
This patch introduces a new `CXXLifetimeExtendedObjectRegion` as a representation of the memory for the temporary object that is lifetime extended by the reference to which they are bound. This separation provides an ability to detect the use of dangling pointers (either binding or dereference) in a robust manner. For example, the `ref` is conditionally dangling in the following example: ``` template<typename T> T const& select(bool cond, T const& t, T const& u) { return cond ? t : u; } int const& le = Composite{}.x; auto&& ref = select(cond, le, 10); ``` Before the change, regardless of the value of `cond`, the `select()` call would have returned a `temp_object` region. With the proposed change we would produce a (non-dangling) `lifetime_extended_object` region with lifetime bound to `le` or a `temp_object` region for the dangling case. We believe that such separation is desired, as such lifetime extended temporaries are closer to the variables. For example, they may have a static storage duration (this patch removes a static temporary region, which was an abomination). We also think that alternative approaches are not viable. While for some cases it may be possible to determine if the region is lifetime extended by searching the parents of the initializer expr, this quickly becomes complex in the presence of the conditions operators like this one: ``` Composite cc; // Ternary produces prvalue 'int' which is extended, as branches differ in value category auto&& x = cond ? Composite{}.x : cc.x; // Ternary produces xvalue, and extends the Composite object auto&& y = cond ? Composite{}.x : std::move(cc).x; ``` Finally, the lifetime of the `CXXLifetimeExtendedObjectRegion` is tied to the lifetime of the corresponding variables, however, the "liveness" (or reachability) of the extending variable does not imply the reachability of all symbols in the region. In conclusion `CXXLifetimeExtendedObjectRegion`, in contrast to `VarRegions`, does not need any special handling in `SymReaper`. RFC: https://discourse.llvm.org/t/rfc-detecting-uses-of-dangling-references/70731 Reviewed By: xazax.hun Differential Revision: https://reviews.llvm.org/D151325
1265 lines
52 KiB
C++
1265 lines
52 KiB
C++
//===- ExprEngineCXX.cpp - ExprEngine support for C++ -----------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the C++ expression evaluation engine.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/ParentMap.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/Analysis/ConstructionContext.h"
|
|
#include "clang/Basic/PrettyStackTrace.h"
|
|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
|
|
#include <optional>
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
void ExprEngine::CreateCXXTemporaryObject(const MaterializeTemporaryExpr *ME,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
const Expr *tempExpr = ME->getSubExpr()->IgnoreParens();
|
|
ProgramStateRef state = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
|
|
state = createTemporaryRegionIfNeeded(state, LCtx, tempExpr, ME);
|
|
Bldr.generateNode(ME, Pred, state);
|
|
}
|
|
|
|
// FIXME: This is the sort of code that should eventually live in a Core
|
|
// checker rather than as a special case in ExprEngine.
|
|
void ExprEngine::performTrivialCopy(NodeBuilder &Bldr, ExplodedNode *Pred,
|
|
const CallEvent &Call) {
|
|
SVal ThisVal;
|
|
bool AlwaysReturnsLValue;
|
|
const CXXRecordDecl *ThisRD = nullptr;
|
|
if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
|
|
assert(Ctor->getDecl()->isTrivial());
|
|
assert(Ctor->getDecl()->isCopyOrMoveConstructor());
|
|
ThisVal = Ctor->getCXXThisVal();
|
|
ThisRD = Ctor->getDecl()->getParent();
|
|
AlwaysReturnsLValue = false;
|
|
} else {
|
|
assert(cast<CXXMethodDecl>(Call.getDecl())->isTrivial());
|
|
assert(cast<CXXMethodDecl>(Call.getDecl())->getOverloadedOperator() ==
|
|
OO_Equal);
|
|
ThisVal = cast<CXXInstanceCall>(Call).getCXXThisVal();
|
|
ThisRD = cast<CXXMethodDecl>(Call.getDecl())->getParent();
|
|
AlwaysReturnsLValue = true;
|
|
}
|
|
|
|
assert(ThisRD);
|
|
if (ThisRD->isEmpty()) {
|
|
// Do nothing for empty classes. Otherwise it'd retrieve an UnknownVal
|
|
// and bind it and RegionStore would think that the actual value
|
|
// in this region at this offset is unknown.
|
|
return;
|
|
}
|
|
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
|
|
ExplodedNodeSet Dst;
|
|
Bldr.takeNodes(Pred);
|
|
|
|
SVal V = Call.getArgSVal(0);
|
|
|
|
// If the value being copied is not unknown, load from its location to get
|
|
// an aggregate rvalue.
|
|
if (std::optional<Loc> L = V.getAs<Loc>())
|
|
V = Pred->getState()->getSVal(*L);
|
|
else
|
|
assert(V.isUnknownOrUndef());
|
|
|
|
const Expr *CallExpr = Call.getOriginExpr();
|
|
evalBind(Dst, CallExpr, Pred, ThisVal, V, true);
|
|
|
|
PostStmt PS(CallExpr, LCtx);
|
|
for (ExplodedNodeSet::iterator I = Dst.begin(), E = Dst.end();
|
|
I != E; ++I) {
|
|
ProgramStateRef State = (*I)->getState();
|
|
if (AlwaysReturnsLValue)
|
|
State = State->BindExpr(CallExpr, LCtx, ThisVal);
|
|
else
|
|
State = bindReturnValue(Call, LCtx, State);
|
|
Bldr.generateNode(PS, State, *I);
|
|
}
|
|
}
|
|
|
|
SVal ExprEngine::makeElementRegion(ProgramStateRef State, SVal LValue,
|
|
QualType &Ty, bool &IsArray, unsigned Idx) {
|
|
SValBuilder &SVB = State->getStateManager().getSValBuilder();
|
|
ASTContext &Ctx = SVB.getContext();
|
|
|
|
if (const ArrayType *AT = Ctx.getAsArrayType(Ty)) {
|
|
while (AT) {
|
|
Ty = AT->getElementType();
|
|
AT = dyn_cast<ArrayType>(AT->getElementType());
|
|
}
|
|
LValue = State->getLValue(Ty, SVB.makeArrayIndex(Idx), LValue);
|
|
IsArray = true;
|
|
}
|
|
|
|
return LValue;
|
|
}
|
|
|
|
// In case when the prvalue is returned from the function (kind is one of
|
|
// SimpleReturnedValueKind, CXX17ElidedCopyReturnedValueKind), then
|
|
// it's materialization happens in context of the caller.
|
|
// We pass BldrCtx explicitly, as currBldrCtx always refers to callee's context.
|
|
SVal ExprEngine::computeObjectUnderConstruction(
|
|
const Expr *E, ProgramStateRef State, const NodeBuilderContext *BldrCtx,
|
|
const LocationContext *LCtx, const ConstructionContext *CC,
|
|
EvalCallOptions &CallOpts, unsigned Idx) {
|
|
|
|
SValBuilder &SVB = getSValBuilder();
|
|
MemRegionManager &MRMgr = SVB.getRegionManager();
|
|
ASTContext &ACtx = SVB.getContext();
|
|
|
|
// Compute the target region by exploring the construction context.
