Merge branch 'master' into 0.9.5

This commit is contained in:
Maksim Vorobiev 2013-02-20 17:26:09 +03:00
commit 23a84732ef
5 changed files with 843 additions and 0 deletions

View File

@ -72,6 +72,7 @@
#include "./gtc/matrix_transform.hpp"
#include "./gtc/noise.hpp"
#include "./gtc/quaternion.hpp"
#include "./gtc/dual_quaternion.hpp"
#include "./gtc/random.hpp"
#include "./gtc/reciprocal.hpp"
#include "./gtc/swizzle.hpp"

242
glm/gtc/dual_quaternion.hpp Normal file
View File

@ -0,0 +1,242 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_dual_quaternion
/// @file glm/gtc/dual_quaternion.hpp
/// @date 2013-02-10 / 2013-02-13
/// @author Maksim Vorobiev (msomeone@gmail.com)
///
/// @see core (dependence)
/// @see gtc_half_float (dependence)
/// @see gtc_constants (dependence)
/// @see gtc_quaternion (dependence)
///
/// @defgroup gtc_dual_quaternion GLM_GTC_dual_quaternion
/// @ingroup gtc
///
/// @brief Defines a templated dual-quaternion type and several dual-quaternion operations.
///
/// <glm/gtc/dual_quaternion.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTC_dual_quaternion
#define GLM_GTC_dual_quaternion GLM_VERSION
// Dependency:
#include "../glm.hpp"
#include "../gtc/half_float.hpp"
#include "../gtc/constants.hpp"
#include "../gtc/quaternion.hpp"
#if(defined(GLM_MESSAGES) && !defined(glm_ext))
# pragma message("GLM: GLM_GTC_dual_quaternion extension included")
#endif
namespace glm{
namespace detail
{
template <typename T>
struct tdualquat// : public genType<T, tquat>
{
enum ctor{null};
typedef T value_type;
typedef glm::detail::tquat<T> part_type;
typedef std::size_t size_type;
public:
glm::detail::tquat<T> real, dual;
GLM_FUNC_DECL size_type length() const;
// Constructors
tdualquat();
explicit tdualquat(tquat<T> const & real);
tdualquat(tquat<T> const & real,tquat<T> const & dual);
tdualquat(tquat<T> const & orientation,tvec3<T> const& translation);
//////////////////////////////////////////////////////////////
// tdualquat conversions
explicit tdualquat(tmat2x4<T> const & holder_mat);
explicit tdualquat(tmat3x4<T> const & aug_mat);
// Accesses
typename part_type & operator[](int i);
typename part_type const & operator[](int i) const;
// Operators
tdualquat<T> & operator*=(value_type const & s);
tdualquat<T> & operator/=(value_type const & s);
};
template <typename T>
detail::tquat<T> operator- (
detail::tquat<T> const & q);
template <typename T>
detail::tdualquat<T> operator+ (
detail::tdualquat<T> const & q,
detail::tdualquat<T> const & p);
template <typename T>
detail::tdualquat<T> operator* (
detail::tdualquat<T> const & q,
detail::tdualquat<T> const & p);
template <typename T>
detail::tvec3<T> operator* (
detail::tquat<T> const & q,
detail::tvec3<T> const & v);
template <typename T>
detail::tvec3<T> operator* (
detail::tvec3<T> const & v,
detail::tquat<T> const & q);
template <typename T>
detail::tvec4<T> operator* (
detail::tquat<T> const & q,
detail::tvec4<T> const & v);
template <typename T>
detail::tvec4<T> operator* (
detail::tvec4<T> const & v,
detail::tquat<T> const & q);
template <typename T>
detail::tdualquat<T> operator* (
detail::tdualquat<T> const & q,
typename detail::tdualquat<T>::value_type const & s);
template <typename T>
detail::tdualquat<T> operator* (
typename detail::tdualquat<T>::value_type const & s,
detail::tdualquat<T> const & q);
template <typename T>
detail::tdualquat<T> operator/ (
detail::tdualquat<T> const & q,
typename detail::tdualquat<T>::value_type const & s);
} //namespace detail
/// @addtogroup gtc_dual_quaternion
/// @{
/// Returns the normalized quaternion.
