llvm-project/llvm/test/Transforms/LoopVectorize/interleave-and-scalarize-only.ll
Florian Hahn 1de3dc7d23 [LV] Bail out early if BTC+1 wraps.
Currently we fail to detect the case where BTC + 1 wraps, i.e. the
vector trip count is 0, In those cases, the minimum iteration count
check will fail, and the vector code will never be executed.

Explicitly check for this condition in computeMaxVF and avoid trying to
vectorize alltogether.

Note that a number of tests needed to be updated, because the vector
loop would never be executed given the input IR.

Fixes https://github.com/llvm/llvm-project/issues/122558.
2025-01-14 22:07:38 +00:00

386 lines
16 KiB
LLVM

; REQUIRES: asserts
; RUN: opt -passes=loop-vectorize -force-vector-width=1 -force-vector-interleave=2 -debug -disable-output %s 2>&1 | FileCheck --check-prefix=DBG %s
; RUN: opt -passes=loop-vectorize -force-vector-width=1 -force-vector-interleave=2 -S %s | FileCheck %s
; DBG-LABEL: 'test_scalarize_call'
; DBG: VPlan 'Initial VPlan for VF={1},UF>=1' {
; DBG-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; DBG-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
; DBG-NEXT: vp<[[TC:%.+]]> = original trip-count
; DBG-EMPTY:
; DBG-NEXT: ir-bb<entry>:
; DBG-NEXT: EMIT vp<[[TC]]> = EXPAND SCEV (1000 + (-1 * %start))
; DBG-NEXT: Successor(s): vector.ph
; DBG-EMPTY:
; DBG-NEXT: vector.ph:
; DBG-NEXT: vp<[[END:%.+]]> = DERIVED-IV ir<%start> + vp<[[VEC_TC]]> * ir<1>
; DBG-NEXT: Successor(s): vector loop
; DBG-EMPTY:
; DBG-NEXT: <x1> vector loop: {
; DBG-NEXT: vector.body:
; DBG-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
; DBG-NEXT: vp<[[DERIVED_IV:%.+]]> = DERIVED-IV ir<%start> + vp<[[CAN_IV]]> * ir<1>
; DBG-NEXT: vp<[[IV_STEPS:%.]]> = SCALAR-STEPS vp<[[DERIVED_IV]]>, ir<1>
; DBG-NEXT: CLONE ir<%min> = call @llvm.smin.i32(vp<[[IV_STEPS]]>, ir<65535>)
; DBG-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%dst>, vp<[[IV_STEPS]]>
; DBG-NEXT: CLONE store ir<%min>, ir<%arrayidx>
; DBG-NEXT: EMIT vp<[[INC:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; DBG-NEXT: EMIT branch-on-count vp<[[INC]]>, vp<[[VEC_TC]]>
; DBG-NEXT: No successors
; DBG-NEXT: }
;
define void @test_scalarize_call(i32 %start, ptr %dst) {
; CHECK-LABEL: @test_scalarize_call(
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i32 [ 0, %vector.ph ], [ [[INDEX_NEXT:%.*]], %vector.body ]
; CHECK-NEXT: [[OFFSET_IDX:%.*]] = add i32 %start, [[INDEX]]
; CHECK-NEXT: [[INDUCTION:%.*]] = add i32 [[OFFSET_IDX]], 0
; CHECK-NEXT: [[INDUCTION1:%.*]] = add i32 [[OFFSET_IDX]], 1
; CHECK-NEXT: [[TMP1:%.*]] = tail call i32 @llvm.smin.i32(i32 [[INDUCTION]], i32 65535)
; CHECK-NEXT: [[TMP2:%.*]] = tail call i32 @llvm.smin.i32(i32 [[INDUCTION1]], i32 65535)
; CHECK-NEXT: [[TMP3:%.*]] = getelementptr inbounds i32, ptr [[DST:%.*]], i32 [[INDUCTION]]
; CHECK-NEXT: [[TMP4:%.*]] = getelementptr inbounds i32, ptr [[DST]], i32 [[INDUCTION1]]
