Optimized bitfieldReverse

This commit is contained in:
Christophe Riccio 2014-11-02 20:48:59 +01:00
parent 41c00872a1
commit afb1f6d152
2 changed files with 391 additions and 51 deletions

View File

@ -46,6 +46,26 @@ namespace detail
{ {
return ~((~0) << Bits); return ~((~0) << Bits);
} }
template <bool EXEC = false>
struct compute_bitfieldReverseStep
{
template <typename T, glm::precision P, template <class, glm::precision> class vecType>
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T, T)
{
return v;
}
};
template <>
struct compute_bitfieldReverseStep<true>
{
template <typename T, glm::precision P, template <class, glm::precision> class vecType>
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T Mask, T Shift)
{
return (v & Mask) << Shift | (v & (~Mask)) >> Shift;
}
};
}//namespace detail }//namespace detail
// uaddCarry // uaddCarry
@ -167,26 +187,23 @@ namespace detail
} }
// bitfieldReverse // bitfieldReverse
template <typename T> template <typename genType>
GLM_FUNC_QUALIFIER T bitfieldReverse(T v) GLM_FUNC_QUALIFIER genType bitfieldReverse(genType x)
{ {
return bitfieldReverse(tvec1<T>(v)).x; return bitfieldReverse(glm::tvec1<genType, glm::defaultp>(x)).x;
} }
template <typename T, precision P, template <typename, precision> class vecType> template <typename T, glm::precision P, template <typename, glm::precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldReverse(vecType<T, P> const & v) GLM_FUNC_QUALIFIER vecType<T, P> bitfieldReverse(vecType<T, P> const & v)
{ {
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldReverse' only accept integer values"); vecType<T, P> x(v);
x = detail::compute_bitfieldReverseStep<sizeof(T) * 8 >= 2>::call<T, P, vecType>(x, T(0x5555555555555555ull), static_cast<T>( 1));
vecType<T, P> Result(0); x = detail::compute_bitfieldReverseStep<sizeof(T) * 8 >= 4>::call<T, P, vecType>(x, T(0x3333333333333333ull), static_cast<T>( 2));
T const BitSize = static_cast<T>(sizeof(T) * 8); x = detail::compute_bitfieldReverseStep<sizeof(T) * 8 >= 8>::call<T, P, vecType>(x, T(0x0F0F0F0F0F0F0F0Full), static_cast<T>( 4));
for(T i = 0; i < BitSize; ++i) x = detail::compute_bitfieldReverseStep<sizeof(T) * 8 >= 16>::call<T, P, vecType>(x, T(0x00FF00FF00FF00FFull), static_cast<T>( 8));
{ x = detail::compute_bitfieldReverseStep<sizeof(T) * 8 >= 32>::call<T, P, vecType>(x, T(0x0000FFFF0000FFFFull), static_cast<T>(16));
vecType<T, P> const BitSet(v & (static_cast<T>(1) << i)); x = detail::compute_bitfieldReverseStep<sizeof(T) * 8 >= 64>::call<T, P, vecType>(x, T(0x00000000FFFFFFFFull), static_cast<T>(32));
vecType<T, P> const BitFirst(BitSet >> i); return x;
Result |= BitFirst << (BitSize - 1 - i);
}
return Result;
} }
// bitCount // bitCount

