llvm-project/mlir/lib/Target/LLVMIR/ModuleTranslation.cpp
Tobias Gysi fef08da4b7 [mlir][llvm] Store memory op metadata using op attributes.
The revision introduces operation attributes to store tbaa metadata on
load and store operations rather than relying using dialect attributes.
At the same time, the change also ensures the provided getters and
setters instead are used instead of a string based lookup. The latter
is done for the tbaa, access groups, and alias scope attributes.

The goal of this change is to ensure the metadata attributes are only
placed on operations that have the corresponding operation attributes.
This is imported since only these operations later on translate these
attributes to LLVM IR. Dialect attributes placed on other operations
are lost during the translation.

Reviewed By: vzakhari, Dinistro

Differential Revision: https://reviews.llvm.org/D143654
2023-02-10 15:27:25 +01:00

1363 lines
55 KiB
C++

//===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the translation between an MLIR LLVM dialect module and
// the corresponding LLVMIR module. It only handles core LLVM IR operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "AttrKindDetail.h"
#include "DebugTranslation.h"
#include "LoopAnnotationTranslation.h"
#include "mlir/Dialect/DLTI/DLTI.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/RegionGraphTraits.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
#include "mlir/Target/LLVMIR/TypeToLLVM.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <optional>
using namespace mlir;
using namespace mlir::LLVM;
using namespace mlir::LLVM::detail;
#include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
/// Translates the given data layout spec attribute to the LLVM IR data layout.
/// Only integer, float, pointer and endianness entries are currently supported.
static FailureOr<llvm::DataLayout>
translateDataLayout(DataLayoutSpecInterface attribute,
const DataLayout &dataLayout,
std::optional<Location> loc = std::nullopt) {
if (!loc)
loc = UnknownLoc::get(attribute.getContext());
// Translate the endianness attribute.
std::string llvmDataLayout;
llvm::raw_string_ostream layoutStream(llvmDataLayout);
for (DataLayoutEntryInterface entry : attribute.getEntries()) {
auto key = entry.getKey().dyn_cast<StringAttr>();
if (!key)
continue;
if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) {
auto value = entry.getValue().cast<StringAttr>();
bool isLittleEndian =
value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle;
layoutStream << (isLittleEndian ? "e" : "E");
layoutStream.flush();
continue;
}
emitError(*loc) << "unsupported data layout key " << key;
return failure();
}
// Go through the list of entries to check which types are explicitly
// specified in entries. Where possible, data layout queries are used instead
// of directly inspecting the entries.
for (DataLayoutEntryInterface entry : attribute.getEntries()) {
auto type = entry.getKey().dyn_cast<Type>();
if (!type)
continue;
// Data layout for the index type is irrelevant at this point.
if (type.isa<IndexType>())
continue;
layoutStream << "-";
LogicalResult result =
llvm::TypeSwitch<Type, LogicalResult>(type)
.Case<IntegerType, Float16Type, Float32Type, Float64Type,
Float80Type, Float128Type>([&](Type type) -> LogicalResult {
if (auto intType = type.dyn_cast<IntegerType>()) {
if (intType.getSignedness() != IntegerType::Signless)
return emitError(*loc)
<< "unsupported data layout for non-signless integer "
<< intType;
layoutStream << "i";
} else {
layoutStream << "f";
}
unsigned size = dataLayout.getTypeSizeInBits(type);
unsigned abi = dataLayout.getTypeABIAlignment(type) * 8u;
unsigned preferred =
dataLayout.getTypePreferredAlignment(type) * 8u;
layoutStream << size << ":" << abi;
if (abi != preferred)
layoutStream << ":" << preferred;
return success();
})
.Case([&](LLVMPointerType ptrType) {
layoutStream << "p" << ptrType.getAddressSpace() << ":";
unsigned size = dataLayout.getTypeSizeInBits(type);
unsigned abi = dataLayout.getTypeABIAlignment(type) * 8u;
unsigned preferred =
dataLayout.getTypePreferredAlignment(type) * 8u;
layoutStream << size << ":" << abi << ":" << preferred;
if (std::optional<unsigned> index = extractPointerSpecValue(
entry.getValue(), PtrDLEntryPos::Index))
layoutStream << ":" << *index;
return success();
})
.Default([loc](Type type) {
return emitError(*loc)
<< "unsupported type in data layout: " << type;
});
if (failed(result))
return failure();
}
layoutStream.flush();
StringRef layoutSpec(llvmDataLayout);
if (layoutSpec.startswith("-"))
layoutSpec = layoutSpec.drop_front();
return llvm::DataLayout(layoutSpec);
}
/// Builds a constant of a sequential LLVM type `type`, potentially containing
/// other sequential types recursively, from the individual constant values
/// provided in `constants`. `shape` contains the number of elements in nested
/// sequential types. Reports errors at `loc` and returns nullptr on error.
static llvm::Constant *
buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
ArrayRef<int64_t> shape, llvm::Type *type,
Location loc) {
if (shape.empty()) {
llvm::Constant *result = constants.front();
constants = constants.drop_front();
return result;
}
llvm::Type *elementType;
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
elementType = arrayTy->getElementType();
} else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
elementType = vectorTy->getElementType();
} else {
emitError(loc) << "expected sequential LLVM types wrapping a scalar";
return nullptr;
}
SmallVector<llvm::Constant *, 8> nested;
nested.reserve(shape.front());
for (int64_t i = 0; i < shape.front(); ++i) {
nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
elementType, loc));
if (!nested.back())
return nullptr;
}
if (shape.size() == 1 && type->isVectorTy())
return llvm::ConstantVector::get(nested);
return llvm::ConstantArray::get(
llvm::ArrayType::get(elementType, shape.front()), nested);
}
/// Returns the first non-sequential type nested in sequential types.