|
|
if (CC) {
|
|
switch (CC->getKind()) {
|
|
case ConstructionContext::CXX17ElidedCopyVariableKind:
|
|
case ConstructionContext::SimpleVariableKind: {
|
|
const auto *DSCC = cast<VariableConstructionContext>(CC);
|
|
const auto *DS = DSCC->getDeclStmt();
|
|
const auto *Var = cast<VarDecl>(DS->getSingleDecl());
|
|
QualType Ty = Var->getType();
|
|
return makeElementRegion(State, State->getLValue(Var, LCtx), Ty,
|
|
CallOpts.IsArrayCtorOrDtor, Idx);
|
|
}
|
|
case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind:
|
|
case ConstructionContext::SimpleConstructorInitializerKind: {
|
|
const auto *ICC = cast<ConstructorInitializerConstructionContext>(CC);
|
|
const auto *Init = ICC->getCXXCtorInitializer();
|
|
const CXXMethodDecl *CurCtor = cast<CXXMethodDecl>(LCtx->getDecl());
|
|
Loc ThisPtr = SVB.getCXXThis(CurCtor, LCtx->getStackFrame());
|
|
SVal ThisVal = State->getSVal(ThisPtr);
|
|
if (Init->isBaseInitializer()) {
|
|
const auto *ThisReg = cast<SubRegion>(ThisVal.getAsRegion());
|
|
const CXXRecordDecl *BaseClass =
|
|
Init->getBaseClass()->getAsCXXRecordDecl();
|
|
const auto *BaseReg =
|
|
MRMgr.getCXXBaseObjectRegion(BaseClass, ThisReg,
|
|
Init->isBaseVirtual());
|
|
return SVB.makeLoc(BaseReg);
|
|
}
|
|
if (Init->isDelegatingInitializer())
|
|
return ThisVal;
|
|
|
|
const ValueDecl *Field;
|
|
SVal FieldVal;
|
|
if (Init->isIndirectMemberInitializer()) {
|
|
Field = Init->getIndirectMember();
|
|
FieldVal = State->getLValue(Init->getIndirectMember(), ThisVal);
|
|
} else {
|
|
Field = Init->getMember();
|
|
FieldVal = State->getLValue(Init->getMember(), ThisVal);
|
|
}
|
|
|
|
QualType Ty = Field->getType();
|
|
return makeElementRegion(State, FieldVal, Ty, CallOpts.IsArrayCtorOrDtor,
|
|
Idx);
|
|
}
|
|
case ConstructionContext::NewAllocatedObjectKind: {
|
|
if (AMgr.getAnalyzerOptions().MayInlineCXXAllocator) {
|
|
const auto *NECC = cast<NewAllocatedObjectConstructionContext>(CC);
|
|
const auto *NE = NECC->getCXXNewExpr();
|
|
SVal V = *getObjectUnderConstruction(State, NE, LCtx);
|
|
if (const SubRegion *MR =
|
|
dyn_cast_or_null<SubRegion>(V.getAsRegion())) {
|
|
if (NE->isArray()) {
|
|
CallOpts.IsArrayCtorOrDtor = true;
|
|
|
|
auto Ty = NE->getType()->getPointeeType();
|
|
while (const auto *AT = getContext().getAsArrayType(Ty))
|
|
Ty = AT->getElementType();
|
|
|
|
auto R = MRMgr.getElementRegion(Ty, svalBuilder.makeArrayIndex(Idx),
|
|
MR, SVB.getContext());
|
|
|
|
return loc::MemRegionVal(R);
|
|
}
|
|
return V;
|
|
}
|
|
// TODO: Detect when the allocator returns a null pointer.
|
|
// Constructor shall not be called in this case.
|
|
}
|
|
break;
|
|
}
|
|
case ConstructionContext::SimpleReturnedValueKind:
|
|
case ConstructionContext::CXX17ElidedCopyReturnedValueKind: {
|
|
// The temporary is to be managed by the parent stack frame.
|
|
// So build it in the parent stack frame if we're not in the
|
|
// top frame of the analysis.
|
|
const StackFrameContext *SFC = LCtx->getStackFrame();
|
|
if (const LocationContext *CallerLCtx = SFC->getParent()) {
|
|
auto RTC = (*SFC->getCallSiteBlock())[SFC->getIndex()]
|
|
.getAs<CFGCXXRecordTypedCall>();
|
|
if (!RTC) {
|
|
// We were unable to find the correct construction context for the
|
|
// call in the parent stack frame. This is equivalent to not being
|
|
// able to find construction context at all.
|
|
break;
|
|
}
|
|
if (isa<BlockInvocationContext>(CallerLCtx)) {
|
|
// Unwrap block invocation contexts. They're mostly part of
|
|
// the current stack frame.
|
|
CallerLCtx = CallerLCtx->getParent();
|
|
assert(!isa<BlockInvocationContext>(CallerLCtx));
|
|
}
|
|
|
|
NodeBuilderContext CallerBldrCtx(getCoreEngine(),
|
|
SFC->getCallSiteBlock(), CallerLCtx);
|
|
return computeObjectUnderConstruction(
|
|
cast<Expr>(SFC->getCallSite()), State, &CallerBldrCtx, CallerLCtx,
|
|
RTC->getConstructionContext(), CallOpts);
|
|
} else {
|
|
// We are on the top frame of the analysis. We do not know where is the
|
|
// object returned to. Conjure a symbolic region for the return value.
|
|
// TODO: We probably need a new MemRegion kind to represent the storage
|
|
// of that SymbolicRegion, so that we cound produce a fancy symbol
|
|
// instead of an anonymous conjured symbol.
|
|
// TODO: Do we need to track the region to avoid having it dead
|
|
// too early? It does die too early, at least in C++17, but because
|
|
// putting anything into a SymbolicRegion causes an immediate escape,
|
|
// it doesn't cause any leak false positives.
|
|
const auto *RCC = cast<ReturnedValueConstructionContext>(CC);
|
|
// Make sure that this doesn't coincide with any other symbol
|
|
// conjured for the returned expression.
|
|
static const int TopLevelSymRegionTag = 0;
|
|
const Expr *RetE = RCC->getReturnStmt()->getRetValue();
|
|
assert(RetE && "Void returns should not have a construction context");
|
|
QualType ReturnTy = RetE->getType();
|
|
QualType RegionTy = ACtx.getPointerType(ReturnTy);
|
|
return SVB.conjureSymbolVal(&TopLevelSymRegionTag, RetE, SFC, RegionTy,
|
|
currBldrCtx->blockCount());
|
|
}
|
|
llvm_unreachable("Unhandled return value construction context!");
|
|
}
|
|
case ConstructionContext::ElidedTemporaryObjectKind: {
|
|
assert(AMgr.getAnalyzerOptions().ShouldElideConstructors);
|
|
const auto *TCC = cast<ElidedTemporaryObjectConstructionContext>(CC);
|
|
|
|
// Support pre-C++17 copy elision. We'll have the elidable copy
|
|
// constructor in the AST and in the CFG, but we'll skip it
|
|
// and construct directly into the final object. This call
|
|
// also sets the CallOpts flags for us.
|
|
// If the elided copy/move constructor is not supported, there's still
|
|
// benefit in trying to model the non-elided constructor.
|
|
// Stash our state before trying to elide, as it'll get overwritten.
|
|
ProgramStateRef PreElideState = State;
|
|
EvalCallOptions PreElideCallOpts = CallOpts;
|
|
|
|
SVal V = computeObjectUnderConstruction(
|
|
TCC->getConstructorAfterElision(), State, BldrCtx, LCtx,
|
|
TCC->getConstructionContextAfterElision(), CallOpts);
|
|
|
|
// FIXME: This definition of "copy elision has not failed" is unreliable.
|
|
// It doesn't indicate that the constructor will actually be inlined
|
|
// later; this is still up to evalCall() to decide.
|
|
if (!CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion)
|
|
return V;
|
|
|
|
// Copy elision failed. Revert the changes and proceed as if we have
|
|
// a simple temporary.
|
|
CallOpts = PreElideCallOpts;
|
|
CallOpts.IsElidableCtorThatHasNotBeenElided = true;
|
|
[[fallthrough]];
|
|
}
|
|
case ConstructionContext::SimpleTemporaryObjectKind: {
|
|
const auto *TCC = cast<TemporaryObjectConstructionContext>(CC);
|
|
const MaterializeTemporaryExpr *MTE = TCC->getMaterializedTemporaryExpr();
|
|
|
|
CallOpts.IsTemporaryCtorOrDtor = true;
|
|
if (MTE) {
|
|
if (const ValueDecl *VD = MTE->getExtendingDecl()) {
|
|
StorageDuration SD = MTE->getStorageDuration();
|
|
assert(SD != SD_FullExpression);
|
|
if (!VD->getType()->isReferenceType()) {
|
|
// We're lifetime-extended by a surrounding aggregate.
|
|
// Automatic destructors aren't quite working in this case
|
|
// on the CFG side. We should warn the caller about that.
