base = 0, Index = 0, LengthReg = 0;
Register Reg1, Reg2;
bool HaveReg1, HaveReg2;
const MCExpr *Disp;
const MCExpr *Length;
bool HasLength = (MemKind == BDLMem) ? true : false;
bool HasVectorIndex = (MemKind == BDVMem) ? true : false;
if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength,
HasVectorIndex))
return ParseStatus::Failure;
const unsigned *Regs;
switch (RegKind) {
case GR32Reg: Regs = SystemZMC::GR32Regs; break;
case GR64Reg: Regs = SystemZMC::GR64Regs; break;
default: llvm_unreachable("invalid RegKind");
}
switch (MemKind) {
case BDMem:
// If we have Reg1, it must be an address register.
if (HaveReg1) {
if (parseAddressRegister(Reg1))
return ParseStatus::Failure;
Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num];
}
// There must be no Reg2.
if (HaveReg2)
return Error(StartLoc, "invalid use of indexed addressing");
break;
case BDXMem:
// If we have Reg1, it must be an address register.
if (HaveReg1) {
if (parseAddressRegister(Reg1))
return ParseStatus::Failure;
// If there are two registers, the first one is the index and the
// second is the base. If there is only a single register, it is
// used as base with GAS and as index with HLASM.
if (HaveReg2 || isParsingHLASM())
Index = Reg1.Num == 0 ? 0 : Regs[Reg1.Num];
else
Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num];
}
// If we have Reg2, it must be an address register.
if (HaveReg2) {
if (parseAddressRegister(Reg2))
return ParseStatus::Failure;
Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num];
}
break;
case BDLMem:
// If we have Reg2, it must be an address register.
if (HaveReg2) {
if (parseAddressRegister(Reg2))
return ParseStatus::Failure;
Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num];
}
// We cannot support base+index addressing.
if (HaveReg1 && HaveReg2)
return Error(StartLoc, "invalid use of indexed addressing");
// We must have a length.
if (!Length)
return Error(StartLoc, "missing length in address");
break;
case BDRMem:
// We must have Reg1, and it must be a GPR.
if (!HaveReg1 || Reg1.Group != RegGR)
return Error(StartLoc, "invalid operand for instruction");
LengthReg = SystemZMC::GR64Regs[Reg1.Num];
// If we have Reg2, it must be an address register.
if (HaveReg2) {
if (parseAddressRegister(Reg2))
return ParseStatus::Failure;
Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num];
}
break;
case BDVMem:
// We must have Reg1, and it must be a vector register.
if (!HaveReg1 || Reg1.Group != RegV)
return Error(StartLoc, "vector index required in address");
Index = SystemZMC::VR128Regs[Reg1.Num];
// In GAS mode, we must have Reg2, since a single register would be
// interpreted as base register, which cannot be a vector register.
if (isParsingGNU() && !HaveReg2)
return Error(Reg1.StartLoc, "invalid use of vector addressing");
// If we have Reg2, it must be an address register.
if (HaveReg2) {
if (parseAddressRegister(Reg2))
return ParseStatus::Failure;
Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num];
}
break;
}
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
Index, Length, LengthReg,
StartLoc, EndLoc));
return ParseStatus::Success;
}
ParseStatus SystemZAsmParser::parseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".insn")
return ParseDirectiveInsn(DirectiveID.getLoc());
if (IDVal == ".machine")
return ParseDirectiveMachine(DirectiveID.getLoc());
if (IDVal.starts_with(".gnu_attribute"))
return ParseGNUAttribute(DirectiveID.getLoc());
return ParseStatus::NoMatch;
}
/// ParseDirectiveInsn
/// ::= .insn [ format, encoding, (operands (, operands)*) ]
bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
MCAsmParser &Parser = getParser();
// Expect instruction format as identifier.
StringRef Format;
SMLoc ErrorLoc = Parser.getTok().getLoc();
if (Parser.parseIdentifier(Format))
return Error(ErrorLoc, "expected instruction format");
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
// Find entry for this format in InsnMatchTable.
auto EntryRange =
std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
Format, CompareInsn());
// If first == second, couldn't find a match in the table.
if (EntryRange.first == EntryRange.second)
return Error(ErrorLoc, "unrecognized format");
struct InsnMatchEntry *Entry = EntryRange.first;
// Format should match from equal_range.
assert(Entry->Format == Format);
// Parse the following operands using the table's information.
for (int I = 0; I < Entry->NumOperands; I++) {
MatchClassKind Kind = Entry->OperandKinds[I];
SMLoc StartLoc = Parser.getTok().getLoc();
// Always expect commas as separators for operands.
if (getLexer().isNot(AsmToken::Comma))
return Error(StartLoc, "unexpected token in directive");
Lex();
// Parse operands.