; CHECK-NEXT: store i32 [[TMP1]], ptr [[TMP3]], align 8
; CHECK-NEXT: store i32 [[TMP2]], ptr [[TMP4]], align 8
; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i32 [[INDEX]], 2
; CHECK-NEXT: [[TMP5:%.*]] = icmp eq i32 [[INDEX_NEXT]], %n.vec
; CHECK-NEXT: br i1 [[TMP5]], label %middle.block, label %vector.body
; CHECK: middle.block:
;
entry:
br label %loop
loop:
%iv = phi i32 [ %start, %entry ], [ %iv.next, %loop ]
%min = tail call i32 @llvm.smin.i32(i32 %iv, i32 65535)
%arrayidx = getelementptr inbounds i32 , ptr %dst, i32 %iv
store i32 %min, ptr %arrayidx, align 8
%iv.next = add nsw i32 %iv, 1
%tobool.not = icmp eq i32 %iv.next, 1000
br i1 %tobool.not, label %exit, label %loop
exit:
ret void
}
declare i32 @llvm.smin.i32(i32, i32)
; DBG-LABEL: 'test_scalarize_with_branch_cond'
; DBG: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; DBG-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
; DBG-NEXT: Live-in ir<1000> = original trip-count
; DBG-EMPTY:
; DBG-NEXT: ir-bb<entry>:
; DBG-NEXT: Successor(s): vector.ph
; DBG-EMPTY:
; DBG-NEXT: vector.ph:
; DBG-NEXT: vp<[[END:%.+]]> = DERIVED-IV ir<false> + vp<[[VEC_TC]]> * ir<true>
; DBG-NEXT: Successor(s): vector loop
; DBG-EMPTY:
; DBG-NEXT: <x1> vector loop: {
; DBG-NEXT: vector.body:
; DBG-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
; DBG-NEXT: vp<[[DERIVED_IV:%.+]]> = DERIVED-IV ir<false> + vp<[[CAN_IV]]> * ir<true>
; DBG-NEXT: vp<[[STEPS1:%.+]]> = SCALAR-STEPS vp<[[DERIVED_IV]]>, ir<true>
; DBG-NEXT: Successor(s): pred.store
; DBG-EMPTY:
; DBG-NEXT: <xVFxUF> pred.store: {
; DBG-NEXT: pred.store.entry:
; DBG-NEXT: BRANCH-ON-MASK vp<[[STEPS1]]>
; DBG-NEXT: Successor(s): pred.store.if, pred.store.continue
; DBG-EMPTY:
; DBG-NEXT: pred.store.if:
; DBG-NEXT: vp<[[STEPS2:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
; DBG-NEXT: CLONE ir<%gep.src> = getelementptr inbounds ir<%src>, vp<[[STEPS2]]>
; DBG-NEXT: CLONE ir<%l> = load ir<%gep.src>
; DBG-NEXT: CLONE ir<%gep.dst> = getelementptr inbounds ir<%dst>, vp<[[STEPS2]]>
; DBG-NEXT: CLONE store ir<%l>, ir<%gep.dst>
; DBG-NEXT: Successor(s): pred.store.continue
; DBG-EMPTY:
; DBG-NEXT: pred.store.continue:
; DBG-NEXT: No successors
; DBG-NEXT: }
; DBG-NEXT: Successor(s): cond.false.1
; DBG-EMPTY:
; DBG-NEXT: cond.false.1:
; DBG-NEXT: EMIT vp<[[CAN_IV_INC:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; DBG-NEXT: EMIT branch-on-count vp<[[CAN_IV_INC]]>, vp<[[VEC_TC]]>
; DBG-NEXT: No successors
; DBG-NEXT: }
; DBG-NEXT: Successor(s): middle.block
; DBG-EMPTY:
; DBG-NEXT: middle.block:
; DBG-NEXT: EMIT vp<[[CMP:%.+]]> = icmp eq ir<1000>, vp<[[VEC_TC]]>
; DBG-NEXT: EMIT branch-on-cond vp<[[CMP]]>
; DBG-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; DBG-EMPTY:
; DBG-NEXT: scalar.ph:
; DBG-NEXT: EMIT vp<[[RESUME1:%.+]]> = resume-phi vp<[[VEC_TC]]>, ir<0>
; DBG-NEXT: EMIT vp<[[RESUME2:%.+]]>.1 = resume-phi vp<[[END]]>, ir<false>
; DBG-NEXT: Successor(s): ir-bb<loop.header>