|
|
// FIXME: Is there a better way to retrieve this information from
|
|
// the MaterializeTemporaryExpr?
|
|
CallOpts.IsTemporaryLifetimeExtendedViaAggregate = true;
|
|
}
|
|
|
|
if (SD == SD_Static || SD == SD_Thread)
|
|
return loc::MemRegionVal(
|
|
MRMgr.getCXXStaticLifetimeExtendedObjectRegion(E, VD));
|
|
|
|
return loc::MemRegionVal(
|
|
MRMgr.getCXXLifetimeExtendedObjectRegion(E, VD, LCtx));
|
|
}
|
|
assert(MTE->getStorageDuration() == SD_FullExpression);
|
|
}
|
|
|
|
return loc::MemRegionVal(MRMgr.getCXXTempObjectRegion(E, LCtx));
|
|
}
|
|
case ConstructionContext::LambdaCaptureKind: {
|
|
CallOpts.IsTemporaryCtorOrDtor = true;
|
|
|
|
const auto *LCC = cast<LambdaCaptureConstructionContext>(CC);
|
|
|
|
SVal Base = loc::MemRegionVal(
|
|
MRMgr.getCXXTempObjectRegion(LCC->getInitializer(), LCtx));
|
|
|
|
const auto *CE = dyn_cast_or_null<CXXConstructExpr>(E);
|
|
if (getIndexOfElementToConstruct(State, CE, LCtx)) {
|
|
CallOpts.IsArrayCtorOrDtor = true;
|
|
Base = State->getLValue(E->getType(), svalBuilder.makeArrayIndex(Idx),
|
|
Base);
|
|
}
|
|
|
|
return Base;
|
|
}
|
|
case ConstructionContext::ArgumentKind: {
|
|
// Arguments are technically temporaries.
|
|
CallOpts.IsTemporaryCtorOrDtor = true;
|
|
|
|
const auto *ACC = cast<ArgumentConstructionContext>(CC);
|
|
const Expr *E = ACC->getCallLikeExpr();
|
|
unsigned Idx = ACC->getIndex();
|
|
|
|
CallEventManager &CEMgr = getStateManager().getCallEventManager();
|
|
auto getArgLoc = [&](CallEventRef<> Caller) -> std::optional<SVal> {
|
|
const LocationContext *FutureSFC =
|
|
Caller->getCalleeStackFrame(BldrCtx->blockCount());
|
|
// Return early if we are unable to reliably foresee
|
|
// the future stack frame.
|
|
if (!FutureSFC)
|
|
return std::nullopt;
|
|
|
|
// This should be equivalent to Caller->getDecl() for now, but
|
|
// FutureSFC->getDecl() is likely to support better stuff (like
|
|
// virtual functions) earlier.
|
|
const Decl *CalleeD = FutureSFC->getDecl();
|
|
|
|
// FIXME: Support for variadic arguments is not implemented here yet.
|
|
if (CallEvent::isVariadic(CalleeD))
|
|
return std::nullopt;
|
|
|
|
// Operator arguments do not correspond to operator parameters
|
|
// because this-argument is implemented as a normal argument in
|
|
// operator call expressions but not in operator declarations.
|
|
const TypedValueRegion *TVR = Caller->getParameterLocation(
|
|
*Caller->getAdjustedParameterIndex(Idx), BldrCtx->blockCount());
|
|
if (!TVR)
|
|
return std::nullopt;
|
|
|
|
return loc::MemRegionVal(TVR);
|
|
};
|
|
|
|
if (const auto *CE = dyn_cast<CallExpr>(E)) {
|
|
CallEventRef<> Caller =
|
|
CEMgr.getSimpleCall(CE, State, LCtx, getCFGElementRef());
|
|
if (std::optional<SVal> V = getArgLoc(Caller))
|
|
return *V;
|
|
else
|
|
break;
|
|
} else if (const auto *CCE = dyn_cast<CXXConstructExpr>(E)) {
|
|
// Don't bother figuring out the target region for the future
|
|
// constructor because we won't need it.
|
|
CallEventRef<> Caller = CEMgr.getCXXConstructorCall(
|
|
CCE, /*Target=*/nullptr, State, LCtx, getCFGElementRef());
|
|
if (std::optional<SVal> V = getArgLoc(Caller))
|
|
return *V;
|
|
else
|
|
break;
|
|
} else if (const auto *ME = dyn_cast<ObjCMessageExpr>(E)) {
|
|
CallEventRef<> Caller =
|
|
CEMgr.getObjCMethodCall(ME, State, LCtx, getCFGElementRef());
|
|
if (std::optional<SVal> V = getArgLoc(Caller))
|
|
return *V;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
} // switch (CC->getKind())
|
|
}
|
|
|
|
// If we couldn't find an existing region to construct into, assume we're
|
|
// constructing a temporary. Notify the caller of our failure.
|
|
CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion = true;
|
|
return loc::MemRegionVal(MRMgr.getCXXTempObjectRegion(E, LCtx));
|
|
}
|
|
|
|
ProgramStateRef ExprEngine::updateObjectsUnderConstruction(
|
|
SVal V, const Expr *E, ProgramStateRef State, const LocationContext *LCtx,
|
|
const ConstructionContext *CC, const EvalCallOptions &CallOpts) {
|
|
if (CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion) {
|
|
// Sounds like we failed to find the target region and therefore
|
|
// copy elision failed. There's nothing we can do about it here.
|
|
return State;
|
|
}
|
|
|
|
// See if we're constructing an existing region by looking at the
|
|
// current construction context.
|
|
assert(CC && "Computed target region without construction context?");
|
|
switch (CC->getKind()) {
|
|
case ConstructionContext::CXX17ElidedCopyVariableKind:
|
|
case ConstructionContext::SimpleVariableKind: {
|
|
const auto *DSCC = cast<VariableConstructionContext>(CC);
|
|
return addObjectUnderConstruction(State, DSCC->getDeclStmt(), LCtx, V);
|
|
}
|
|
case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind:
|
|
case ConstructionContext::SimpleConstructorInitializerKind: {
|
|
const auto *ICC = cast<ConstructorInitializerConstructionContext>(CC);
|
|
const auto *Init = ICC->getCXXCtorInitializer();
|
|
// Base and delegating initializers handled above
|
|
assert(Init->isAnyMemberInitializer() &&
|
|
"Base and delegating initializers should have been handled by"
|
|
"computeObjectUnderConstruction()");
|
|
return addObjectUnderConstruction(State, Init, LCtx, V);
|
|
}
|
|
case ConstructionContext::NewAllocatedObjectKind: {
|
|
return State;
|
|
}
|
|
case ConstructionContext::SimpleReturnedValueKind:
|
|
case ConstructionContext::CXX17ElidedCopyReturnedValueKind: {
|
|
const StackFrameContext *SFC = LCtx->getStackFrame();
|
|
const LocationContext *CallerLCtx = SFC->getParent();
|
|
if (!CallerLCtx) {
|
|
// No extra work is necessary in top frame.
|
|
return State;
|
|
}
|
|
|
|
auto RTC = (*SFC->getCallSiteBlock())[SFC->getIndex()]
|
|
.getAs<CFGCXXRecordTypedCall>();
|
|
assert(RTC && "Could not have had a target region without it");
|
|
if (isa<BlockInvocationContext>(CallerLCtx)) {
|
|
// Unwrap block invocation contexts. They're mostly part of
|
|
// the current stack frame.
|
|
CallerLCtx = CallerLCtx->getParent();
|
|
assert(!isa<BlockInvocationContext>(CallerLCtx));
|
|
}
|
|
|
|
return updateObjectsUnderConstruction(V,
|
|
cast<Expr>(SFC->getCallSite()), State, CallerLCtx,
|
|
RTC->getConstructionContext(), CallOpts);
|
|
}
|
|
case ConstructionContext::ElidedTemporaryObjectKind: {
|
|
assert(AMgr.getAnalyzerOptions().ShouldElideConstructors);
|
|
if (!CallOpts.IsElidableCtorThatHasNotBeenElided) {
|
|
const auto *TCC = cast<ElidedTemporaryObjectConstructionContext>(CC);
|
|
State = updateObjectsUnderConstruction(
|
|
V, TCC->getConstructorAfterElision(), State, LCtx,
|
|
TCC->getConstructionContextAfterElision(), CallOpts);
|
|
|
|
// Remember that we've elided the constructor.