static llvm::Type *getInnermostElementType(llvm::Type *type) {
do {
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
type = arrayTy->getElementType();
} else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
type = vectorTy->getElementType();
} else {
return type;
}
} while (true);
}
/// Convert a dense elements attribute to an LLVM IR constant using its raw data
/// storage if possible. This supports elements attributes of tensor or vector
/// type and avoids constructing separate objects for individual values of the
/// innermost dimension. Constants for other dimensions are still constructed
/// recursively. Returns null if constructing from raw data is not supported for
/// this type, e.g., element type is not a power-of-two-sized primitive. Reports
/// other errors at `loc`.
static llvm::Constant *
convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
llvm::Type *llvmType,
const ModuleTranslation &moduleTranslation) {
if (!denseElementsAttr)
return nullptr;
llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType))
return nullptr;
ShapedType type = denseElementsAttr.getType();
if (type.getNumElements() == 0)
return nullptr;
// Compute the shape of all dimensions but the innermost. Note that the
// innermost dimension may be that of the vector element type.
bool hasVectorElementType = type.getElementType().isa<VectorType>();
unsigned numAggregates =
denseElementsAttr.getNumElements() /
(hasVectorElementType ? 1
: denseElementsAttr.getType().getShape().back());
ArrayRef<int64_t> outerShape = type.getShape();
if (!hasVectorElementType)
outerShape = outerShape.drop_back();
// Handle the case of vector splat, LLVM has special support for it.
if (denseElementsAttr.isSplat() &&
(type.isa<VectorType>() || hasVectorElementType)) {
llvm::Constant *splatValue = LLVM::detail::getLLVMConstant(
innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc,
moduleTranslation);
llvm::Constant *splatVector =
llvm::ConstantDataVector::getSplat(0, splatValue);
SmallVector<llvm::Constant *> constants(numAggregates, splatVector);
ArrayRef<llvm::Constant *> constantsRef = constants;
return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
}
if (denseElementsAttr.isSplat())
return nullptr;
// In case of non-splat, create a constructor for the innermost constant from
// a piece of raw data.
std::function<llvm::Constant *(StringRef)> buildCstData;
if (type.isa<TensorType>()) {
auto vectorElementType = type.getElementType().dyn_cast<VectorType>();
if (vectorElementType && vectorElementType.getRank() == 1) {
buildCstData = [&](StringRef data) {
return llvm::ConstantDataVector::getRaw(
data, vectorElementType.getShape().back(), innermostLLVMType);
};
} else if (!vectorElementType) {
buildCstData = [&](StringRef data) {
return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
innermostLLVMType);
};
}
} else if (type.isa<VectorType>()) {
buildCstData = [&](StringRef data) {
return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
innermostLLVMType);
};
}
if (!buildCstData)
return nullptr;
// Create innermost constants and defer to the default constant creation
// mechanism for other dimensions.
SmallVector<llvm::Constant *> constants;
unsigned aggregateSize = denseElementsAttr.getType().getShape().back() *
(innermostLLVMType->getScalarSizeInBits() / 8);
constants.reserve(numAggregates);
for (unsigned i = 0; i < numAggregates; ++i) {
StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize,
aggregateSize);
constants.push_back(buildCstData(data));
}
ArrayRef<llvm::Constant *> constantsRef = constants;
return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
}
/// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
/// This currently supports integer, floating point, splat and dense element
/// attributes and combinations thereof. Also, an array attribute with two
/// elements is supported to represent a complex constant. In case of error,
/// report it to `loc` and return nullptr.
llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
llvm::Type *llvmType, Attribute attr, Location loc,
const ModuleTranslation &moduleTranslation) {
if (!attr)
return llvm::UndefValue::get(llvmType);
if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
auto arrayAttr = attr.dyn_cast<ArrayAttr>();
if (!arrayAttr || arrayAttr.size() != 2) {
emitError(loc, "expected struct type to be a complex number");
return nullptr;
}
llvm::Type *elementType = structType->getElementType(0);
llvm::Constant *real =
getLLVMConstant(elementType, arrayAttr[0], loc, moduleTranslation);
if (!real)
return nullptr;
llvm::Constant *imag =
getLLVMConstant(elementType, arrayAttr[1], loc, moduleTranslation);
if (!imag)
return nullptr;
return llvm::ConstantStruct::get(structType, {real, imag});
}
// For integer types, we allow a mismatch in sizes as the index type in
// MLIR might have a different size than the index type in the LLVM module.
if (auto intAttr = attr.dyn_cast<IntegerAttr>())
return llvm::ConstantInt::get(
llvmType,
intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
if (auto floatAttr = attr.dyn_cast<FloatAttr>()) {
if (llvmType !=
llvm::Type::getFloatingPointTy(llvmType->getContext(),
floatAttr.getValue().getSemantics())) {
emitError(loc, "FloatAttr does not match expected type of the constant");
return nullptr;
}
return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
}
if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
return llvm::ConstantExpr::getBitCast(
moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
llvm::Type *elementType;
uint64_t numElements;
bool isScalable = false;
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
elementType = arrayTy->getElementType();
numElements = arrayTy->getNumElements();
} else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) {
elementType = fVectorTy->getElementType();
numElements = fVectorTy->getNumElements();
} else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) {
elementType = sVectorTy->getElementType();
numElements = sVectorTy->getMinNumElements();
isScalable = true;
} else {
llvm_unreachable("unrecognized constant vector type");
}
// Splat value is a scalar. Extract it only if the element type is not
// another sequence type. The recursion terminates because each step removes
// one outer sequential type.
bool elementTypeSequential =
isa<llvm::ArrayType, llvm::VectorType>(elementType);
llvm::Constant *child = getLLVMConstant(
elementType,
elementTypeSequential ? splatAttr
: splatAttr.getSplatValue<Attribute>(),
loc, moduleTranslation);
if (!child)
return nullptr;
if (llvmType->isVectorTy())
return llvm::ConstantVector::getSplat(
llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child);
if (llvmType->isArrayTy()) {
auto *arrayType = llvm::ArrayType::get(elementType, numElements);
SmallVector<llvm::Constant *, 8> constants(numElements, child);
return llvm::ConstantArray::get(arrayType, constants);
}
}
// Try using raw elements data if possible.