ParseStatus ResTy;
if (Kind == MCK_AnyReg)
ResTy = parseAnyReg(Operands);
else if (Kind == MCK_VR128)
ResTy = parseVR128(Operands);
else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
ResTy = parseBDXAddr64(Operands);
else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
ResTy = parseBDAddr64(Operands);
else if (Kind == MCK_BDVAddr64Disp12)
ResTy = parseBDVAddr64(Operands);
else if (Kind == MCK_PCRel32)
ResTy = parsePCRel32(Operands);
else if (Kind == MCK_PCRel16)
ResTy = parsePCRel16(Operands);
else {
// Only remaining operand kind is an immediate.
const MCExpr *Expr;
SMLoc StartLoc = Parser.getTok().getLoc();
// Expect immediate expression.
if (Parser.parseExpression(Expr))
return Error(StartLoc, "unexpected token in directive");
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
ResTy = ParseStatus::Success;
}
if (!ResTy.isSuccess())
return true;
}
// Build the instruction with the parsed operands.
MCInst Inst = MCInstBuilder(Entry->Opcode);
for (size_t I = 0; I < Operands.size(); I++) {
MCParsedAsmOperand &Operand = *Operands[I];
MatchClassKind Kind = Entry->OperandKinds[I];
// Verify operand.
unsigned Res = validateOperandClass(Operand, Kind);
if (Res != Match_Success)
return Error(Operand.getStartLoc(), "unexpected operand type");
// Add operands to instruction.
SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
if (ZOperand.isReg())
ZOperand.addRegOperands(Inst, 1);
else if (ZOperand.isMem(BDMem))
ZOperand.addBDAddrOperands(Inst, 2);
else if (ZOperand.isMem(BDXMem))
ZOperand.addBDXAddrOperands(Inst, 3);
else if (ZOperand.isMem(BDVMem))
ZOperand.addBDVAddrOperands(Inst, 3);
else if (ZOperand.isImm())
ZOperand.addImmOperands(Inst, 1);
else
llvm_unreachable("unexpected operand type");
}
// Emit as a regular instruction.
Parser.getStreamer().emitInstruction(Inst, getSTI());
return false;
}
/// ParseDirectiveMachine
/// ::= .machine [ mcpu ]
bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) {
MCAsmParser &Parser = getParser();
if (Parser.getTok().isNot(AsmToken::Identifier) &&
Parser.getTok().isNot(AsmToken::String))
return TokError("unexpected token in '.machine' directive");
StringRef CPU = Parser.getTok().getIdentifier();
Parser.Lex();
if (parseEOL())
return true;
MCSubtargetInfo &STI = copySTI();
STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, "");
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
getTargetStreamer().emitMachine(CPU);
return false;
}
bool SystemZAsmParser::ParseGNUAttribute(SMLoc L) {
int64_t Tag;
int64_t IntegerValue;
if (!Parser.parseGNUAttribute(L, Tag, IntegerValue))
return Error(L, "malformed .gnu_attribute directive");
// Tag_GNU_S390_ABI_Vector tag is '8' and can be 0, 1, or 2.
if (Tag != 8 || (IntegerValue < 0 || IntegerValue > 2))
return Error(L, "unrecognized .gnu_attribute tag/value pair.");
Parser.getStreamer().emitGNUAttribute(Tag, IntegerValue);
return parseEOL();
}
bool SystemZAsmParser::ParseRegister(MCRegister &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc, bool RequirePercent,
bool RestoreOnFailure) {
Register Reg;
if (parseRegister(Reg, RequirePercent, RestoreOnFailure))
return true;
if (Reg.Group == RegGR)
RegNo = SystemZMC::GR64Regs[Reg.Num];
else if (Reg.Group == RegFP)
RegNo = SystemZMC::FP64Regs[Reg.Num];
else if (Reg.Group == RegV)
RegNo = SystemZMC::VR128Regs[Reg.Num];
else if (Reg.Group == RegAR)
RegNo = SystemZMC::AR32Regs[Reg.Num];
else if (Reg.Group == RegCR)
RegNo = SystemZMC::CR64Regs[Reg.Num];
StartLoc = Reg.StartLoc;
EndLoc = Reg.EndLoc;
return false;
}
bool SystemZAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc,
SMLoc &EndLoc) {
return ParseRegister(Reg, StartLoc, EndLoc, /*RequirePercent=*/false,
/*RestoreOnFailure=*/false);
}
ParseStatus SystemZAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
SMLoc &EndLoc) {
bool Result = ParseRegister(Reg, StartLoc, EndLoc, /*RequirePercent=*/false,
/*RestoreOnFailure=*/true);
bool PendingErrors = getParser().hasPendingError();
getParser().clearPendingErrors();
if (PendingErrors)
return ParseStatus::Failure;
if (Result)
return ParseStatus::NoMatch;
return ParseStatus::Success;
}
bool SystemZAsmParser::parseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
// Apply mnemonic aliases first, before doing anything else, in
// case the target uses it.
applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect());
Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (parseOperand(Operands, Name)) {
return true;
}
// Read any subsequent operands.
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex();
if (isParsingHLASM() && getLexer().is(AsmToken::Space))
return Error(
Parser.getTok().getLoc(),
"No space allowed between comma that separates operand entries");
if (parseOperand(Operands, Name)) {
return true;
}
}
// Under the HLASM variant, we could have the remark field
// The remark field occurs after the operation entries
// There is a space that separates the operation entries and the
// remark field.
if (isParsingHLASM() && getTok().is(AsmToken::Space)) {
// We've confirmed that there is a Remark field.
StringRef Remark(getLexer().LexUntilEndOfStatement());
Parser.Lex();
// If there is nothing after the space, then there is nothing to emit
// We could have a situation as this:
// " \n"
// After lexing above, we will have
// "\n"
// This isn't an explicit remark field, so we don't have to output
// this as a comment.
if (Remark.size())
// Output the entire Remarks Field as a comment
getStreamer().AddComment(Remark);
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
return Error(Loc, "unexpected token in argument list");
}
}
// Consume the EndOfStatement.
Parser.Lex();
return false;
}
bool SystemZAsmParser::parseOperand(OperandVector &Operands,
StringRef Mnemonic) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach. Force all
// features to be available during the operand check, or else we will fail to
// find the custom parser, and then we will later get an InvalidOperand error
// instead of a MissingFeature errror.
FeatureBitset AvailableFeatures = getAvailableFeatures();
FeatureBitset All;
All.set();
setAvailableFeatures(All);
ParseStatus Res = MatchOperandParserImpl(Operands, Mnemonic);
setAvailableFeatures(AvailableFeatures);
if (Res.isSuccess())
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (Res.isFailure())
return true;
// Check for a register. All real register operands should have used
// a context-dependent parse routine, which gives the required register
// class. The code is here to mop up other cases, like those where
// the instruction isn't recognized.
if (isParsingGNU() && Parser.getTok().is(AsmToken::Percent)) {
Register Reg;
if (parseRegister(Reg, /*RequirePercent=*/true))
return true;
Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
return false;
}
// The only other type of operand is an immediate or address. As above,
// real address operands should have used a context-dependent parse routine,
// so we treat any plain expression as an immediate.
SMLoc StartLoc = Parser.getTok().getLoc();
Register Reg1, Reg2;
bool HaveReg1, HaveReg2;
const MCExpr *Expr;
const MCExpr *Length;
if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length,
/*HasLength*/ true, /*HasVectorIndex*/ true))
return true;
// If the register combination is not valid for any instruction, reject it.
// Otherwise, fall back to reporting an unrecognized instruction.