|
|
State = addObjectUnderConstruction(
|
|
State, TCC->getConstructorAfterElision(), LCtx, V);
|
|
|
|
// Remember that we've elided the destructor.
|
|
if (const auto *BTE = TCC->getCXXBindTemporaryExpr())
|
|
State = elideDestructor(State, BTE, LCtx);
|
|
|
|
// Instead of materialization, shamelessly return
|
|
// the final object destination.
|
|
if (const auto *MTE = TCC->getMaterializedTemporaryExpr())
|
|
State = addObjectUnderConstruction(State, MTE, LCtx, V);
|
|
|
|
return State;
|
|
}
|
|
// If we decided not to elide the constructor, proceed as if
|
|
// it's a simple temporary.
|
|
[[fallthrough]];
|
|
}
|
|
case ConstructionContext::SimpleTemporaryObjectKind: {
|
|
const auto *TCC = cast<TemporaryObjectConstructionContext>(CC);
|
|
if (const auto *BTE = TCC->getCXXBindTemporaryExpr())
|
|
State = addObjectUnderConstruction(State, BTE, LCtx, V);
|
|
|
|
if (const auto *MTE = TCC->getMaterializedTemporaryExpr())
|
|
State = addObjectUnderConstruction(State, MTE, LCtx, V);
|
|
|
|
return State;
|
|
}
|
|
case ConstructionContext::LambdaCaptureKind: {
|
|
const auto *LCC = cast<LambdaCaptureConstructionContext>(CC);
|
|
|
|
// If we capture and array, we want to store the super region, not a
|
|
// sub-region.
|
|
if (const auto *EL = dyn_cast_or_null<ElementRegion>(V.getAsRegion()))
|
|
V = loc::MemRegionVal(EL->getSuperRegion());
|
|
|
|
return addObjectUnderConstruction(
|
|
State, {LCC->getLambdaExpr(), LCC->getIndex()}, LCtx, V);
|
|
}
|
|
case ConstructionContext::ArgumentKind: {
|
|
const auto *ACC = cast<ArgumentConstructionContext>(CC);
|
|
if (const auto *BTE = ACC->getCXXBindTemporaryExpr())
|
|
State = addObjectUnderConstruction(State, BTE, LCtx, V);
|
|
|
|
return addObjectUnderConstruction(
|
|
State, {ACC->getCallLikeExpr(), ACC->getIndex()}, LCtx, V);
|
|
}
|
|
}
|
|
llvm_unreachable("Unhandled construction context!");
|
|
}
|
|
|
|
static ProgramStateRef
|
|
bindRequiredArrayElementToEnvironment(ProgramStateRef State,
|
|
const ArrayInitLoopExpr *AILE,
|
|
const LocationContext *LCtx, SVal Idx) {
|
|
// The ctor in this case is guaranteed to be a copy ctor, otherwise we hit a
|
|
// compile time error.
|
|
//
|
|
// -ArrayInitLoopExpr <-- we're here
|
|
// |-OpaqueValueExpr
|
|
// | `-DeclRefExpr <-- match this
|
|
// `-CXXConstructExpr
|
|
// `-ImplicitCastExpr
|
|
// `-ArraySubscriptExpr
|
|
// |-ImplicitCastExpr
|
|
// | `-OpaqueValueExpr
|
|
// | `-DeclRefExpr
|
|
// `-ArrayInitIndexExpr
|
|
//
|
|
// The resulting expression might look like the one below in an implicit
|
|
// copy/move ctor.
|
|
//
|
|
// ArrayInitLoopExpr <-- we're here
|
|
// |-OpaqueValueExpr
|
|
// | `-MemberExpr <-- match this
|
|
// | (`-CXXStaticCastExpr) <-- move ctor only
|
|
// | `-DeclRefExpr
|
|
// `-CXXConstructExpr
|
|
// `-ArraySubscriptExpr
|
|
// |-ImplicitCastExpr
|
|
// | `-OpaqueValueExpr
|
|
// | `-MemberExpr
|
|
// | `-DeclRefExpr
|
|
// `-ArrayInitIndexExpr
|
|
//
|
|
// The resulting expression for a multidimensional array.
|
|
// ArrayInitLoopExpr <-- we're here
|
|
// |-OpaqueValueExpr
|
|
// | `-DeclRefExpr <-- match this
|
|
// `-ArrayInitLoopExpr
|
|
// |-OpaqueValueExpr
|
|
// | `-ArraySubscriptExpr
|
|
// | |-ImplicitCastExpr
|
|
// | | `-OpaqueValueExpr
|
|
// | | `-DeclRefExpr
|
|
// | `-ArrayInitIndexExpr
|
|
// `-CXXConstructExpr <-- extract this
|
|
// ` ...
|
|
|
|
const auto *OVESrc = AILE->getCommonExpr()->getSourceExpr();
|
|
|
|
// HACK: There is no way we can put the index of the array element into the
|
|
// CFG unless we unroll the loop, so we manually select and bind the required
|
|
// parameter to the environment.
|
|
const auto *CE =
|
|
cast<CXXConstructExpr>(extractElementInitializerFromNestedAILE(AILE));
|
|
|
|
SVal Base = UnknownVal();
|
|
if (const auto *ME = dyn_cast<MemberExpr>(OVESrc))
|
|
Base = State->getSVal(ME, LCtx);
|
|
else if (const auto *DRE = dyn_cast<DeclRefExpr>(OVESrc))
|
|
Base = State->getLValue(cast<VarDecl>(DRE->getDecl()), LCtx);
|
|
else
|
|
llvm_unreachable("ArrayInitLoopExpr contains unexpected source expression");
|
|
|
|
SVal NthElem = State->getLValue(CE->getType(), Idx, Base);
|
|
|
|
return State->BindExpr(CE->getArg(0), LCtx, NthElem);
|
|
}
|
|
|
|
void ExprEngine::handleConstructor(const Expr *E,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &destNodes) {
|
|
const auto *CE = dyn_cast<CXXConstructExpr>(E);
|
|
const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(E);
|
|
assert(CE || CIE);
|
|
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
ProgramStateRef State = Pred->getState();
|
|
|
|
SVal Target = UnknownVal();
|
|
|
|
if (CE) {
|
|
if (std::optional<SVal> ElidedTarget =
|
|
getObjectUnderConstruction(State, CE, LCtx)) {
|
|
// We've previously modeled an elidable constructor by pretending that
|
|
// it in fact constructs into the correct target. This constructor can
|
|
// therefore be skipped.
|
|
Target = *ElidedTarget;
|
|
StmtNodeBuilder Bldr(Pred, destNodes, *currBldrCtx);
|
|
State = finishObjectConstruction(State, CE, LCtx);
|
|
if (auto L = Target.getAs<Loc>())
|
|
State = State->BindExpr(CE, LCtx, State->getSVal(*L, CE->getType()));
|
|
Bldr.generateNode(CE, Pred, State);
|
|
return;
|
|
}
|
|
}
|
|
|
|
EvalCallOptions CallOpts;
|
|
auto C = getCurrentCFGElement().getAs<CFGConstructor>();
|
|
assert(C || getCurrentCFGElement().getAs<CFGStmt>());
|
|
const ConstructionContext *CC = C ? C->getConstructionContext() : nullptr;
|
|
|
|
const CXXConstructExpr::ConstructionKind CK =
|
|
CE ? CE->getConstructionKind() : CIE->getConstructionKind();
|
|
switch (CK) {
|
|
case CXXConstructExpr::CK_Complete: {
|
|
// Inherited constructors are always base class constructors.
|
|
assert(CE && !CIE && "A complete constructor is inherited?!");
|
|
|
|
// If the ctor is part of an ArrayInitLoopExpr, we want to handle it
|
|
// differently.