if (llvm::Constant *result =
convertDenseElementsAttr(loc, attr.dyn_cast<DenseElementsAttr>(),
llvmType, moduleTranslation)) {
return result;
}
// Fall back to element-by-element construction otherwise.
if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
assert(elementsAttr.getType().hasStaticShape());
assert(!elementsAttr.getType().getShape().empty() &&
"unexpected empty elements attribute shape");
SmallVector<llvm::Constant *, 8> constants;
constants.reserve(elementsAttr.getNumElements());
llvm::Type *innermostType = getInnermostElementType(llvmType);
for (auto n : elementsAttr.getValues<Attribute>()) {
constants.push_back(
getLLVMConstant(innermostType, n, loc, moduleTranslation));
if (!constants.back())
return nullptr;
}
ArrayRef<llvm::Constant *> constantsRef = constants;
llvm::Constant *result = buildSequentialConstant(
constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
assert(constantsRef.empty() && "did not consume all elemental constants");
return result;
}
if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
return llvm::ConstantDataArray::get(
moduleTranslation.getLLVMContext(),
ArrayRef<char>{stringAttr.getValue().data(),
stringAttr.getValue().size()});
}
emitError(loc, "unsupported constant value");
return nullptr;
}
ModuleTranslation::ModuleTranslation(Operation *module,
std::unique_ptr<llvm::Module> llvmModule)
: mlirModule(module), llvmModule(std::move(llvmModule)),
debugTranslation(
std::make_unique<DebugTranslation>(module, *this->llvmModule)),
loopAnnotationTranslation(
std::make_unique<LoopAnnotationTranslation>(*this)),
typeTranslator(this->llvmModule->getContext()),
iface(module->getContext()) {
assert(satisfiesLLVMModule(mlirModule) &&
"mlirModule should honor LLVM's module semantics.");
}
ModuleTranslation::~ModuleTranslation() {
if (ompBuilder)
ompBuilder->finalize();
}
void ModuleTranslation::forgetMapping(Region &region) {
SmallVector<Region *> toProcess;
toProcess.push_back(&region);
while (!toProcess.empty()) {
Region *current = toProcess.pop_back_val();
for (Block &block : *current) {
blockMapping.erase(&block);
for (Value arg : block.getArguments())
valueMapping.erase(arg);
for (Operation &op : block) {
for (Value value : op.getResults())
valueMapping.erase(value);
if (op.hasSuccessors())
branchMapping.erase(&op);
if (isa<LLVM::GlobalOp>(op))
globalsMapping.erase(&op);
accessGroupMetadataMapping.erase(&op);
llvm::append_range(
toProcess,
llvm::map_range(op.getRegions(), [](Region &r) { return &r; }));
}
}
}
}
/// Get the SSA value passed to the current block from the terminator operation
/// of its predecessor.
static Value getPHISourceValue(Block *current, Block *pred,
unsigned numArguments, unsigned index) {
Operation &terminator = *pred->getTerminator();
if (isa<LLVM::BrOp>(terminator))
return terminator.getOperand(index);
#ifndef NDEBUG
llvm::SmallPtrSet<Block *, 4> seenSuccessors;
for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) {
Block *successor = terminator.getSuccessor(i);
auto branch = cast<BranchOpInterface>(terminator);
SuccessorOperands successorOperands = branch.getSuccessorOperands(i);
assert(
(!seenSuccessors.contains(successor) || successorOperands.empty()) &&
"successors with arguments in LLVM branches must be different blocks");
seenSuccessors.insert(successor);
}
#endif
// For instructions that branch based on a condition value, we need to take
// the operands for the branch that was taken.
if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
// For conditional branches, we take the operands from either the "true" or
// the "false" branch.
return condBranchOp.getSuccessor(0) == current
? condBranchOp.getTrueDestOperands()[index]
: condBranchOp.getFalseDestOperands()[index];
}
if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
// For switches, we take the operands from either the default case, or from
// the case branch that was taken.
if (switchOp.getDefaultDestination() == current)
return switchOp.getDefaultOperands()[index];
for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations()))
if (i.value() == current)
return switchOp.getCaseOperands(i.index())[index];
}
if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) {
return invokeOp.getNormalDest() == current
? invokeOp.getNormalDestOperands()[index]
: invokeOp.getUnwindDestOperands()[index];
}
llvm_unreachable(
"only branch, switch or invoke operations can be terminators "
"of a block that has successors");
}
/// Connect the PHI nodes to the results of preceding blocks.
void mlir::LLVM::detail::connectPHINodes(Region &region,
const ModuleTranslation &state) {
// Skip the first block, it cannot be branched to and its arguments correspond
// to the arguments of the LLVM function.
for (Block &bb : llvm::drop_begin(region)) {
llvm::BasicBlock *llvmBB = state.lookupBlock(&bb);
auto phis = llvmBB->phis();
auto numArguments = bb.getNumArguments();
assert(numArguments == std::distance(phis.begin(), phis.end()));
for (auto &numberedPhiNode : llvm::enumerate(phis)) {
auto &phiNode = numberedPhiNode.value();
unsigned index = numberedPhiNode.index();
for (auto *pred : bb.getPredecessors()) {
// Find the LLVM IR block that contains the converted terminator
// instruction and use it in the PHI node. Note that this block is not
// necessarily the same as state.lookupBlock(pred), some operations
// (in particular, OpenMP operations using OpenMPIRBuilder) may have
// split the blocks.
llvm::Instruction *terminator =
state.lookupBranch(pred->getTerminator());
assert(terminator && "missing the mapping for a terminator");
phiNode.addIncoming(state.lookupValue(getPHISourceValue(
&bb, pred, numArguments, index)),
terminator->getParent());
}
}
}
}
/// Sort function blocks topologically.