///
/// @see gtc_dual_quaternion
template <typename T>
detail::tdualquat<T> normalize(
detail::tdualquat<T> const & q);
/// Returns the linear interpolation of two dual quaternion.
///
/// @see gtc_dual_quaternion
template <typename T>
detail::tdualquat<T> lerp (
detail::tdualquat<T> const & x,
detail::tdualquat<T> const & y,
typename detail::tdualquat<T>::value_type const & a);
/// Returns the q inverse.
///
/// @see gtc_dual_quaternion
template <typename T>
detail::tdualquat<T> inverse(
detail::tdualquat<T> const & q);
/// Extracts a rotation part from dual-quaternion to a 3 * 3 matrix.
///
/// @see gtc_dual_quaternion
template <typename T>
detail::tmat3x3<T> mat3_cast(
detail::tdualquat<T> const & x);
/// Converts a quaternion to a 2 * 4 matrix.
///
/// @see gtc_dual_quaternion
template <typename T>
detail::tmat2x4<T> mat2x4_cast(
detail::tdualquat<T> const & x);
/// Converts a quaternion to a 3 * 4 matrix.
///
/// @see gtc_dual_quaternion
template <typename T>
detail::tmat3x4<T> mat3x4_cast(
detail::tdualquat<T> const & x);
/// Converts a 2 * 4 matrix (matrix which holds real and dual parts) to a quaternion.
///
/// @see gtc_dual_quaternion
template <typename T>
detail::tdualquat<T> dualquat_cast(
detail::tmat2x4<T> const & x);
/// Converts a 3 * 4 matrix (augmented matrix rotation + translation) to a quaternion.
///
/// @see gtc_dual_quaternion
template <typename T>
detail::tdualquat<T> dualquat_cast(
detail::tmat3x4<T> const & x);
/// Dual-quaternion of floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef detail::tdualquat<float> dualquat;
/// Dual-quaternion of half-precision floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef detail::tdualquat<detail::half> hdualquat;
/// Dual-quaternion of single-precision floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef detail::tdualquat<float> fdualquat;
/// Dual-quaternion of double-precision floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef detail::tdualquat<double> ddualquat;
/// Dual-quaternion of low precision floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef detail::tdualquat<lowp_float> lowp_dualquat;
/// Dual-quaternion of medium precision floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef detail::tdualquat<mediump_float> mediump_dualquat;
/// Dual-quaternion of high precision floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef detail::tdualquat<highp_float> highp_dualquat;
/// @}
} //namespace glm
#include "dual_quaternion.inl"
#endif//GLM_GTC_dual_quaternion

426
glm/gtc/dual_quaternion.inl Normal file
View File

@ -0,0 +1,426 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_quaternion
/// @file glm/gtc/quaternion.inl
/// @date 2013-02-10 / 2013-02-13
/// @author Maksim Vorobiev (msomeone@gmail.com)
///////////////////////////////////////////////////////////////////////////////////
#include <limits>
namespace glm{
namespace detail
{
template <typename T>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename tdualquat<T>::size_type tdualquat<T>::length() const