; DBG-EMPTY:
; DBG-NEXT: ir-bb<loop.header>:
; DBG-NEXT: IR %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop.latch ] (extra operand: vp<[[RESUME1]]> from scalar.ph)
; DBG-NEXT: IR %d = phi i1 [ false, %entry ], [ %d.next, %loop.latch ] (extra operand: vp<[[RESUME2]]>.1 from scalar.ph)
; DBG-NEXT: IR %d.next = xor i1 %d, true
; DBG-NEXT: No successors
; DBG-EMPTY:
; DBG-NEXT: ir-bb<exit>:
; DBG-NEXT: No successors
; DBG-NEXT: }
define void @test_scalarize_with_branch_cond(ptr %src, ptr %dst) {
; CHECK-LABEL: @test_scalarize_with_branch_cond(
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, %vector.ph ], [ [[INDEX_NEXT:%.*]], %pred.store.continue4 ]
; CHECK-NEXT: [[TMP0:%.*]] = trunc i64 [[INDEX]] to i1
; CHECK-NEXT: [[OFFSET_IDX:%.*]] = sub i1 false, [[TMP0]]
; CHECK-NEXT: [[INDUCTION:%.*]] = add i1 [[OFFSET_IDX]], false
; CHECK-NEXT: [[INDUCTION3:%.*]] = add i1 [[OFFSET_IDX]], true
; CHECK-NEXT: br i1 [[INDUCTION]], label %pred.store.if, label %pred.store.continue
; CHECK: pred.store.if:
; CHECK-NEXT: [[INDUCTION4:%.*]] = add i64 [[INDEX]], 0
; CHECK-NEXT: [[TMP3:%.*]] = getelementptr inbounds i32, ptr %src, i64 [[INDUCTION4]]
; CHECK-NEXT: [[TMP4:%.*]] = load i32, ptr [[TMP3]], align 4
; CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds i32, ptr %dst, i64 [[INDUCTION4]]
; CHECK-NEXT: store i32 [[TMP4]], ptr [[TMP1]], align 4
; CHECK-NEXT: br label %pred.store.continue
; CHECK: pred.store.continue:
; CHECK-NEXT: br i1 [[INDUCTION3]], label %pred.store.if3, label %pred.store.continue4
; CHECK: pred.store.if3:
; CHECK-NEXT: [[INDUCTION5:%.*]] = add i64 [[INDEX]], 1
; CHECK-NEXT: [[TMP6:%.*]] = getelementptr inbounds i32, ptr %src, i64 [[INDUCTION5]]
; CHECK-NEXT: [[TMP7:%.*]] = load i32, ptr [[TMP6]], align 4
; CHECK-NEXT: [[TMP2:%.*]] = getelementptr inbounds i32, ptr %dst, i64 [[INDUCTION5]]
; CHECK-NEXT: store i32 [[TMP7]], ptr [[TMP2]], align 4
; CHECK-NEXT: br label %pred.store.continue4
; CHECK: pred.store.continue4:
; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], 2
; CHECK-NEXT: [[TMP9:%.*]] = icmp eq i64 [[INDEX_NEXT]], 1000
; CHECK-NEXT: br i1 [[TMP9]], label %middle.block, label %vector.body
; CHECK: middle.block:
;
entry:
br label %loop.header
loop.header:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %loop.latch ]
%d = phi i1 [ false, %entry ], [ %d.next, %loop.latch ]
%d.next = xor i1 %d, true
br i1 %d, label %cond.false, label %loop.latch
cond.false:
%gep.src = getelementptr inbounds i32, ptr %src, i64 %iv
%gep.dst = getelementptr inbounds i32, ptr %dst, i64 %iv
%l = load i32, ptr %gep.src, align 4
store i32 %l, ptr %gep.dst
br label %loop.latch
loop.latch:
%iv.next = add nsw i64 %iv, 1
%ec = icmp eq i64 %iv.next, 1000
br i1 %ec, label %exit, label %loop.header
exit:
ret void
}
; Make sure the widened induction gets replaced by scalar-steps for plans
; including the scalar VF, if it is used in first-order recurrences.