SetVector<Block *>
mlir::LLVM::detail::getTopologicallySortedBlocks(Region &region) {
// For each block that has not been visited yet (i.e. that has no
// predecessors), add it to the list as well as its successors.
SetVector<Block *> blocks;
for (Block &b : region) {
if (blocks.count(&b) == 0) {
llvm::ReversePostOrderTraversal<Block *> traversal(&b);
blocks.insert(traversal.begin(), traversal.end());
}
}
assert(blocks.size() == region.getBlocks().size() &&
"some blocks are not sorted");
return blocks;
}
llvm::Value *mlir::LLVM::detail::createIntrinsicCall(
llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
llvm::Module *module = builder.GetInsertBlock()->getModule();
llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
return builder.CreateCall(fn, args);
}
/// Given a single MLIR operation, create the corresponding LLVM IR operation
/// using the `builder`.
LogicalResult
ModuleTranslation::convertOperation(Operation &op,
llvm::IRBuilderBase &builder) {
const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
if (!opIface)
return op.emitError("cannot be converted to LLVM IR: missing "
"`LLVMTranslationDialectInterface` registration for "
"dialect for op: ")
<< op.getName();
if (failed(opIface->convertOperation(&op, builder, *this)))
return op.emitError("LLVM Translation failed for operation: ")
<< op.getName();
return convertDialectAttributes(&op);
}
/// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes
/// to define values corresponding to the MLIR block arguments. These nodes
/// are not connected to the source basic blocks, which may not exist yet. Uses
/// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
/// been created for `bb` and included in the block mapping. Inserts new
/// instructions at the end of the block and leaves `builder` in a state
/// suitable for further insertion into the end of the block.
LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments,
llvm::IRBuilderBase &builder) {
builder.SetInsertPoint(lookupBlock(&bb));
auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
// Before traversing operations, make block arguments available through
// value remapping and PHI nodes, but do not add incoming edges for the PHI
// nodes just yet: those values may be defined by this or following blocks.
// This step is omitted if "ignoreArguments" is set. The arguments of the
// first block have been already made available through the remapping of
// LLVM function arguments.
if (!ignoreArguments) {
auto predecessors = bb.getPredecessors();
unsigned numPredecessors =
std::distance(predecessors.begin(), predecessors.end());
for (auto arg : bb.getArguments()) {
auto wrappedType = arg.getType();
if (!isCompatibleType(wrappedType))
return emitError(bb.front().getLoc(),
"block argument does not have an LLVM type");
llvm::Type *type = convertType(wrappedType);
llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
mapValue(arg, phi);
}
}
// Traverse operations.
for (auto &op : bb) {
// Set the current debug location within the builder.
builder.SetCurrentDebugLocation(
debugTranslation->translateLoc(op.getLoc(), subprogram));
if (failed(convertOperation(op, builder)))
return failure();
}
return success();
}
/// A helper method to get the single Block in an operation honoring LLVM's
/// module requirements.
static Block &getModuleBody(Operation *module) {
return module->getRegion(0).front();
}
/// A helper method to decide if a constant must not be set as a global variable
/// initializer. For an external linkage variable, the variable with an
/// initializer is considered externally visible and defined in this module, the
/// variable without an initializer is externally available and is defined
/// elsewhere.
static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
llvm::Constant *cst) {
return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
linkage == llvm::GlobalVariable::ExternalWeakLinkage;
}
/// Sets the runtime preemption specifier of `gv` to dso_local if
/// `dsoLocalRequested` is true, otherwise it is left unchanged.
static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
llvm::GlobalValue *gv) {
if (dsoLocalRequested)
gv->setDSOLocal(true);
}
/// Create named global variables that correspond to llvm.mlir.global
/// definitions. Convert llvm.global_ctors and global_dtors ops.
LogicalResult ModuleTranslation::convertGlobals() {
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
llvm::Type *type = convertType(op.getType());
llvm::Constant *cst = nullptr;
if (op.getValueOrNull()) {
// String attributes are treated separately because they cannot appear as
// in-function constants and are thus not supported by getLLVMConstant.
if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
cst = llvm::ConstantDataArray::getString(
llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
type = cst->getType();
} else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
*this))) {
return failure();
}
}
auto linkage = convertLinkageToLLVM(op.getLinkage());
auto addrSpace = op.getAddrSpace();
// LLVM IR requires constant with linkage other than external or weak
// external to have initializers. If MLIR does not provide an initializer,
// default to undef.
bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
if (!dropInitializer && !cst)
cst = llvm::UndefValue::get(type);
else if (dropInitializer && cst)
cst = nullptr;
auto *var = new llvm::GlobalVariable(
*llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(),
/*InsertBefore=*/nullptr,
op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel
: llvm::GlobalValue::NotThreadLocal,
addrSpace);
if (op.getUnnamedAddr().has_value())
var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr()));
if (op.getSection().has_value())
var->setSection(*op.getSection());
addRuntimePreemptionSpecifier(op.getDsoLocal(), var);
std::optional<uint64_t> alignment = op.getAlignment();
if (alignment.has_value())
var->setAlignment(llvm::MaybeAlign(alignment.value()));
globalsMapping.try_emplace(op, var);
}
// Convert global variable bodies. This is done after all global variables
// have been created in LLVM IR because a global body may refer to another
// global or itself. So all global variables need to be mapped first.