|
|
auto *AILE = CC ? CC->getArrayInitLoop() : nullptr;
|
|
|
|
unsigned Idx = 0;
|
|
if (CE->getType()->isArrayType() || AILE) {
|
|
|
|
auto isZeroSizeArray = [&] {
|
|
uint64_t Size = 1;
|
|
|
|
if (const auto *CAT = dyn_cast<ConstantArrayType>(CE->getType()))
|
|
Size = getContext().getConstantArrayElementCount(CAT);
|
|
else if (AILE)
|
|
Size = getContext().getArrayInitLoopExprElementCount(AILE);
|
|
|
|
return Size == 0;
|
|
};
|
|
|
|
// No element construction will happen in a 0 size array.
|
|
if (isZeroSizeArray()) {
|
|
StmtNodeBuilder Bldr(Pred, destNodes, *currBldrCtx);
|
|
static SimpleProgramPointTag T{"ExprEngine",
|
|
"Skipping 0 size array construction"};
|
|
Bldr.generateNode(CE, Pred, State, &T);
|
|
return;
|
|
}
|
|
|
|
Idx = getIndexOfElementToConstruct(State, CE, LCtx).value_or(0u);
|
|
State = setIndexOfElementToConstruct(State, CE, LCtx, Idx + 1);
|
|
}
|
|
|
|
if (AILE) {
|
|
// Only set this once even though we loop through it multiple times.
|
|
if (!getPendingInitLoop(State, CE, LCtx))
|
|
State = setPendingInitLoop(
|
|
State, CE, LCtx,
|
|
getContext().getArrayInitLoopExprElementCount(AILE));
|
|
|
|
State = bindRequiredArrayElementToEnvironment(
|
|
State, AILE, LCtx, svalBuilder.makeArrayIndex(Idx));
|
|
}
|
|
|
|
// The target region is found from construction context.
|
|
std::tie(State, Target) = handleConstructionContext(
|
|
CE, State, currBldrCtx, LCtx, CC, CallOpts, Idx);
|
|
break;
|
|
}
|
|
case CXXConstructExpr::CK_VirtualBase: {
|
|
// Make sure we are not calling virtual base class initializers twice.
|
|
// Only the most-derived object should initialize virtual base classes.
|
|
const auto *OuterCtor = dyn_cast_or_null<CXXConstructExpr>(
|
|
LCtx->getStackFrame()->getCallSite());
|
|
assert(
|
|
(!OuterCtor ||
|
|
OuterCtor->getConstructionKind() == CXXConstructExpr::CK_Complete ||
|
|
OuterCtor->getConstructionKind() == CXXConstructExpr::CK_Delegating) &&
|
|
("This virtual base should have already been initialized by "
|
|
"the most derived class!"));
|
|
(void)OuterCtor;
|
|
[[fallthrough]];
|
|
}
|
|
case CXXConstructExpr::CK_NonVirtualBase:
|
|
// In C++17, classes with non-virtual bases may be aggregates, so they would
|
|
// be initialized as aggregates without a constructor call, so we may have
|
|
// a base class constructed directly into an initializer list without
|
|
// having the derived-class constructor call on the previous stack frame.
|
|
// Initializer lists may be nested into more initializer lists that
|
|
// correspond to surrounding aggregate initializations.
|
|
// FIXME: For now this code essentially bails out. We need to find the
|
|
// correct target region and set it.
|
|
// FIXME: Instead of relying on the ParentMap, we should have the
|
|
// trigger-statement (InitListExpr in this case) passed down from CFG or
|
|
// otherwise always available during construction.
|
|
if (isa_and_nonnull<InitListExpr>(LCtx->getParentMap().getParent(E))) {
|
|
MemRegionManager &MRMgr = getSValBuilder().getRegionManager();
|
|
Target = loc::MemRegionVal(MRMgr.getCXXTempObjectRegion(E, LCtx));
|
|
CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion = true;
|
|
break;
|
|
}
|
|
[[fallthrough]];
|
|
case CXXConstructExpr::CK_Delegating: {
|
|
const CXXMethodDecl *CurCtor = cast<CXXMethodDecl>(LCtx->getDecl());
|
|
Loc ThisPtr = getSValBuilder().getCXXThis(CurCtor,
|
|
LCtx->getStackFrame());
|
|
SVal ThisVal = State->getSVal(ThisPtr);
|
|
|
|
if (CK == CXXConstructExpr::CK_Delegating) {
|
|
Target = ThisVal;
|
|
} else {
|
|
// Cast to the base type.
|
|
bool IsVirtual = (CK == CXXConstructExpr::CK_VirtualBase);
|
|
SVal BaseVal =
|
|
getStoreManager().evalDerivedToBase(ThisVal, E->getType(), IsVirtual);
|
|
Target = BaseVal;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (State != Pred->getState()) {
|
|
static SimpleProgramPointTag T("ExprEngine",
|
|
"Prepare for object construction");
|
|
ExplodedNodeSet DstPrepare;
|
|
StmtNodeBuilder BldrPrepare(Pred, DstPrepare, *currBldrCtx);
|
|
BldrPrepare.generateNode(E, Pred, State, &T, ProgramPoint::PreStmtKind);
|
|
assert(DstPrepare.size() <= 1);
|
|
if (DstPrepare.size() == 0)
|
|
return;
|
|
Pred = *BldrPrepare.begin();
|
|
}
|
|
|
|
const MemRegion *TargetRegion = Target.getAsRegion();
|
|
CallEventManager &CEMgr = getStateManager().getCallEventManager();
|
|
CallEventRef<> Call =
|
|
CIE ? (CallEventRef<>)CEMgr.getCXXInheritedConstructorCall(
|
|
CIE, TargetRegion, State, LCtx, getCFGElementRef())
|
|
: (CallEventRef<>)CEMgr.getCXXConstructorCall(
|
|
CE, TargetRegion, State, LCtx, getCFGElementRef());
|
|
|
|
ExplodedNodeSet DstPreVisit;
|
|
getCheckerManager().runCheckersForPreStmt(DstPreVisit, Pred, E, *this);
|
|
|
|
ExplodedNodeSet PreInitialized;
|
|
if (CE) {
|
|
// FIXME: Is it possible and/or useful to do this before PreStmt?
|
|
StmtNodeBuilder Bldr(DstPreVisit, PreInitialized, *currBldrCtx);
|
|
for (ExplodedNodeSet::iterator I = DstPreVisit.begin(),
|
|
E = DstPreVisit.end();
|
|
I != E; ++I) {
|
|
ProgramStateRef State = (*I)->getState();
|
|
if (CE->requiresZeroInitialization()) {
|
|
// FIXME: Once we properly handle constructors in new-expressions, we'll
|
|
// need to invalidate the region before setting a default value, to make
|
|
// sure there aren't any lingering bindings around. This probably needs
|
|
// to happen regardless of whether or not the object is zero-initialized
|
|
// to handle random fields of a placement-initialized object picking up
|
|
// old bindings. We might only want to do it when we need to, though.
|
|
// FIXME: This isn't actually correct for arrays -- we need to zero-
|
|
// initialize the entire array, not just the first element -- but our
|
|
// handling of arrays everywhere else is weak as well, so this shouldn't
|
|
// actually make things worse. Placement new makes this tricky as well,
|
|
// since it's then possible to be initializing one part of a multi-
|
|
// dimensional array.
|
|
State = State->bindDefaultZero(Target, LCtx);
|
|
}
|
|
|
|
Bldr.generateNode(CE, *I, State, /*tag=*/nullptr,
|
|
ProgramPoint::PreStmtKind);
|
|
}
|
|
} else {
|
|
PreInitialized = DstPreVisit;
|
|
}
|
|
|
|
ExplodedNodeSet DstPreCall;
|
|
getCheckerManager().runCheckersForPreCall(DstPreCall, PreInitialized,
|
|
*Call, *this);
|
|
|
|
ExplodedNodeSet DstEvaluated;
|
|
|
|
if (CE && CE->getConstructor()->isTrivial() &&
|
|
CE->getConstructor()->isCopyOrMoveConstructor() &&
|
|
!CallOpts.IsArrayCtorOrDtor) {
|
|
StmtNodeBuilder Bldr(DstPreCall, DstEvaluated, *currBldrCtx);
|
|
// FIXME: Handle other kinds of trivial constructors as well.