if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
&& parseAddressRegister(Reg1))
return true;
if (HaveReg2 && parseAddressRegister(Reg2))
return true;
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
if (HaveReg1 || HaveReg2 || Length)
Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
else
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
return false;
}
bool SystemZAsmParser::matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
unsigned MatchResult;
unsigned Dialect = getMAIAssemblerDialect();
FeatureBitset MissingFeatures;
MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
MatchingInlineAsm, Dialect);
switch (MatchResult) {
case Match_Success:
Inst.setLoc(IDLoc);
Out.emitInstruction(Inst, getSTI());
return false;
case Match_MissingFeature: {
assert(MissingFeatures.any() && "Unknown missing feature!");
// Special case the error message for the very common case where only
// a single subtarget feature is missing
std::string Msg = "instruction requires:";
for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) {
if (MissingFeatures[I]) {
Msg += " ";
Msg += getSubtargetFeatureName(I);
}
}
return Error(IDLoc, Msg);
}
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail: {
FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
std::string Suggestion = SystemZMnemonicSpellCheck(
((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect);
return Error(IDLoc, "invalid instruction" + Suggestion,
((SystemZOperand &)*Operands[0]).getLocRange());
}
}
llvm_unreachable("Unexpected match type");
}
ParseStatus SystemZAsmParser::parsePCRel(OperandVector &Operands,
int64_t MinVal, int64_t MaxVal,
bool AllowTLS) {
MCContext &Ctx = getContext();
MCStreamer &Out = getStreamer();
const MCExpr *Expr;
SMLoc StartLoc = Parser.getTok().getLoc();
if (getParser().parseExpression(Expr))
return ParseStatus::NoMatch;
auto IsOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool {
if (auto *CE = dyn_cast<MCConstantExpr>(E)) {
int64_t Value = CE->getValue();
if (Negate)
Value = -Value;
if ((Value & 1) || Value < MinVal || Value > MaxVal)
return true;
}
return false;
};
// For consistency with the GNU assembler, treat immediates as offsets
// from ".".
if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
if (isParsingHLASM())
return Error(StartLoc, "Expected PC-relative expression");
if (IsOutOfRangeConstant(CE, false))
return Error(StartLoc, "offset out of range");
int64_t Value = CE->getValue();
MCSymbol *Sym = Ctx.createTempSymbol();
Out.emitLabel(Sym);
const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
Ctx);
Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
}
// For consistency with the GNU assembler, conservatively assume that a
// constant offset must by itself be within the given size range.
if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr))
if (IsOutOfRangeConstant(BE->getLHS(), false) ||
IsOutOfRangeConstant(BE->getRHS(),
BE->getOpcode() == MCBinaryExpr::Sub))
return Error(StartLoc, "offset out of range");
// Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
const MCExpr *Sym = nullptr;
if (AllowTLS && getLexer().is(AsmToken::Colon)) {
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::Identifier))
return Error(Parser.getTok().getLoc(), "unexpected token");
MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
StringRef Name = Parser.getTok().getString();
if (Name == "tls_gdcall")
Kind = MCSymbolRefExpr::VK_TLSGD;
else if (Name == "tls_ldcall")
Kind = MCSymbolRefExpr::VK_TLSLDM;
else
return Error(Parser.getTok().getLoc(), "unknown TLS tag");
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::Colon))
return Error(Parser.getTok().getLoc(), "unexpected token");
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::Identifier))
return Error(Parser.getTok().getLoc(), "unexpected token");
StringRef Identifier = Parser.getTok().getString();
Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
Kind, Ctx);
Parser.Lex();
}
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
if (AllowTLS)
Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
StartLoc, EndLoc));
else
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
return ParseStatus::Success;
}
bool SystemZAsmParser::isLabel(AsmToken &Token) {
if (isParsingGNU())
return true;
// HLASM labels are ordinary symbols.
// An HLASM label always starts at column 1.
// An ordinary symbol syntax is laid out as follows:
// Rules:
// 1. Has to start with an "alphabetic character". Can be followed by up to
// 62 alphanumeric characters. An "alphabetic character", in this scenario,
// is a letter from 'A' through 'Z', or from 'a' through 'z',
// or '$', '_', '#', or '@'
// 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc.
// are all treated as the same symbol. However, the processing for the case
// folding will not be done in this function.
StringRef RawLabel = Token.getString();
SMLoc Loc = Token.getLoc();
// An HLASM label cannot be empty.
if (!RawLabel.size())
return !Error(Loc, "HLASM Label cannot be empty");
// An HLASM label cannot exceed greater than 63 characters.
if (RawLabel.size() > 63)
return !Error(Loc, "Maximum length for HLASM Label is 63 characters");
// A label must start with an "alphabetic character".
if (!isHLASMAlpha(RawLabel[0]))
return !Error(Loc, "HLASM Label has to start with an alphabetic "
"character or the underscore character");
// Now, we've established that the length is valid
// and the first character is alphabetic.
// Check whether remaining string is alphanumeric.
for (unsigned I = 1; I < RawLabel.size(); ++I)
if (!isHLASMAlnum(RawLabel[I]))
return !Error(Loc, "HLASM Label has to be alphanumeric");
return true;
}
// Force static initialization.
// NOLINTNEXTLINE(readability-identifier-naming)
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() {
RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget());
}