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
if (Block *initializer = op.getInitializerBlock()) {
llvm::IRBuilder<> builder(llvmModule->getContext());
for (auto &op : initializer->without_terminator()) {
if (failed(convertOperation(op, builder)) ||
!isa<llvm::Constant>(lookupValue(op.getResult(0))))
return emitError(op.getLoc(), "unemittable constant value");
}
ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
llvm::Constant *cst =
cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
global->setInitializer(cst);
}
}
// Convert llvm.mlir.global_ctors and dtors.
for (Operation &op : getModuleBody(mlirModule)) {
auto ctorOp = dyn_cast<GlobalCtorsOp>(op);
auto dtorOp = dyn_cast<GlobalDtorsOp>(op);
if (!ctorOp && !dtorOp)
continue;
auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities())
: llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities());
auto appendGlobalFn =
ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors;
for (auto symbolAndPriority : range) {
llvm::Function *f = lookupFunction(
std::get<0>(symbolAndPriority).cast<FlatSymbolRefAttr>().getValue());
appendGlobalFn(
*llvmModule, f,
std::get<1>(symbolAndPriority).cast<IntegerAttr>().getInt(),
/*Data=*/nullptr);
}
}
return success();
}
/// Attempts to add an attribute identified by `key`, optionally with the given
/// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
/// attribute has a kind known to LLVM IR, create the attribute of this kind,
/// otherwise keep it as a string attribute. Performs additional checks for
/// attributes known to have or not have a value in order to avoid assertions
/// inside LLVM upon construction.
static LogicalResult checkedAddLLVMFnAttribute(Location loc,
llvm::Function *llvmFunc,
StringRef key,
StringRef value = StringRef()) {
auto kind = llvm::Attribute::getAttrKindFromName(key);
if (kind == llvm::Attribute::None) {
llvmFunc->addFnAttr(key, value);
return success();
}
if (llvm::Attribute::isIntAttrKind(kind)) {
if (value.empty())
return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
int result;
if (!value.getAsInteger(/*Radix=*/0, result))
llvmFunc->addFnAttr(
llvm::Attribute::get(llvmFunc->getContext(), kind, result));
else
llvmFunc->addFnAttr(key, value);
return success();
}
if (!value.empty())
return emitError(loc) << "LLVM attribute '" << key
<< "' does not expect a value, found '" << value
<< "'";
llvmFunc->addFnAttr(kind);
return success();
}
/// Attaches the attributes listed in the given array attribute to `llvmFunc`.
/// Reports error to `loc` if any and returns immediately. Expects `attributes`
/// to be an array attribute containing either string attributes, treated as
/// value-less LLVM attributes, or array attributes containing two string
/// attributes, with the first string being the name of the corresponding LLVM
/// attribute and the second string beings its value. Note that even integer
/// attributes are expected to have their values expressed as strings.
static LogicalResult
forwardPassthroughAttributes(Location loc, std::optional<ArrayAttr> attributes,
llvm::Function *llvmFunc) {
if (!attributes)
return success();
for (Attribute attr : *attributes) {
if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
if (failed(
checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
return failure();
continue;
}
auto arrayAttr = attr.dyn_cast<ArrayAttr>();
if (!arrayAttr || arrayAttr.size() != 2)
return emitError(loc)
<< "expected 'passthrough' to contain string or array attributes";
auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>();
auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>();
if (!keyAttr || !valueAttr)
return emitError(loc)
<< "expected arrays within 'passthrough' to contain two strings";
if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
valueAttr.getValue())))
return failure();
}
return success();
}
LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
// Clear the block, branch value mappings, they are only relevant within one
// function.
blockMapping.clear();
valueMapping.clear();
branchMapping.clear();
llvm::Function *llvmFunc = lookupFunction(func.getName());
// Translate the debug information for this function.
debugTranslation->translate(func, *llvmFunc);
// Add function arguments to the value remapping table.
for (auto [mlirArg, llvmArg] :
llvm::zip(func.getArguments(), llvmFunc->args()))
mapValue(mlirArg, &llvmArg);
// Check the personality and set it.
if (func.getPersonality()) {
llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(),
func.getLoc(), *this))
llvmFunc->setPersonalityFn(pfunc);
}
if (auto gc = func.getGarbageCollector())
llvmFunc->setGC(gc->str());
// First, create all blocks so we can jump to them.
llvm::LLVMContext &llvmContext = llvmFunc->getContext();
for (auto &bb : func) {
auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
llvmBB->insertInto(llvmFunc);
mapBlock(&bb, llvmBB);
}
// Then, convert blocks one by one in topological order to ensure defs are
// converted before uses.
auto blocks = detail::getTopologicallySortedBlocks(func.getBody());
for (Block *bb : blocks) {
llvm::IRBuilder<> builder(llvmContext);
if (failed(convertBlock(*bb, bb->isEntryBlock(), builder)))
return failure();
}
// After all blocks have been traversed and values mapped, connect the PHI
// nodes to the results of preceding blocks.
detail::connectPHINodes(func.getBody(), *this);
// Finally, convert dialect attributes attached to the function.
return convertDialectAttributes(func);
}
LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) {
for (NamedAttribute attribute : op->getDialectAttrs())
if (failed(iface.amendOperation(op, attribute, *this)))
return failure();
return success();
}
/// Converts the function attributes from LLVMFuncOp and attaches them to the
/// llvm::Function.
static void convertFunctionAttributes(LLVMFuncOp func,
llvm::Function *llvmFunc) {
if (!func.getMemory())
return;
MemoryEffectsAttr memEffects = func.getMemoryAttr();
// Add memory effects incrementally.
llvm::MemoryEffects newMemEffects =
llvm::MemoryEffects(llvm::MemoryEffects::Location::ArgMem,
convertModRefInfoToLLVM(memEffects.getArgMem()));
newMemEffects |= llvm::MemoryEffects(
llvm::MemoryEffects::Location::InaccessibleMem,
convertModRefInfoToLLVM(memEffects.getInaccessibleMem()));
newMemEffects |=
llvm::MemoryEffects(llvm::MemoryEffects::Location::Other,
convertModRefInfoToLLVM(memEffects.getOther()));
llvmFunc->setMemoryEffects(newMemEffects);
}
llvm::AttrBuilder
ModuleTranslation::convertParameterAttrs(DictionaryAttr paramAttrs) {
llvm::AttrBuilder attrBuilder(llvmModule->getContext());
for (auto [llvmKind, mlirName] : getAttrKindToNameMapping()) {
Attribute attr = paramAttrs.get(mlirName);
// Skip attributes that are not present.