|
|
for (ExplodedNodeSet::iterator I = DstPreCall.begin(), E = DstPreCall.end();
|
|
I != E; ++I)
|
|
performTrivialCopy(Bldr, *I, *Call);
|
|
|
|
} else {
|
|
for (ExplodedNodeSet::iterator I = DstPreCall.begin(), E = DstPreCall.end();
|
|
I != E; ++I)
|
|
getCheckerManager().runCheckersForEvalCall(DstEvaluated, *I, *Call, *this,
|
|
CallOpts);
|
|
}
|
|
|
|
// If the CFG was constructed without elements for temporary destructors
|
|
// and the just-called constructor created a temporary object then
|
|
// stop exploration if the temporary object has a noreturn constructor.
|
|
// This can lose coverage because the destructor, if it were present
|
|
// in the CFG, would be called at the end of the full expression or
|
|
// later (for life-time extended temporaries) -- but avoids infeasible
|
|
// paths when no-return temporary destructors are used for assertions.
|
|
ExplodedNodeSet DstEvaluatedPostProcessed;
|
|
StmtNodeBuilder Bldr(DstEvaluated, DstEvaluatedPostProcessed, *currBldrCtx);
|
|
const AnalysisDeclContext *ADC = LCtx->getAnalysisDeclContext();
|
|
if (!ADC->getCFGBuildOptions().AddTemporaryDtors) {
|
|
if (llvm::isa_and_nonnull<CXXTempObjectRegion,
|
|
CXXLifetimeExtendedObjectRegion>(TargetRegion) &&
|
|
cast<CXXConstructorDecl>(Call->getDecl())
|
|
->getParent()
|
|
->isAnyDestructorNoReturn()) {
|
|
|
|
// If we've inlined the constructor, then DstEvaluated would be empty.
|
|
// In this case we still want a sink, which could be implemented
|
|
// in processCallExit. But we don't have that implemented at the moment,
|
|
// so if you hit this assertion, see if you can avoid inlining
|
|
// the respective constructor when analyzer-config cfg-temporary-dtors
|
|
// is set to false.
|
|
// Otherwise there's nothing wrong with inlining such constructor.
|
|
assert(!DstEvaluated.empty() &&
|
|
"We should not have inlined this constructor!");
|
|
|
|
for (ExplodedNode *N : DstEvaluated) {
|
|
Bldr.generateSink(E, N, N->getState());
|
|
}
|
|
|
|
// There is no need to run the PostCall and PostStmt checker
|
|
// callbacks because we just generated sinks on all nodes in th
|
|
// frontier.
|
|
return;
|
|
}
|
|
}
|
|
|
|
ExplodedNodeSet DstPostArgumentCleanup;
|
|
for (ExplodedNode *I : DstEvaluatedPostProcessed)
|
|
finishArgumentConstruction(DstPostArgumentCleanup, I, *Call);
|
|
|
|
// If there were other constructors called for object-type arguments
|
|
// of this constructor, clean them up.
|
|
ExplodedNodeSet DstPostCall;
|
|
getCheckerManager().runCheckersForPostCall(DstPostCall,
|
|
DstPostArgumentCleanup,
|
|
*Call, *this);
|
|
getCheckerManager().runCheckersForPostStmt(destNodes, DstPostCall, E, *this);
|
|
}
|
|
|
|
void ExprEngine::VisitCXXConstructExpr(const CXXConstructExpr *CE,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
handleConstructor(CE, Pred, Dst);
|
|
}
|
|
|
|
void ExprEngine::VisitCXXInheritedCtorInitExpr(
|
|
const CXXInheritedCtorInitExpr *CE, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
handleConstructor(CE, Pred, Dst);
|
|
}
|
|
|
|
void ExprEngine::VisitCXXDestructor(QualType ObjectType,
|
|
const MemRegion *Dest,
|
|
const Stmt *S,
|
|
bool IsBaseDtor,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst,
|
|
EvalCallOptions &CallOpts) {
|
|
assert(S && "A destructor without a trigger!");
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
ProgramStateRef State = Pred->getState();
|
|
|
|
const CXXRecordDecl *RecordDecl = ObjectType->getAsCXXRecordDecl();
|
|
assert(RecordDecl && "Only CXXRecordDecls should have destructors");
|
|
const CXXDestructorDecl *DtorDecl = RecordDecl->getDestructor();
|
|
// FIXME: There should always be a Decl, otherwise the destructor call
|
|
// shouldn't have been added to the CFG in the first place.
|
|
if (!DtorDecl) {
|
|
// Skip the invalid destructor. We cannot simply return because
|
|
// it would interrupt the analysis instead.
|
|
static SimpleProgramPointTag T("ExprEngine", "SkipInvalidDestructor");
|
|
// FIXME: PostImplicitCall with a null decl may crash elsewhere anyway.
|
|
PostImplicitCall PP(/*Decl=*/nullptr, S->getEndLoc(), LCtx,
|
|
getCFGElementRef(), &T);
|
|
NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
Bldr.generateNode(PP, Pred->getState(), Pred);
|
|
return;
|
|
}
|
|
|
|
if (!Dest) {
|
|
// We're trying to destroy something that is not a region. This may happen
|
|
// for a variety of reasons (unknown target region, concrete integer instead
|
|
// of target region, etc.). The current code makes an attempt to recover.
|
|
// FIXME: We probably don't really need to recover when we're dealing
|
|
// with concrete integers specifically.
|
|
CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion = true;
|
|
if (const Expr *E = dyn_cast_or_null<Expr>(S)) {
|
|
Dest = MRMgr.getCXXTempObjectRegion(E, Pred->getLocationContext());
|
|
} else {
|
|
static SimpleProgramPointTag T("ExprEngine", "SkipInvalidDestructor");
|
|
NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
Bldr.generateSink(Pred->getLocation().withTag(&T),
|
|
Pred->getState(), Pred);
|
|
return;
|
|
}
|
|
}
|
|
|
|
CallEventManager &CEMgr = getStateManager().getCallEventManager();
|
|
CallEventRef<CXXDestructorCall> Call = CEMgr.getCXXDestructorCall(
|
|
DtorDecl, S, Dest, IsBaseDtor, State, LCtx, getCFGElementRef());
|
|
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
Call->getSourceRange().getBegin(),
|
|
"Error evaluating destructor");
|
|
|
|
ExplodedNodeSet DstPreCall;
|
|
getCheckerManager().runCheckersForPreCall(DstPreCall, Pred,
|
|
*Call, *this);
|
|
|
|
ExplodedNodeSet DstInvalidated;
|
|
StmtNodeBuilder Bldr(DstPreCall, DstInvalidated, *currBldrCtx);
|
|
for (ExplodedNodeSet::iterator I = DstPreCall.begin(), E = DstPreCall.end();
|
|
I != E; ++I)
|
|
defaultEvalCall(Bldr, *I, *Call, CallOpts);
|
|
|
|
getCheckerManager().runCheckersForPostCall(Dst, DstInvalidated,
|
|
*Call, *this);
|
|
}
|
|
|
|
void ExprEngine::VisitCXXNewAllocatorCall(const CXXNewExpr *CNE,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
ProgramStateRef State = Pred->getState();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
CNE->getBeginLoc(),
|
|
"Error evaluating New Allocator Call");
|
|
CallEventManager &CEMgr = getStateManager().getCallEventManager();
|
|
CallEventRef<CXXAllocatorCall> Call =
|
|
CEMgr.getCXXAllocatorCall(CNE, State, LCtx, getCFGElementRef());
|
|
|
|
ExplodedNodeSet DstPreCall;
|
|
getCheckerManager().runCheckersForPreCall(DstPreCall, Pred,
|
|
*Call, *this);
|
|
|
|
ExplodedNodeSet DstPostCall;
|
|
StmtNodeBuilder CallBldr(DstPreCall, DstPostCall, *currBldrCtx);
|
|
for (ExplodedNode *I : DstPreCall) {
|
|
// FIXME: Provide evalCall for checkers?