{
return 8;
}
template <typename T>
GLM_FUNC_QUALIFIER tdualquat<T>::tdualquat() :
real(tquat<T>()),
dual(tquat<T>(tdualquat<T>::value_type(0),tdualquat<T>::value_type(0),tdualquat<T>::value_type(0),tdualquat<T>::value_type(0)))
{}
template <typename T>
GLM_FUNC_QUALIFIER tdualquat<T>::tdualquat
(
tquat<T> const & r
) :
real(r),
dual(tquat<T>(tdualquat<T>::value_type(0),tdualquat<T>::value_type(0),tdualquat<T>::value_type(0),tdualquat<T>::value_type(0)))
{}
template <typename T>
GLM_FUNC_QUALIFIER tdualquat<T>::tdualquat
(
tquat<T> const & r,
tquat<T> const & d
) :
real(r),
dual(d)
{}
template <typename T>
GLM_FUNC_QUALIFIER tdualquat<T>::tdualquat
(
tquat<T> const & q,
tvec3<T> const& p
) :
real(q),
dual(-0.5f*( p.x*q.x + p.y*q.y + p.z*q.z),
0.5f*( p.x*q.w + p.y*q.z - p.z*q.y),
0.5f*(-p.x*q.z + p.y*q.w + p.z*q.x),
0.5f*( p.x*q.y - p.y*q.x + p.z*q.w))
{}
//////////////////////////////////////////////////////////////
// tdualquat conversions
template <typename T>
GLM_FUNC_QUALIFIER tdualquat<T>::tdualquat
(
tmat2x4<T> const & holder_mat
)
{
*this = dualquat_cast<>
}
template <typename T>
GLM_FUNC_QUALIFIER tdualquat<T>::tdualquat
(
tmat3x4<T> const & m
)
{
*this = dualquat_cast(m);
}
//////////////////////////////////////////////////////////////
// tdualquat<T> accesses
template <typename T>
GLM_FUNC_QUALIFIER typename tdualquat<T>::part_type & tdualquat<T>::operator [] (int i)
{
return (&real)[i];
}
template <typename T>
GLM_FUNC_QUALIFIER typename tdualquat<T>::part_type const & tdualquat<T>::operator [] (int i) const
{
return (&real)[i];
}
//////////////////////////////////////////////////////////////
// tdualquat<valType> operators
template <typename T>
GLM_FUNC_QUALIFIER tdualquat<T> & tdualquat<T>::operator *=
(
value_type const & s
)
{
this->real *= s;
this->dual *= s;
return *this;
}
template <typename T>
GLM_FUNC_QUALIFIER tdualquat<T> & tdualquat<T>::operator /=
(
value_type const & s
)
{
this->real /= s;
this->dual /= s;
return *this;
}
//////////////////////////////////////////////////////////////
// tquat<valType> external operators
template <typename T>
GLM_FUNC_QUALIFIER detail::tdualquat<T> operator-
(
detail::tdualquat<T> const & q
)
{
return detail::tdualquat<T>(-this->real,-this->dual);
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tdualquat<T> operator+
(
detail::tdualquat<T> const & q,
detail::tdualquat<T> const & p
)
{
return detail::tdualquat<T>(q.real + p.real,q.dual + p.dual);
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tdualquat<T> operator*
(
detail::tdualquat<T> const & p,
detail::tdualquat<T> const & o
)
{
return detail::tdualquat<T>(p.real * o.real,p.real * o.dual + p.dual * o.real);
}
// Transformation
template <typename T>
GLM_FUNC_QUALIFIER detail::tvec3<T> operator*
(
detail::tdualquat<T> const & q,
detail::tvec3<T> const & v
)
{
const detail::tvec3<T> real_v3(q.real.x,q.real.y,q.real.z);
const detail::tvec3<T> dual_v3(q.dual.x,q.dual.y,q.dual.z);