if (!attr)
continue;
// NOTE: C++17 does not support capturing structured bindings.
llvm::Attribute::AttrKind llvmKindCap = llvmKind;
llvm::TypeSwitch<Attribute>(attr)
.Case<TypeAttr>([&](auto typeAttr) {
attrBuilder.addTypeAttr(llvmKindCap,
convertType(typeAttr.getValue()));
})
.Case<IntegerAttr>([&](auto intAttr) {
attrBuilder.addRawIntAttr(llvmKindCap, intAttr.getInt());
})
.Case<UnitAttr>([&](auto) { attrBuilder.addAttribute(llvmKindCap); });
}
return attrBuilder;
}
LogicalResult ModuleTranslation::convertFunctionSignatures() {
// Declare all functions first because there may be function calls that form a
// call graph with cycles, or global initializers that reference functions.
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
function.getName(),
cast<llvm::FunctionType>(convertType(function.getFunctionType())));
llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage()));
llvmFunc->setCallingConv(convertCConvToLLVM(function.getCConv()));
mapFunction(function.getName(), llvmFunc);
addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc);
// Convert function attributes.
convertFunctionAttributes(function, llvmFunc);
// Convert function_entry_count attribute to metadata.
if (std::optional<uint64_t> entryCount = function.getFunctionEntryCount())
llvmFunc->setEntryCount(entryCount.value());
// Convert result attributes.
if (ArrayAttr allResultAttrs = function.getAllResultAttrs()) {
DictionaryAttr resultAttrs = allResultAttrs[0].cast<DictionaryAttr>();
llvmFunc->addRetAttrs(convertParameterAttrs(resultAttrs));
}
// Convert argument attributes.
for (auto [argIdx, llvmArg] : llvm::enumerate(llvmFunc->args())) {
if (DictionaryAttr argAttrs = function.getArgAttrDict(argIdx)) {
llvm::AttrBuilder attrBuilder = convertParameterAttrs(argAttrs);
llvmArg.addAttrs(attrBuilder);
}
}
// Forward the pass-through attributes to LLVM.
if (failed(forwardPassthroughAttributes(
function.getLoc(), function.getPassthrough(), llvmFunc)))
return failure();
}
return success();
}
LogicalResult ModuleTranslation::convertFunctions() {
// Convert functions.
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
// Ignore external functions.
if (function.isExternal())
continue;
if (failed(convertOneFunction(function)))
return failure();
}
return success();
}
llvm::MDNode *
ModuleTranslation::getAccessGroup(Operation *op,
SymbolRefAttr accessGroupRef) const {
auto metadataName = accessGroupRef.getRootReference();
auto accessGroupName = accessGroupRef.getLeafReference();
auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
op->getParentOp(), metadataName);
auto *accessGroupOp =
SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName);
return accessGroupMetadataMapping.lookup(accessGroupOp);
}
LogicalResult ModuleTranslation::createAccessGroupMetadata() {
mlirModule->walk([&](LLVM::MetadataOp metadatas) {
metadatas.walk([&](LLVM::AccessGroupMetadataOp op) {
llvm::LLVMContext &ctx = llvmModule->getContext();
llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {});
accessGroupMetadataMapping.insert({op, accessGroup});
});
});
return success();
}
void ModuleTranslation::setAccessGroupsMetadata(Operation *op,
llvm::Instruction *inst) {
auto populateGroupsMetadata = [&](std::optional<ArrayAttr> groupRefs) {
if (!groupRefs || groupRefs->empty())
return;
llvm::Module *module = inst->getModule();
SmallVector<llvm::Metadata *> groupMDs;
for (SymbolRefAttr groupRef : groupRefs->getAsRange<SymbolRefAttr>())
groupMDs.push_back(getAccessGroup(op, groupRef));
llvm::MDNode *node = nullptr;
if (groupMDs.size() == 1)
node = llvm::cast<llvm::MDNode>(groupMDs.front());
else if (groupMDs.size() >= 2)
node = llvm::MDNode::get(module->getContext(), groupMDs);
inst->setMetadata(llvm::LLVMContext::MD_access_group, node);
};
llvm::TypeSwitch<Operation *>(op)
.Case<LoadOp, StoreOp>(
[&](auto memOp) { populateGroupsMetadata(memOp.getAccessGroups()); })
.Default([](auto) { llvm_unreachable("expected LoadOp or StoreOp"); });
}
LogicalResult ModuleTranslation::createAliasScopeMetadata() {
mlirModule->walk([&](LLVM::MetadataOp metadatas) {
// Create the domains first, so they can be reference below in the scopes.
DenseMap<Operation *, llvm::MDNode *> aliasScopeDomainMetadataMapping;
metadatas.walk([&](LLVM::AliasScopeDomainMetadataOp op) {
llvm::LLVMContext &ctx = llvmModule->getContext();
llvm::SmallVector<llvm::Metadata *, 2> operands;
operands.push_back({}); // Placeholder for self-reference
if (std::optional<StringRef> description = op.getDescription())
operands.push_back(llvm::MDString::get(ctx, *description));
llvm::MDNode *domain = llvm::MDNode::get(ctx, operands);
domain->replaceOperandWith(0, domain); // Self-reference for uniqueness
aliasScopeDomainMetadataMapping.insert({op, domain});
});
// Now create the scopes, referencing the domains created above.