|
|
defaultEvalCall(CallBldr, I, *Call);
|
|
}
|
|
// If the call is inlined, DstPostCall will be empty and we bail out now.
|
|
|
|
// Store return value of operator new() for future use, until the actual
|
|
// CXXNewExpr gets processed.
|
|
ExplodedNodeSet DstPostValue;
|
|
StmtNodeBuilder ValueBldr(DstPostCall, DstPostValue, *currBldrCtx);
|
|
for (ExplodedNode *I : DstPostCall) {
|
|
// FIXME: Because CNE serves as the "call site" for the allocator (due to
|
|
// lack of a better expression in the AST), the conjured return value symbol
|
|
// is going to be of the same type (C++ object pointer type). Technically
|
|
// this is not correct because the operator new's prototype always says that
|
|
// it returns a 'void *'. So we should change the type of the symbol,
|
|
// and then evaluate the cast over the symbolic pointer from 'void *' to
|
|
// the object pointer type. But without changing the symbol's type it
|
|
// is breaking too much to evaluate the no-op symbolic cast over it, so we
|
|
// skip it for now.
|
|
ProgramStateRef State = I->getState();
|
|
SVal RetVal = State->getSVal(CNE, LCtx);
|
|
// [basic.stc.dynamic.allocation] (on the return value of an allocation
|
|
// function):
|
|
// "The order, contiguity, and initial value of storage allocated by
|
|
// successive calls to an allocation function are unspecified."
|
|
State = State->bindDefaultInitial(RetVal, UndefinedVal{}, LCtx);
|
|
|
|
// If this allocation function is not declared as non-throwing, failures
|
|
// /must/ be signalled by exceptions, and thus the return value will never
|
|
// be NULL. -fno-exceptions does not influence this semantics.
|
|
// FIXME: GCC has a -fcheck-new option, which forces it to consider the case
|
|
// where new can return NULL. If we end up supporting that option, we can
|
|
// consider adding a check for it here.
|
|
// C++11 [basic.stc.dynamic.allocation]p3.
|
|
if (const FunctionDecl *FD = CNE->getOperatorNew()) {
|
|
QualType Ty = FD->getType();
|
|
if (const auto *ProtoType = Ty->getAs<FunctionProtoType>())
|
|
if (!ProtoType->isNothrow())
|
|
State = State->assume(RetVal.castAs<DefinedOrUnknownSVal>(), true);
|
|
}
|
|
|
|
ValueBldr.generateNode(
|
|
CNE, I, addObjectUnderConstruction(State, CNE, LCtx, RetVal));
|
|
}
|
|
|
|
ExplodedNodeSet DstPostPostCallCallback;
|
|
getCheckerManager().runCheckersForPostCall(DstPostPostCallCallback,
|
|
DstPostValue, *Call, *this);
|
|
for (ExplodedNode *I : DstPostPostCallCallback) {
|
|
getCheckerManager().runCheckersForNewAllocator(*Call, Dst, I, *this);
|
|
}
|
|
}
|
|
|
|
void ExprEngine::VisitCXXNewExpr(const CXXNewExpr *CNE, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
// FIXME: Much of this should eventually migrate to CXXAllocatorCall.
|
|
// Also, we need to decide how allocators actually work -- they're not
|
|
// really part of the CXXNewExpr because they happen BEFORE the
|
|
// CXXConstructExpr subexpression. See PR12014 for some discussion.
|
|
|
|
unsigned blockCount = currBldrCtx->blockCount();
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
SVal symVal = UnknownVal();
|
|
FunctionDecl *FD = CNE->getOperatorNew();
|
|
|
|
bool IsStandardGlobalOpNewFunction =
|
|
FD->isReplaceableGlobalAllocationFunction();
|
|
|
|
ProgramStateRef State = Pred->getState();
|
|
|
|
// Retrieve the stored operator new() return value.
|
|
if (AMgr.getAnalyzerOptions().MayInlineCXXAllocator) {
|
|
symVal = *getObjectUnderConstruction(State, CNE, LCtx);
|
|
State = finishObjectConstruction(State, CNE, LCtx);
|
|
}
|
|
|
|
// We assume all standard global 'operator new' functions allocate memory in
|
|
// heap. We realize this is an approximation that might not correctly model
|
|
// a custom global allocator.
|
|
if (symVal.isUnknown()) {
|
|
if (IsStandardGlobalOpNewFunction)
|
|
symVal = svalBuilder.getConjuredHeapSymbolVal(CNE, LCtx, blockCount);
|
|
else
|
|
symVal = svalBuilder.conjureSymbolVal(nullptr, CNE, LCtx, CNE->getType(),
|
|
blockCount);
|
|
}
|
|
|
|
CallEventManager &CEMgr = getStateManager().getCallEventManager();
|
|
CallEventRef<CXXAllocatorCall> Call =
|
|
CEMgr.getCXXAllocatorCall(CNE, State, LCtx, getCFGElementRef());
|
|
|
|
if (!AMgr.getAnalyzerOptions().MayInlineCXXAllocator) {
|
|
// Invalidate placement args.
|
|
// FIXME: Once we figure out how we want allocators to work,
|
|
// we should be using the usual pre-/(default-)eval-/post-call checkers
|
|
// here.
|
|
State = Call->invalidateRegions(blockCount);
|
|
if (!State)
|
|
return;
|
|
|
|
// If this allocation function is not declared as non-throwing, failures
|
|
// /must/ be signalled by exceptions, and thus the return value will never
|
|
// be NULL. -fno-exceptions does not influence this semantics.
|
|
// FIXME: GCC has a -fcheck-new option, which forces it to consider the case
|
|
// where new can return NULL. If we end up supporting that option, we can
|
|
// consider adding a check for it here.
|
|
// C++11 [basic.stc.dynamic.allocation]p3.
|
|
if (const auto *ProtoType = FD->getType()->getAs<FunctionProtoType>())
|
|
if (!ProtoType->isNothrow())
|
|
if (auto dSymVal = symVal.getAs<DefinedOrUnknownSVal>())
|
|
State = State->assume(*dSymVal, true);
|
|
}
|
|
|
|
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
|
|
SVal Result = symVal;
|
|
|
|
if (CNE->isArray()) {
|
|
|
|
if (const auto *NewReg = cast_or_null<SubRegion>(symVal.getAsRegion())) {
|
|
// If each element is initialized by their default constructor, the field
|
|
// values are properly placed inside the required region, however if an
|
|
// initializer list is used, this doesn't happen automatically.
|
|
auto *Init = CNE->getInitializer();
|
|
bool isInitList = isa_and_nonnull<InitListExpr>(Init);
|
|
|
|
QualType ObjTy =
|
|
isInitList ? Init->getType() : CNE->getType()->getPointeeType();
|
|
const ElementRegion *EleReg =
|
|
MRMgr.getElementRegion(ObjTy, svalBuilder.makeArrayIndex(0), NewReg,
|
|
svalBuilder.getContext());
|
|
Result = loc::MemRegionVal(EleReg);
|
|
|
|
// If the array is list initialized, we bind the initializer list to the
|
|
// memory region here, otherwise we would lose it.
|
|
if (isInitList) {
|
|
Bldr.takeNodes(Pred);
|
|
Pred = Bldr.generateNode(CNE, Pred, State);
|
|
|
|
SVal V = State->getSVal(Init, LCtx);
|
|
ExplodedNodeSet evaluated;
|
|
evalBind(evaluated, CNE, Pred, Result, V, true);
|
|
|
|
Bldr.takeNodes(Pred);
|
|
Bldr.addNodes(evaluated);
|
|
|
|
Pred = *evaluated.begin();
|
|
State = Pred->getState();
|
|
}
|
|
}
|
|
|
|
State = State->BindExpr(CNE, Pred->getLocationContext(), Result);
|
|
Bldr.generateNode(CNE, Pred, State);
|
|
return;
|
|
}
|
|
|
|
// FIXME: Once we have proper support for CXXConstructExprs inside
|
|
// CXXNewExpr, we need to make sure that the constructed object is not
|
|
// immediately invalidated here. (The placement call should happen before
|
|
// the constructor call anyway.)