View File

@ -131,6 +131,115 @@ namespace bitfieldExtract
namespace bitfieldReverse namespace bitfieldReverse
{ {
/*
GLM_FUNC_QUALIFIER unsigned int bitfieldReverseLoop(unsigned int v)
{
unsigned int Result(0);
unsigned int const BitSize = static_cast<unsigned int>(sizeof(unsigned int) * 8);
for(unsigned int i = 0; i < BitSize; ++i)
{
unsigned int const BitSet(v & (static_cast<unsigned int>(1) << i));
unsigned int const BitFirst(BitSet >> i);
Result |= BitFirst << (BitSize - 1 - i);
}
return Result;
}
GLM_FUNC_QUALIFIER glm::uint64_t bitfieldReverseLoop(glm::uint64_t v)
{
glm::uint64_t Result(0);
glm::uint64_t const BitSize = static_cast<glm::uint64_t>(sizeof(unsigned int) * 8);
for(glm::uint64_t i = 0; i < BitSize; ++i)
{
glm::uint64_t const BitSet(v & (static_cast<glm::uint64_t>(1) << i));
glm::uint64_t const BitFirst(BitSet >> i);
Result |= BitFirst << (BitSize - 1 - i);
}
return Result;
}
*/
template <typename T, glm::precision P, template <typename, glm::precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldReverseLoop(vecType<T, P> const & v)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldReverse' only accept integer values");
vecType<T, P> Result(0);
T const BitSize = static_cast<T>(sizeof(T) * 8);
for(T i = 0; i < BitSize; ++i)
{
vecType<T, P> const BitSet(v & (static_cast<T>(1) << i));
vecType<T, P> const BitFirst(BitSet >> i);
Result |= BitFirst << (BitSize - 1 - i);
}
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER T bitfieldReverseLoop(T v)
{
return bitfieldReverseLoop(glm::tvec1<T>(v)).x;
}
GLM_FUNC_QUALIFIER uint32_t bitfieldReverseUint32(uint32_t x)
{
x = (x & 0x55555555) << 1 | (x & 0xAAAAAAAA) >> 1;
x = (x & 0x33333333) << 2 | (x & 0xCCCCCCCC) >> 2;
x = (x & 0x0F0F0F0F) << 4 | (x & 0xF0F0F0F0) >> 4;
x = (x & 0x00FF00FF) << 8 | (x & 0xFF00FF00) >> 8;
x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16;
return x;
}
GLM_FUNC_QUALIFIER uint64_t bitfieldReverseUint64(uint64_t x)
{
x = (x & 0x5555555555555555) << 1 | (x & 0xAAAAAAAAAAAAAAAA) >> 1;
x = (x & 0x3333333333333333) << 2 | (x & 0xCCCCCCCCCCCCCCCC) >> 2;
x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x & 0xF0F0F0F0F0F0F0F0) >> 4;
x = (x & 0x00FF00FF00FF00FF) << 8 | (x & 0xFF00FF00FF00FF00) >> 8;
x = (x & 0x0000FFFF0000FFFF) << 16 | (x & 0xFFFF0000FFFF0000) >> 16;
x = (x & 0x00000000FFFFFFFF) << 32 | (x & 0xFFFFFFFF00000000) >> 32;
return x;
}
template <bool EXEC = false>
struct compute_bitfieldReverseStep
{
template <typename T, glm::precision P, template <class, glm::precision> class vecType>
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T, T)
{
return v;
}
};
template <>
struct compute_bitfieldReverseStep<true>
{
template <typename T, glm::precision P, template <class, glm::precision> class vecType>
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T Mask, T Shift)
{
return (v & Mask) << Shift | (v & (~Mask)) >> Shift;
}
};
template <typename T, glm::precision P, template <typename, glm::precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldReverseOps(vecType<T, P> const & v)
{
vecType<T, P> x(v);
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 2>::call<T, P, vecType>(x, T(0x5555555555555555ull), static_cast<T>( 1));
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 4>::call<T, P, vecType>(x, T(0x3333333333333333ull), static_cast<T>( 2));
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 8>::call<T, P, vecType>(x, T(0x0F0F0F0F0F0F0F0Full), static_cast<T>( 4));
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 16>::call<T, P, vecType>(x, T(0x00FF00FF00FF00FFull), static_cast<T>( 8));
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 32>::call<T, P, vecType>(x, T(0x0000FFFF0000FFFFull), static_cast<T>(16));
x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 64>::call<T, P, vecType>(x, T(0x00000000FFFFFFFFull), static_cast<T>(32));
return x;
}
template <typename genType>
GLM_FUNC_QUALIFIER genType bitfieldReverseOps(genType x)
{