metadatas.walk([&](LLVM::AliasScopeMetadataOp op) {
llvm::LLVMContext &ctx = llvmModule->getContext();
assert(isa<LLVM::MetadataOp>(op->getParentOp()));
auto metadataOp = dyn_cast<LLVM::MetadataOp>(op->getParentOp());
Operation *domainOp =
SymbolTable::lookupNearestSymbolFrom(metadataOp, op.getDomainAttr());
llvm::MDNode *domain = aliasScopeDomainMetadataMapping.lookup(domainOp);
assert(domain && "Scope's domain should already be valid");
llvm::SmallVector<llvm::Metadata *, 3> operands;
operands.push_back({}); // Placeholder for self-reference
operands.push_back(domain);
if (std::optional<StringRef> description = op.getDescription())
operands.push_back(llvm::MDString::get(ctx, *description));
llvm::MDNode *scope = llvm::MDNode::get(ctx, operands);
scope->replaceOperandWith(0, scope); // Self-reference for uniqueness
aliasScopeMetadataMapping.insert({op, scope});
});
});
return success();
}
llvm::MDNode *
ModuleTranslation::getAliasScope(Operation *op,
SymbolRefAttr aliasScopeRef) const {
StringAttr metadataName = aliasScopeRef.getRootReference();
StringAttr scopeName = aliasScopeRef.getLeafReference();
auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
op->getParentOp(), metadataName);
Operation *aliasScopeOp =
SymbolTable::lookupNearestSymbolFrom(metadataOp, scopeName);
return aliasScopeMetadataMapping.lookup(aliasScopeOp);
}
void ModuleTranslation::setAliasScopeMetadata(Operation *op,
llvm::Instruction *inst) {
auto populateScopeMetadata = [&](std::optional<ArrayAttr> scopeRefs,
unsigned kind) {
if (!scopeRefs || scopeRefs->empty())
return;
llvm::Module *module = inst->getModule();
SmallVector<llvm::Metadata *> scopeMDs;
for (SymbolRefAttr scopeRef : scopeRefs->getAsRange<SymbolRefAttr>())
scopeMDs.push_back(getAliasScope(op, scopeRef));
llvm::MDNode *node = llvm::MDNode::get(module->getContext(), scopeMDs);
inst->setMetadata(kind, node);
};
llvm::TypeSwitch<Operation *>(op)
.Case<LoadOp, StoreOp>([&](auto memOp) {
populateScopeMetadata(memOp.getAliasScopes(),
llvm::LLVMContext::MD_alias_scope);
populateScopeMetadata(memOp.getNoaliasScopes(),
llvm::LLVMContext::MD_noalias);
})
.Default([](auto) { llvm_unreachable("expected LoadOp or StoreOp"); });
}
llvm::MDNode *ModuleTranslation::getTBAANode(Operation *op,
SymbolRefAttr tagRef) const {
StringAttr metadataName = tagRef.getRootReference();
StringAttr tagName = tagRef.getLeafReference();
auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
op->getParentOp(), metadataName);
Operation *tagOp = SymbolTable::lookupNearestSymbolFrom(metadataOp, tagName);
return tbaaMetadataMapping.lookup(tagOp);
}
void ModuleTranslation::setTBAAMetadata(Operation *op,
llvm::Instruction *inst) {
auto populateTBAAMetadata = [&](std::optional<ArrayAttr> tagRefs) {
if (!tagRefs || tagRefs->empty())
return;
// LLVM IR currently does not support attaching more than one
// TBAA access tag to a memory accessing instruction.
// It may be useful to support this in future, but for the time being
// just ignore the metadata if MLIR operation has multiple access tags.
if (tagRefs->size() > 1) {
op->emitWarning() << "TBAA access tags were not translated, because LLVM "
"IR only supports a single tag per instruction";
return;
}
SymbolRefAttr tagRef = (*tagRefs)[0].cast<SymbolRefAttr>();
llvm::MDNode *node = getTBAANode(op, tagRef);
inst->setMetadata(llvm::LLVMContext::MD_tbaa, node);
};
llvm::TypeSwitch<Operation *>(op)
.Case<LoadOp, StoreOp>(
[&](auto memOp) { populateTBAAMetadata(memOp.getTbaa()); })
.Default([](auto) { llvm_unreachable("expected LoadOp or StoreOp"); });
}
LogicalResult ModuleTranslation::createTBAAMetadata() {
llvm::LLVMContext &ctx = llvmModule->getContext();
llvm::IntegerType *offsetTy = llvm::IntegerType::get(ctx, 64);
// Walk TBAA metadata and create MDNode's with placeholder
// operands for the references of other TBAA nodes.
for (auto metadata : getModuleBody(mlirModule).getOps<LLVM::MetadataOp>()) {
for (auto &op : metadata.getBody().getOps()) {
SmallVector<llvm::Metadata *> operands;
if (auto rootOp = dyn_cast<LLVM::TBAARootMetadataOp>(op)) {
operands.push_back(llvm::MDString::get(ctx, rootOp.getIdentity()));
} else if (auto tdOp = dyn_cast<LLVM::TBAATypeDescriptorOp>(op)) {
operands.push_back(llvm::MDString::get(
ctx, tdOp.getIdentity().value_or(llvm::StringRef{})));
for (int64_t offset : tdOp.getOffsets()) {
// Use temporary MDNode as the placeholder for the member type
// to prevent uniquing the type descriptor nodes until they are
// finalized.
operands.push_back(
llvm::MDNode::getTemporary(ctx, std::nullopt).release());
operands.push_back(llvm::ConstantAsMetadata::get(
llvm::ConstantInt::get(offsetTy, offset)));
}
} else if (auto tagOp = dyn_cast<LLVM::TBAATagOp>(op)) {
// Use temporary MDNode's as the placeholders for the base and access
// types to prevent uniquing the tag nodes until they are finalized.