; DBG-LABEL: 'first_order_recurrence_using_induction'
; DBG: VPlan 'Initial VPlan for VF={1},UF>=1' {
; DBG-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; DBG-NEXT: Live-in vp<[[VTC:%.+]]> = vector-trip-count
; DBG-NEXT: vp<[[TC:%.+]]> = original trip-count
; DBG-EMPTY:
; DBG-NEXT: ir-bb<entry>:
; DBG-NEXT: EMIT vp<[[TC]]> = EXPAND SCEV (zext i32 (1 smax %n) to i64)
; DBG-NEXT: Successor(s): vector.ph
; DBG-EMPTY:
; DBG-NEXT: vector.ph:
; DBG-NEXT: SCALAR-CAST vp<[[CAST:%.+]]> = trunc ir<1> to i32
; DBG-NEXT: Successor(s): vector loop
; DBG-EMPTY:
; DBG-NEXT: <x1> vector loop: {
; DBG-NEXT: vector.body:
; DBG-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
; DBG-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for> = phi ir<0>, vp<[[SCALAR_STEPS:.+]]>
; DBG-NEXT: SCALAR-CAST vp<[[TRUNC_IV:%.+]]> = trunc vp<[[CAN_IV]]> to i32
; DBG-NEXT: vp<[[SCALAR_STEPS]]> = SCALAR-STEPS vp<[[TRUNC_IV]]>, vp<[[CAST]]>
; DBG-NEXT: EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%for>, vp<[[SCALAR_STEPS]]>
; DBG-NEXT: CLONE store vp<[[SPLICE]]>, ir<%dst>
; DBG-NEXT: EMIT vp<[[IV_INC:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; DBG-NEXT: EMIT branch-on-count vp<[[IV_INC]]>, vp<[[VTC]]>
; DBG-NEXT: No successors
; DBG-NEXT: }
; DBG-NEXT: Successor(s): middle.block
; DBG-EMPTY:
; DBG-NEXT: middle.block:
; DBG-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-from-end vp<[[SCALAR_STEPS]]>, ir<1>
; DBG-NEXT: EMIT vp<[[CMP:%.+]]> = icmp eq vp<[[TC]]>, vp<[[VEC_TC]]>
; DBG-NEXT: EMIT branch-on-cond vp<[[CMP]]>
; DBG-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; DBG-EMPTY:
; DBG-NEXT: scalar.ph:
; DBG-NEXT: EMIT vp<[[RESUME_IV:%.+]]> = resume-phi vp<[[VTC]]>, ir<0>
; DBG-NEXT: EMIT vp<[[RESUME_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
; DBG-NEXT: Successor(s): ir-bb<loop>
; DBG-EMPTY:
; DBG-NEXT: ir-bb<loop>:
; DBG-NEXT: IR %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
; DBG-NEXT: IR %for = phi i32 [ 0, %entry ], [ %iv.trunc, %loop ] (extra operand: vp<[[RESUME_P]]> from scalar.ph)
; DBG: IR %ec = icmp slt i32 %iv.next.trunc, %n
; DBG-NEXT: No successors
; DBG-EMPTY:
; DBG-NEXT: ir-bb<exit>:
; DBG-NEXT: No successors
; DBG-NEXT: }
define void @first_order_recurrence_using_induction(i32 %n, ptr %dst) {
; CHECK-LABEL: @first_order_recurrence_using_induction(
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, %vector.ph ], [ [[INDEX_NEXT:%.*]], %vector.body ]
; CHECK-NEXT: [[VECTOR_RECUR:%.*]] = phi i32 [ 0, %vector.ph ], [ [[INDUCTION1:%.*]], %vector.body ]
; CHECK-NEXT: [[TMP3:%.*]] = trunc i64 [[INDEX]] to i32