return (cross(real_v3, cross(real_v3,v) + v * q.real.w + dual_v3) + dual_v3 * q.real.w - real_v3 * q.dual.w) * detail::tdualquat<T>::value_type(2) + v;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tvec3<T> operator*
(
detail::tvec3<T> const & v,
detail::tdualquat<T> const & q
)
{
return inverse(q) * v;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tvec4<T> operator*
(
detail::tdualquat<T> const & q,
detail::tvec4<T> const & v
)
{
return detail::tvec4<T>(q * detail::tvec3<T>(v), v.w);
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tvec4<T> operator* (
detail::tvec4<T> const & v,
detail::tdualquat<T> const & q)
{
return inverse(q) * v;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tdualquat<T> operator*
(
detail::tdualquat<T> const & q,
typename detail::tdualquat<T>::value_type const & s
)
{
return detail::tdualquat<T>(q.real * s, q.dual * s);
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tdualquat<T> operator*
(
typename detail::tdualquat<T>::value_type const & s,
detail::tdualquat<T> const & q
)
{
return q * s;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tdualquat<T> operator/
(
detail::tdualquat<T> const & q,
typename detail::tdualquat<T>::value_type const & s
)
{
return detail::tdualquat<T>(q.real / s, q.dual / s);
}
//////////////////////////////////////
// Boolean operators
template <typename T>
GLM_FUNC_QUALIFIER bool operator==
(
detail::tdualquat<T> const & q1,
detail::tdualquat<T> const & q2
)
{
return (q1.real == q2.real) && (q1.dual == q2.dual);
}
template <typename T>
GLM_FUNC_QUALIFIER bool operator!=
(
detail::tdualquat<T> const & q1,
detail::tdualquat<T> const & q2
)
{
return (q1.real != q2.dual) || (q1.real != q2.dual);
}
}//namespace detail
////////////////////////////////////////////////////////
template <typename T>
GLM_FUNC_QUALIFIER detail::tdualquat<T> normalize
(
detail::tdualquat<T> const & q
)
{
return q / length(q.real);
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tdualquat<T> lerp
(
detail::tdualquat<T> const & x,
detail::tdualquat<T> const & y,
typename detail::tdualquat<T>::value_type const & a
)
{ // Dual Quaternion Linear blend aka DLB:
// Lerp is only defined in [0, 1]
assert(a >= T(0));
assert(a <= T(1));
const detail::tdualquat<T>::value_type k = dot(x.real,y.real) < detail::tdualquat<T>::value_type(0) ? -a : a;
const detail::tdualquat<T>::value_type one(1);
return detail::tdualquat<T>(x * (one - a) + y * k);
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tdualquat<T> inverse
(
detail::tdualquat<T> const & q
)
{
const glm::detail::tquat<T> real = conjugate(q.real);
const glm::detail::tquat<T> dual = conjugate(q.dual);
return detail::tdualquat<T>(real, dual + (real * (-2.0f * dot(real,dual))));
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat3x3<T> mat3_cast
(
detail::tdualquat<T> const & x
)
{
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat2x4<T> mat2x4_cast
(
detail::tdualquat<T> const & x
)
{
return detail::tmat2x4<T>( x[0].x, x[0].y, x[0].z, x[0].w, x[1].x, x[1].y, x[1].z, x[1].w );