|
|
if (FD->isReservedGlobalPlacementOperator()) {
|
|
// Non-array placement new should always return the placement location.
|
|
SVal PlacementLoc = State->getSVal(CNE->getPlacementArg(0), LCtx);
|
|
Result = svalBuilder.evalCast(PlacementLoc, CNE->getType(),
|
|
CNE->getPlacementArg(0)->getType());
|
|
}
|
|
|
|
// Bind the address of the object, then check to see if we cached out.
|
|
State = State->BindExpr(CNE, LCtx, Result);
|
|
ExplodedNode *NewN = Bldr.generateNode(CNE, Pred, State);
|
|
if (!NewN)
|
|
return;
|
|
|
|
// If the type is not a record, we won't have a CXXConstructExpr as an
|
|
// initializer. Copy the value over.
|
|
if (const Expr *Init = CNE->getInitializer()) {
|
|
if (!isa<CXXConstructExpr>(Init)) {
|
|
assert(Bldr.getResults().size() == 1);
|
|
Bldr.takeNodes(NewN);
|
|
evalBind(Dst, CNE, NewN, Result, State->getSVal(Init, LCtx),
|
|
/*FirstInit=*/IsStandardGlobalOpNewFunction);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExprEngine::VisitCXXDeleteExpr(const CXXDeleteExpr *CDE,
|
|
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
|
|
|
|
CallEventManager &CEMgr = getStateManager().getCallEventManager();
|
|
CallEventRef<CXXDeallocatorCall> Call = CEMgr.getCXXDeallocatorCall(
|
|
CDE, Pred->getState(), Pred->getLocationContext(), getCFGElementRef());
|
|
|
|
ExplodedNodeSet DstPreCall;
|
|
getCheckerManager().runCheckersForPreCall(DstPreCall, Pred, *Call, *this);
|
|
ExplodedNodeSet DstPostCall;
|
|
|
|
if (AMgr.getAnalyzerOptions().MayInlineCXXAllocator) {
|
|
StmtNodeBuilder Bldr(DstPreCall, DstPostCall, *currBldrCtx);
|
|
for (ExplodedNode *I : DstPreCall) {
|
|
defaultEvalCall(Bldr, I, *Call);
|
|
}
|
|
} else {
|
|
DstPostCall = DstPreCall;
|
|
}
|
|
getCheckerManager().runCheckersForPostCall(Dst, DstPostCall, *Call, *this);
|
|
}
|
|
|
|
void ExprEngine::VisitCXXCatchStmt(const CXXCatchStmt *CS, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
const VarDecl *VD = CS->getExceptionDecl();
|
|
if (!VD) {
|
|
Dst.Add(Pred);
|
|
return;
|
|
}
|
|
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
SVal V = svalBuilder.conjureSymbolVal(CS, LCtx, VD->getType(),
|
|
currBldrCtx->blockCount());
|
|
ProgramStateRef state = Pred->getState();
|
|
state = state->bindLoc(state->getLValue(VD, LCtx), V, LCtx);
|
|
|
|
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
Bldr.generateNode(CS, Pred, state);
|
|
}
|
|
|
|
void ExprEngine::VisitCXXThisExpr(const CXXThisExpr *TE, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
|
|
|
|
// Get the this object region from StoreManager.
|
|
const LocationContext *LCtx = Pred->getLocationContext();
|
|
const MemRegion *R =
|
|
svalBuilder.getRegionManager().getCXXThisRegion(
|
|
getContext().getCanonicalType(TE->getType()),
|
|
LCtx);
|
|
|
|
ProgramStateRef state = Pred->getState();
|
|
SVal V = state->getSVal(loc::MemRegionVal(R));
|
|
Bldr.generateNode(TE, Pred, state->BindExpr(TE, LCtx, V));
|
|
}
|
|
|
|
void ExprEngine::VisitLambdaExpr(const LambdaExpr *LE, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
const LocationContext *LocCtxt = Pred->getLocationContext();
|
|
|
|
// Get the region of the lambda itself.
|
|
const MemRegion *R = svalBuilder.getRegionManager().getCXXTempObjectRegion(
|
|
LE, LocCtxt);
|
|
SVal V = loc::MemRegionVal(R);
|
|
|
|
ProgramStateRef State = Pred->getState();
|
|
|
|
// If we created a new MemRegion for the lambda, we should explicitly bind
|
|
// the captures.
|
|
unsigned Idx = 0;
|
|
CXXRecordDecl::field_iterator CurField = LE->getLambdaClass()->field_begin();
|
|
for (LambdaExpr::const_capture_init_iterator i = LE->capture_init_begin(),
|
|
e = LE->capture_init_end();
|
|
i != e; ++i, ++CurField, ++Idx) {
|
|
FieldDecl *FieldForCapture = *CurField;
|
|
SVal FieldLoc = State->getLValue(FieldForCapture, V);
|
|
|
|
SVal InitVal;
|
|
if (!FieldForCapture->hasCapturedVLAType()) {
|
|
const Expr *InitExpr = *i;
|
|
|
|
assert(InitExpr && "Capture missing initialization expression");
|
|
|
|
// Capturing a 0 length array is a no-op, so we ignore it to get a more
|
|
// accurate analysis. If it's not ignored, it would set the default
|
|
// binding of the lambda to 'Unknown', which can lead to falsely detecting
|
|
// 'Uninitialized' values as 'Unknown' and not reporting a warning.
|
|
const auto FTy = FieldForCapture->getType();
|
|
if (FTy->isConstantArrayType() &&
|
|
getContext().getConstantArrayElementCount(
|
|
getContext().getAsConstantArrayType(FTy)) == 0)
|
|
continue;
|
|
|
|
// With C++17 copy elision the InitExpr can be anything, so instead of
|
|
// pattern matching all cases, we simple check if the current field is
|
|
// under construction or not, regardless what it's InitExpr is.
|
|
if (const auto OUC =
|
|
getObjectUnderConstruction(State, {LE, Idx}, LocCtxt)) {
|
|
InitVal = State->getSVal(OUC->getAsRegion());
|
|
|
|
State = finishObjectConstruction(State, {LE, Idx}, LocCtxt);
|
|
} else
|
|
InitVal = State->getSVal(InitExpr, LocCtxt);
|
|
|
|
} else {
|
|
|
|
assert(!getObjectUnderConstruction(State, {LE, Idx}, LocCtxt) &&
|
|
"VLA capture by value is a compile time error!");
|
|
|
|
// The field stores the length of a captured variable-length array.
|
|
// These captures don't have initialization expressions; instead we
|
|
// get the length from the VLAType size expression.
|
|
Expr *SizeExpr = FieldForCapture->getCapturedVLAType()->getSizeExpr();
|
|
InitVal = State->getSVal(SizeExpr, LocCtxt);
|
|
}
|
|
|
|
State = State->bindLoc(FieldLoc, InitVal, LocCtxt);
|
|
}
|
|
|
|
// Decay the Loc into an RValue, because there might be a
|
|
// MaterializeTemporaryExpr node above this one which expects the bound value
|
|
// to be an RValue.
|
|
SVal LambdaRVal = State->getSVal(R);
|
|
|
|
ExplodedNodeSet Tmp;
|
|
StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
|
|
// FIXME: is this the right program point kind?
|
|
Bldr.generateNode(LE, Pred,
|
|
State->BindExpr(LE, LocCtxt, LambdaRVal),
|
|
nullptr, ProgramPoint::PostLValueKind);
|
|
|
|
// FIXME: Move all post/pre visits to ::Visit().
|
|
getCheckerManager().runCheckersForPostStmt(Dst, Tmp, LE, *this);
|
|
}
|