; CHECK-NEXT: [[INDUCTION:%.*]] = add i32 [[TMP3]], 0
; CHECK-NEXT: [[INDUCTION1]] = add i32 [[TMP3]], 1
; CHECK-NEXT: store i32 [[INDUCTION]], ptr [[DST]], align 4
; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], 2
; CHECK-NEXT: [[TMP4:%.*]] = icmp eq i64 [[INDEX_NEXT]], %n.vec
; CHECK-NEXT: br i1 [[TMP4]], label %middle.block, label %vector.body
; CHECK: middle.block:
;
entry:
br label %loop
loop:
%iv = phi i64 [ 0, %entry ],[ %iv.next, %loop ]
%for = phi i32 [ 0, %entry ], [ %iv.trunc, %loop ]
%iv.trunc = trunc i64 %iv to i32
store i32 %for, ptr %dst
%iv.next = add nuw nsw i64 %iv, 1
%iv.next.trunc = trunc i64 %iv.next to i32
%ec = icmp slt i32 %iv.next.trunc, %n
br i1 %ec, label %loop, label %exit
exit:
ret void
}
define i16 @reduction_with_casts() {
; CHECK-LABEL: define i16 @reduction_with_casts() {
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i32 [ 0, [[VECTOR_PH:%.+]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY:%.+]] ]
; CHECK-NEXT: [[VEC_PHI:%.*]] = phi i32 [ 0, [[VECTOR_PH]] ], [ [[TMP2:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[VEC_PHI1:%.*]] = phi i32 [ 0, [[VECTOR_PH]] ], [ [[TMP3:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP0:%.*]] = and i32 [[VEC_PHI]], 65535
; CHECK-NEXT: [[TMP1:%.*]] = and i32 [[VEC_PHI1]], 65535
; CHECK-NEXT: [[TMP2]] = add i32 [[TMP0]], 1
; CHECK-NEXT: [[TMP3]] = add i32 [[TMP1]], 1
; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i32 [[INDEX]], 2
; CHECK-NEXT: [[TMP4:%.*]] = icmp eq i32 [[INDEX_NEXT]], 9998
; CHECK-NEXT: br i1 [[TMP4]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]]
; CHECK: middle.block:
; CHECK-NEXT: [[BIN_RDX:%.*]] = add i32 [[TMP3]], [[TMP2]]
; CHECK-NEXT: br i1 false, label [[EXIT:%.*]], label %scalar.ph
;
entry:
br label %loop
loop:
%count.0.in1 = phi i32 [ 0, %entry ], [ %add, %loop ]
%iv = phi i16 [ 1, %entry ], [ %iv.next, %loop ]
%conv1 = and i32 %count.0.in1, 65535
%add = add nuw nsw i32 %conv1, 1
%iv.next = add i16 %iv, 1
%cmp = icmp eq i16 %iv.next, 10000
br i1 %cmp, label %exit, label %loop
exit:
%add.lcssa = phi i32 [ %add, %loop ]
%count.0 = trunc i32 %add.lcssa to i16
ret i16 %count.0
}
define void @scalarize_ptrtoint(ptr %src, ptr %dst) {
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, %vector.ph ], [ [[INDEX_NEXT:%.*]], %vector.body ]
; CHECK-NEXT: [[TMP1:%.*]] = add i64 [[INDEX]], 1
; CHECK-NEXT: [[TMP3:%.*]] = getelementptr ptr, ptr %src, i64 [[TMP1]]
; CHECK-NEXT: [[TMP5:%.*]] = load ptr, ptr [[TMP3]], align 8
; CHECK-NEXT: [[TMP7:%.*]] = ptrtoint ptr [[TMP5]] to i64
; CHECK-NEXT: [[TMP9:%.*]] = add i64 [[TMP7]], 10