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat3x4<T> mat3x4_cast
(
detail::tdualquat<T> const & x
)
{
detail::tquat<T> r = x.real / length2(x.real);
const detail::tquat<T> rr(r.w * x.real.w, r.x * x.real.x, r.y * x.real.y, r.z * x.real.z);
r *= detail::tdualquat<T>::value_type(2);
const detail::tdualquat<T>::value_type xy = r.x*d.real.y;
const detail::tdualquat<T>::value_type xz = r.x*d.real.z;
const detail::tdualquat<T>::value_type yz = r.y*d.real.z;
const detail::tdualquat<T>::value_type wx = r.w*d.real.x;
const detail::tdualquat<T>::value_type wy = r.w*d.real.y;
const detail::tdualquat<T>::value_type wz = r.w*d.real.z;
const detail::tvec4<T> a(
rr.w + rr.x - rr.y - rr.z,
xy - wz,
xz + wy,
-(x.dual.w * r.x - x.dual.x * r.w + x.dual.y * r.z - x.dual.z * r.y)
);
const detail::tvec4<T> b(
xy + wz,
rr.w + rr.y - rr.x - rr.z,
yz - wx,
-(x.dual.w * r.y - x.dual.x * r.z - x.dual.y * r.w + x.dual.z * r.x)
);
const detail::tvec4<T> c(
xz - wy,
yz + wx,
rr.w + rr.z - rr.x - rr.y,
-(x.dual.w * r.z + x.dual.x * r.y - x.dual.y * r.x - x.dual.z * r.w)
);
return detail::tmat3x4<T>(a,b,c);
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tdualquat<T> dualquat_cast
(
detail::tmat2x4<T> const & x
)
{
return detail::tdualquat (
detail::tquat<T> ( x[0].w, x[0].x, x[0].y, x[0].z ),
detail::tquat<T> ( x[1].w, x[1].x, x[1].y, x[1].z )
);
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tdualquat<T> dualquat_cast
(
detail::tmat3x4<T> const & x
)
{
detail::tquat<T> real;
const detail::tdualquat<T>::value_type trace = x[0].x + x[1].y + x[2].z;
if(trace > detail::tdualquat<T>::value_type(0))
{
const detail::tdualquat<T>::value_type r = sqrt(detail::tdualquat<T>::value_type(1) + trace);
const detail::tdualquat<T>::value_type invr = detail::tdualquat<T>::value_type(0.5) / r;
real.w = detail::tdualquat<T>::value_type(0.5) * r;
real.x = (x[2].y - x[1].z) * invr;
real.y = (x[0].z - x[2].x) * invr;
real.z = (x[1].x - x[0].y) * invr;
}
else if(x[0].x > x[1].y && x[0].x > x[2].z)
{
const detail::tdualquat<T>::value_type r = sqrt(detail::tdualquat<T>::value_type(1) + x[0].x - x[1].y - x[2].z);
const detail::tdualquat<T>::value_type invr = detail::tdualquat<T>::value_type(0.5) / r;
real.x = detail::tdualquat<T>::value_type(0.5)*r;
real.y = (x[1].x + x[0].y) * invr;
real.z = (x[0].z + x[2].x) * invr;
real.w = (x[2].y - x[1].z) * invr;
}
else if(x[1].y > x[2].z)
{
const detail::tdualquat<T>::value_type r = sqrt(detail::tdualquat<T>::value_type(1) + x[1].y - x[0].x - x[2].z);
const detail::tdualquat<T>::value_type invr = detail::tdualquat<T>::value_type(0.5) / r;
x = (x[1].x + x[0].y) * invr;
y = detail::tdualquat<T>::value_type(0.5) * r;
z = (x[2].y + x[1].z) * invr;
w = (x[0].z - x[2].x) * invr;
}
else
{
const detail::tdualquat<T>::value_type r = sqrt(detail::tdualquat<T>::value_type(1) + x[2].z - x[0].x - x[1].y);
const detail::tdualquat<T>::value_type invr = detail::tdualquat<T>::value_type(0.5) / r;
x = (x[0].z + x[2].x) * invr;
y = (x[2].y + x[1].z) * invr;