operands.push_back(
llvm::MDNode::getTemporary(ctx, std::nullopt).release());
operands.push_back(
llvm::MDNode::getTemporary(ctx, std::nullopt).release());
operands.push_back(llvm::ConstantAsMetadata::get(
llvm::ConstantInt::get(offsetTy, tagOp.getOffset())));
if (tagOp.getConstant())
operands.push_back(llvm::ConstantAsMetadata::get(
llvm::ConstantInt::get(offsetTy, 1)));
}
if (operands.empty())
continue;
tbaaMetadataMapping.insert({&op, llvm::MDNode::get(ctx, operands)});
}
}
// Walk TBAA metadata second time and update the placeholder
// references.
for (auto metadata : getModuleBody(mlirModule).getOps<LLVM::MetadataOp>()) {
for (auto &op : metadata.getBody().getOps()) {
SmallVector<StringRef> refNames;
SmallVector<int64_t> operandIndices;
if (auto tdOp = dyn_cast<LLVM::TBAATypeDescriptorOp>(op)) {
// The type references are in 1, 3, 5, etc. positions.
unsigned opNum = 1;
for (Attribute typeAttr : tdOp.getMembers()) {
refNames.push_back(typeAttr.cast<FlatSymbolRefAttr>().getValue());
operandIndices.push_back(opNum);
opNum += 2;
}
} else if (auto tagOp = dyn_cast<LLVM::TBAATagOp>(op)) {
refNames.push_back(tagOp.getBaseType());
operandIndices.push_back(0);
refNames.push_back(tagOp.getAccessType());
operandIndices.push_back(1);
}
if (refNames.empty())
continue;
llvm::MDNode *descNode = tbaaMetadataMapping.lookup(&op);
for (auto [refName, opNum] : llvm::zip(refNames, operandIndices)) {
// refDef availability in the parent MetadataOp
// is checked by module verifier.
Operation *refDef = SymbolTable::lookupSymbolIn(metadata, refName);
llvm::MDNode *refNode = tbaaMetadataMapping.lookup(refDef);
if (!refNode) {
op.emitOpError() << "llvm::MDNode missing for the member '@"
<< refName << "'";
return failure();
}
auto *tempMD = cast<llvm::MDNode>(descNode->getOperand(opNum).get());
descNode->replaceOperandWith(opNum, refNode);
// Deallocate temporary MDNode's explicitly.
// Note that each temporary node has a single use by creation,
// so it is valid to deallocate it here.
llvm::MDNode::deleteTemporary(tempMD);
}
}
}
return success();
}
void ModuleTranslation::setLoopMetadata(Operation *op,
llvm::Instruction *inst) {
auto attr =
op->getAttrOfType<LoopAnnotationAttr>(LLVMDialect::getLoopAttrName());
if (!attr)
return;
llvm::MDNode *loopMD = loopAnnotationTranslation->translate(attr, op);
inst->setMetadata(llvm::LLVMContext::MD_loop, loopMD);
}
llvm::Type *ModuleTranslation::convertType(Type type) {
return typeTranslator.translateType(type);
}
/// A helper to look up remapped operands in the value remapping table.
SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) {
SmallVector<llvm::Value *> remapped;
remapped.reserve(values.size());
for (Value v : values)
remapped.push_back(lookupValue(v));
return remapped;
}
const llvm::DILocation *
ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) {
return debugTranslation->translateLoc(loc, scope);
}
llvm::Metadata *ModuleTranslation::translateDebugInfo(LLVM::DINodeAttr attr) {
return debugTranslation->translate(attr);
}
llvm::NamedMDNode *
ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
return llvmModule->getOrInsertNamedMetadata(name);
}
void ModuleTranslation::StackFrame::anchor() {}
static std::unique_ptr<llvm::Module>
prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
StringRef name) {
m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
if (auto dataLayoutAttr =
m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) {
llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue());
} else {
FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout(""));
if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) {
if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) {
llvmDataLayout =
translateDataLayout(spec, DataLayout(iface), m->getLoc());
}
} else if (auto mod = dyn_cast<ModuleOp>(m)) {
if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) {
llvmDataLayout =
translateDataLayout(spec, DataLayout(mod), m->getLoc());
}
}
if (failed(llvmDataLayout))
return nullptr;
llvmModule->setDataLayout(*llvmDataLayout);
}
if (auto targetTripleAttr =
m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue());
// Inject declarations for `malloc` and `free` functions that can be used in
// memref allocation/deallocation coming from standard ops lowering.
llvm::IRBuilder<> builder(llvmContext);
llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
builder.getInt64Ty());
llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
builder.getInt8PtrTy());
return llvmModule;
}
std::unique_ptr<llvm::Module>
mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
StringRef name) {
if (!satisfiesLLVMModule(module)) {
module->emitOpError("can not be translated to an LLVMIR module");
return nullptr;
}
std::unique_ptr<llvm::Module> llvmModule =
prepareLLVMModule(module, llvmContext, name);
if (!llvmModule)
return nullptr;
LLVM::ensureDistinctSuccessors(module);
ModuleTranslation translator(module, std::move(llvmModule));
if (failed(translator.convertFunctionSignatures()))
return nullptr;
if (failed(translator.convertGlobals()))
return nullptr;
if (failed(translator.createAccessGroupMetadata()))
return nullptr;
if (failed(translator.createAliasScopeMetadata()))
return nullptr;
if (failed(translator.createTBAAMetadata()))
return nullptr;
if (failed(translator.convertFunctions()))
return nullptr;
// Convert other top-level operations if possible.
llvm::IRBuilder<> llvmBuilder(llvmContext);
for (Operation &o : getModuleBody(module).getOperations()) {
if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp,
LLVM::GlobalDtorsOp, LLVM::MetadataOp>(&o) &&
!o.hasTrait<OpTrait::IsTerminator>() &&
failed(translator.convertOperation(o, llvmBuilder))) {
return nullptr;
}
}
if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
return nullptr;
return std::move(translator.llvmModule);
}