; CHECK-NEXT: [[TMP11:%.*]] = inttoptr i64 [[TMP9]] to ptr
; CHECK-NEXT: store ptr [[TMP11]], ptr %dst, align 8
; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], 2
; CHECK-NEXT: [[TMP12:%.*]] = icmp eq i64 [[INDEX_NEXT]], 1024
; CHECK-NEXT: br i1 [[TMP12]], label %middle.block, label %vector.body
entry:
br label %loop
loop:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
%gep = getelementptr ptr, ptr %src, i64 %iv
%l = load ptr, ptr %gep, align 8
%cast = ptrtoint ptr %l to i64
%add = add i64 %cast, 10
%cast.2 = inttoptr i64 %add to ptr
store ptr %cast.2, ptr %dst, align 8
%iv.next = add i64 %iv, 1
%ec = icmp eq i64 %iv.next, 1024
br i1 %ec, label %exit, label %loop
exit:
ret void
}
define void @pr76986_trunc_sext_interleaving_only(i16 %arg, ptr noalias %src, ptr noalias %dst) {
; CHECK-LABEL: define void @pr76986_trunc_sext_interleaving_only(
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, %vector.ph ], [ [[INDEX_NEXT:%.*]], %vector.body ]
; CHECK-NEXT: [[TMP0:%.*]] = add i64 [[INDEX]], 0
; CHECK-NEXT: [[TMP1:%.*]] = add i64 [[INDEX]], 1
; CHECK-NEXT: [[TMP2:%.*]] = getelementptr inbounds i8, ptr %src, i64 [[TMP0]]
; CHECK-NEXT: [[TMP3:%.*]] = getelementptr inbounds i8, ptr %src, i64 [[TMP1]]
; CHECK-NEXT: [[TMP4:%.*]] = load i8, ptr [[TMP2]], align 1
; CHECK-NEXT: [[TMP5:%.*]] = load i8, ptr [[TMP3]], align 1
; CHECK-NEXT: [[TMP6:%.*]] = sext i8 [[TMP4]] to i32
; CHECK-NEXT: [[TMP7:%.*]] = sext i8 [[TMP5]] to i32
; CHECK-NEXT: [[TMP8:%.*]] = trunc i32 [[TMP6]] to i16
; CHECK-NEXT: [[TMP9:%.*]] = trunc i32 [[TMP7]] to i16
; CHECK-NEXT: [[TMP10:%.*]] = sdiv i16 [[TMP8]], %arg
; CHECK-NEXT: [[TMP11:%.*]] = sdiv i16 [[TMP9]], %arg
; CHECK-NEXT: [[TMP12:%.*]] = getelementptr inbounds i16, ptr %dst, i64 [[TMP0]]
; CHECK-NEXT: [[TMP13:%.*]] = getelementptr inbounds i16, ptr %dst, i64 [[TMP1]]
; CHECK-NEXT: store i16 [[TMP10]], ptr [[TMP12]], align 2
; CHECK-NEXT: store i16 [[TMP11]], ptr [[TMP13]], align 2
; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], 2
; CHECK-NEXT: [[TMP14:%.*]] = icmp eq i64 [[INDEX_NEXT]], 14934
; CHECK-NEXT: br i1 [[TMP14]], label %middle.block, label %vector.body
;
bb:
br label %loop
loop:
%iv = phi i64 [ 0, %bb ], [ %iv.next, %loop ]
%gep.src = getelementptr inbounds i8, ptr %src, i64 %iv
%l = load i8, ptr %gep.src
%sext = sext i8 %l to i32
%trunc = trunc i32 %sext to i16
%sdiv = sdiv i16 %trunc, %arg
%gep.dst = getelementptr inbounds i16, ptr %dst, i64 %iv
store i16 %sdiv, ptr %gep.dst
%iv.next = add i64 %iv, 1
%icmp = icmp ult i64 %iv, 14933
br i1 %icmp, label %loop, label %exit
exit:
ret void
}