z = detail::tdualquat<T>::value_type(0.5) * r;
w = (x[1].x - x[0].y) * invr;
}
const detail::tquat<T> dual;
dual.x = 0.5f*( x[0].w*real.w + x[1].w*real.z - x[2].w*real.y);
dual.y = 0.5f*(-x[0].w*real.z + x[1].w*real.w + x[2].w*real.x);
dual.z = 0.5f*( x[0].w*real.y - x[1].w*real.x + x[2].w*real.w);
dual.w = -0.5f*( x[0].w*real.x + x[1].w*real.y + x[2].w*real.z);
return detail::tdualquat<T>(real,dual);
}
}//namespace glm

View File

@ -7,6 +7,7 @@ glmCreateTestGTC(gtc_matrix_inverse)
glmCreateTestGTC(gtc_matrix_transform)
glmCreateTestGTC(gtc_noise)
glmCreateTestGTC(gtc_quaternion)
glmCreateTestGTC(gtc_dual_quaternion)
glmCreateTestGTC(gtc_random)
glmCreateTestGTC(gtc_reciprocal)
glmCreateTestGTC(gtc_swizzle)

View File

@ -0,0 +1,173 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2013-02-10
// Updated : 2013-02-11
// Licence : This source is under MIT licence
// File : test/gtc/gtc_dual_quaternion.cpp
///////////////////////////////////////////////////////////////////////////////////////////////////
#include <glm/glm.hpp>
#include <glm/gtc/dual_quaternion.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/epsilon.hpp>
#include <glm/gtx/euler_angles.hpp>
#include <iostream>
int myrand()
{
static int holdrand = 1;
return (((holdrand = holdrand * 214013L + 2531011L) >> 16) & 0x7fff);
}
float myfrand() // returns values from -1 to 1 inclusive
{
return float(double(myrand()) / double( 0x7ffff )) * 2.0f - 1.0f;
}
int test_dquat_type()
{
glm::dvec3 vA;
glm::dquat dqA,dqB;
glm::ddualquat C(dqA,dqB);
glm::ddualquat B(dqA);
glm::ddualquat D(dqA,vA);
return 0;
}
int test_scalars() {
float const Epsilon = 0.0001f;
int Error(0);
glm::quat src_q1 = glm::quat(1.0f,2.0f,3.0f,4.0f);
glm::quat src_q2 = glm::quat(5.0f,6.0f,7.0f,8.0f);
glm::dualquat src1(src_q1,src_q2);
{
glm::dualquat dst1 = src1 * 2.0f;
glm::dualquat dst2 = 2.0f * src1;
glm::dualquat dst3 = src1;
dst3 *= 2.0f;
glm::dualquat dstCmp(src_q1 * 2.0f,src_q2 * 2.0f);
Error += glm::all(glm::epsilonEqual(dst1.real,dstCmp.real, Epsilon)) && glm::all(glm::epsilonEqual(dst1.dual,dstCmp.dual, Epsilon)) ? 0 : 1;
Error += glm::all(glm::epsilonEqual(dst2.real,dstCmp.real, Epsilon)) && glm::all(glm::epsilonEqual(dst2.dual,dstCmp.dual, Epsilon)) ? 0 : 1;
Error += glm::all(glm::epsilonEqual(dst3.real,dstCmp.real, Epsilon)) && glm::all(glm::epsilonEqual(dst3.dual,dstCmp.dual, Epsilon)) ? 0 : 1;
}
{
glm::dualquat dst1 = src1 / 2.0f;
glm::dualquat dst2 = src1;
dst2 /= 2.0f;
glm::dualquat dstCmp(src_q1 / 2.0f,src_q2 / 2.0f);
Error += glm::all(glm::epsilonEqual(dst1.real,dstCmp.real, Epsilon)) && glm::all(glm::epsilonEqual(dst1.dual,dstCmp.dual, Epsilon)) ? 0 : 1;
Error += glm::all(glm::epsilonEqual(dst2.real,dstCmp.real, Epsilon)) && glm::all(glm::epsilonEqual(dst2.dual,dstCmp.dual, Epsilon)) ? 0 : 1;
}
return Error;
}
int test_inverse()
{
int Error(0);
float const Epsilon = 0.0001f;
glm::dualquat dqid;
glm::mat4x4 mid(1.0f);
for (int j = 0; j < 100; ++j) {
glm::mat4x4 rot = glm::yawPitchRoll(myfrand() * 360.0f, myfrand() * 360.0f, myfrand() * 360.0f);
