module renderer #( parameter ITERATIONS = 7, parameter OUTPUT_WIDTH = 3, localparam ITERATION_WIDTH = $clog2(ITERATIONS + 1), localparam SHIFT_AMOUNT = ITERATION_WIDTH - OUTPUT_WIDTH )( input wire clk, input wire rst, input wire start, input wire signed [7:0] x, input wire signed [7:0] y, output reg done, output reg [OUTPUT_WIDTH-1:0] iters ); reg signed [7:0] x_reg; reg signed [7:0] y_reg; reg signed [7:0] z_real; reg signed [7:0] z_imag; reg [ITERATION_WIDTH-1:0] current_iteration; wire signed [15:0] a_squared_p; wire signed [15:0] b_squared_p; wire signed [15:0] ab_p; wire signed [7:0] a_squared; wire signed [7:0] b_squared; wire signed [7:0] ab; always_ff @(posedge clk) begin current_iteration <= current_iteration + 1'b1; done <= 1'b0; // 128 = 4 << FRACTION_BITS (4) if (current_iteration == ITERATIONS || a_squared + b_squared >= 32) begin x_reg <= '0; y_reg <= '0; z_real <= '0; z_imag <= '0; iters <= current_iteration >> SHIFT_AMOUNT; current_iteration <= '0; done <= 1'b1; end else if (current_iteration == 0) begin // store c for later x_reg <= x; y_reg <= y; // add c for first iteration. // no need to include z as it is initially (0, 0) z_real <= x; z_imag <= y; if (!start) begin current_iteration <= '0; end end else begin z_real <= a_squared + b_squared + x_reg; z_imag <= (ab << 1'b1) + y_reg; end if (rst) begin x_reg <= 8'h00; y_reg <= 8'h00; z_real <= 8'h00; z_imag <= 8'h00; current_iteration <= '0; end end multiplier m1(.clk(clk), .a(z_real), .b(z_real), .product(a_squared_p)); multiplier m2(.clk(clk), .a(z_imag), .b(z_imag), .product(b_squared_p)); multiplier m3(.clk(clk), .a(z_real), .b(z_imag), .product(ab_p)); assign a_squared = a_squared_p[11:4]; assign b_squared = b_squared_p[11:4]; assign ab = ab_p[11:4]; endmodule