glm::vec3 vt = glm::vec3(myfrand() * 10.0f, myfrand() * 10.0f, myfrand() * 10.0f);
glm::mat4x4 m = glm::translate(mid, vt) * rot;
glm::quat qr = glm::quat_cast(m);
glm::dualquat dq(qr);
glm::dualquat invdq = glm::inverse(dq);
glm::dualquat r1 = invdq * dq;
glm::dualquat r2 = dq * invdq;
Error += glm::all(glm::epsilonEqual(r1.real, dqid.real, Epsilon)) && glm::all(glm::epsilonEqual(r1.dual, dqid.dual, Epsilon)) ? 0 : 1;
Error += glm::all(glm::epsilonEqual(r2.real, dqid.real, Epsilon)) && glm::all(glm::epsilonEqual(r2.dual, dqid.dual, Epsilon)) ? 0 : 1;
// testing commutative property
glm::dualquat r ( glm::quat( myfrand() * glm::pi<float>() * 2.0f, myfrand(), myfrand(), myfrand() ),
glm::vec3(myfrand() * 10.0f, myfrand() * 10.0f, myfrand() * 10.0f) );
glm::dualquat riq = (r * invdq) * dq;
glm::dualquat rqi = (r * dq) * invdq;
Error += glm::all(glm::epsilonEqual(riq.real, rqi.real, Epsilon)) && glm::all(glm::epsilonEqual(riq.dual, rqi.dual, Epsilon)) ? 0 : 1;
}
return Error;
}
int test_mul()
{
int Error(0);
float const Epsilon = 0.0001f;
glm::mat4x4 mid(1.0f);
for (int j = 0; j < 100; ++j) {
// generate random rotations and translations and compare transformed by matrix and dualquats random points
glm::vec3 vt1 = glm::vec3(myfrand() * 10.0f, myfrand() * 10.0f, myfrand() * 10.0f);
glm::vec3 vt2 = glm::vec3(myfrand() * 10.0f, myfrand() * 10.0f, myfrand() * 10.0f);
glm::mat4x4 rot1 = glm::yawPitchRoll(myfrand() * 360.0f, myfrand() * 360.0f, myfrand() * 360.0f);
glm::mat4x4 rot2 = glm::yawPitchRoll(myfrand() * 360.0f, myfrand() * 360.0f, myfrand() * 360.0f);
glm::mat4x4 m1 = glm::translate(mid, vt1) * rot1;
glm::mat4x4 m2 = glm::translate(mid, vt2) * rot2;
glm::mat4x4 m3 = m2 * m1;
glm::mat4x4 m4 = m1 * m2;
glm::quat qrot1 = glm::quat_cast(rot1);
glm::quat qrot2 = glm::quat_cast(rot2);
glm::dualquat dq1 = glm::dualquat(qrot1,vt1);
glm::dualquat dq2 = glm::dualquat(qrot2,vt2);
glm::dualquat dq3 = dq2 * dq1;
glm::dualquat dq4 = dq1 * dq2;
for (int i = 0; i < 100; ++i) {
glm::vec4 src_pt = glm::vec4(myfrand() * 4.0f, myfrand() * 5.0f, myfrand() * 3.0f,1.0f);
// test both multiplication orders
glm::vec4 dst_pt_m3 = m3 * src_pt;
glm::vec4 dst_pt_dq3 = dq3 * src_pt;
glm::vec4 dst_pt_m3_i = glm::inverse(m3) * src_pt;
glm::vec4 dst_pt_dq3_i = src_pt * dq3;
glm::vec4 dst_pt_m4 = m4 * src_pt;
glm::vec4 dst_pt_dq4 = dq4 * src_pt;
glm::vec4 dst_pt_m4_i = glm::inverse(m4) * src_pt;
glm::vec4 dst_pt_dq4_i = src_pt * dq4;
Error += glm::all(glm::epsilonEqual(dst_pt_m3, dst_pt_dq3, Epsilon)) ? 0 : 1;
Error += glm::all(glm::epsilonEqual(dst_pt_m4, dst_pt_dq4, Epsilon)) ? 0 : 1;
Error += glm::all(glm::epsilonEqual(dst_pt_m3_i, dst_pt_dq3_i, Epsilon)) ? 0 : 1;
Error += glm::all(glm::epsilonEqual(dst_pt_m4_i, dst_pt_dq4_i, Epsilon)) ? 0 : 1;
}
}
return Error;
}
int main()
{
int Error(0);
Error += test_dquat_type();
Error += test_scalars();
Error += test_inverse();
Error += test_mul();
//std::cout << "Errors count: " << Error << std::endl;
return Error;
}