return bitfieldReverseOps(glm::tvec1<genType, glm::defaultp>(x)).x;
}
template <typename genType> template <typename genType>
struct type struct type
{ {
@ -143,9 +252,13 @@ namespace bitfieldReverse
typeU32 const Data32[] = typeU32 const Data32[] =
{ {
{0xffffffff, 0xffffffff, SUCCESS}, {0x00000001, 0x80000000, SUCCESS},
{0x00000000, 0x00000000, SUCCESS}, {0x0000000f, 0xf0000000, SUCCESS},
{0x000000ff, 0xff000000, SUCCESS},
{0xf0000000, 0x0000000f, SUCCESS}, {0xf0000000, 0x0000000f, SUCCESS},
{0xff000000, 0x000000ff, SUCCESS},
{0xffffffff, 0xffffffff, SUCCESS},
{0x00000000, 0x00000000, SUCCESS}
}; };
typedef type<glm::uint64> typeU64; typedef type<glm::uint64> typeU64;
@ -153,71 +266,280 @@ namespace bitfieldReverse
#if(((GLM_COMPILER & GLM_COMPILER_GCC) == GLM_COMPILER_GCC) && (GLM_COMPILER < GLM_COMPILER_GCC44)) #if(((GLM_COMPILER & GLM_COMPILER_GCC) == GLM_COMPILER_GCC) && (GLM_COMPILER < GLM_COMPILER_GCC44))
typeU64 const Data64[] = typeU64 const Data64[] =
{ {
{0xffffffffffffffffLLU, 0xffffffffffffffffLLU, SUCCESS},
{0x0000000000000000LLU, 0x0000000000000000LLU, SUCCESS},
{0xf000000000000000LLU, 0x000000000000000fLLU, SUCCESS}, {0xf000000000000000LLU, 0x000000000000000fLLU, SUCCESS},
{0xffffffffffffffffLLU, 0xffffffffffffffffLLU, SUCCESS},
{0x0000000000000000LLU, 0x0000000000000000LLU, SUCCESS}
}; };
#else #else
typeU64 const Data64[] = typeU64 const Data64[] =
{ {
{0xffffffffffffffff, 0xffffffffffffffff, SUCCESS}, {0x00000000000000ff, 0xff00000000000000, SUCCESS},
{0x0000000000000000, 0x0000000000000000, SUCCESS}, {0x000000000000000f, 0xf000000000000000, SUCCESS},
{0xf000000000000000, 0x000000000000000f, SUCCESS}, {0xf000000000000000, 0x000000000000000f, SUCCESS},
{0xffffffffffffffff, 0xffffffffffffffff, SUCCESS},
{0x0000000000000000, 0x0000000000000000, SUCCESS}
}; };
#endif #endif
int test32() int test32_bitfieldReverse()
{ {
glm::uint count = sizeof(Data32) / sizeof(typeU32); int Error = 0;
std::size_t const Count = sizeof(Data32) / sizeof(typeU32);
for(glm::uint i = 0; i < count; ++i) for(std::size_t i = 0; i < Count; ++i)
{ {
glm::uint Return = glm::bitfieldReverse( glm::uint Return = glm::bitfieldReverse(Data32[i].Value);
Data32[i].Value);
bool Compare = Data32[i].Return == Return; bool Compare = Data32[i].Return == Return;
if(Data32[i].Result == SUCCESS && Compare) if(Data32[i].Result == SUCCESS)
continue; Error += Compare ? 0 : 1;
else if(Data32[i].Result == FAIL && !Compare) else
continue; Error += Compare ? 1 : 0;
std::printf("glm::bitfieldReverse test fail on test %d\n", static_cast<unsigned int>(i));
return 1;
} }
return 0; return Error;
} }
int test64() int test32_bitfieldReverseLoop()
{ {
glm::uint32 count = sizeof(Data64) / sizeof(typeU64); int Error = 0;
std::size_t const Count = sizeof(Data32) / sizeof(typeU32);
for(glm::uint32 i = 0; i < count; ++i) for(std::size_t i = 0; i < Count; ++i)
{ {
glm::uint64 Return = glm::bitfieldReverse( glm::uint Return = bitfieldReverseLoop(Data32[i].Value);
Data64[i].Value);
bool Compare = Data32[i].Return == Return;
if(Data32[i].Result == SUCCESS)
Error += Compare ? 0 : 1;
else
Error += Compare ? 1 : 0;
}
return Error;
}
int test32_bitfieldReverseUint32()
{
int Error = 0;
std::size_t const Count = sizeof(Data32) / sizeof(typeU32);
for(std::size_t i = 0; i < Count; ++i)
{
glm::uint Return = bitfieldReverseUint32(Data32[i].Value);
bool Compare = Data32[i].Return == Return;
if(Data32[i].Result == SUCCESS)
Error += Compare ? 0 : 1;
else
Error += Compare ? 1 : 0;
}
return Error;
}
int test32_bitfieldReverseOps()
{
int Error = 0;
std::size_t const Count = sizeof(Data32) / sizeof(typeU32);
for(std::size_t i = 0; i < Count; ++i)
{
glm::uint Return = bitfieldReverseOps(Data32[i].Value);
bool Compare = Data32[i].Return == Return;
if(Data32[i].Result == SUCCESS)
Error += Compare ? 0 : 1;
else
Error += Compare ? 1 : 0;
}
return Error;
}
int test64_bitfieldReverse()
{
int Error = 0;
std::size_t const Count = sizeof(Data64) / sizeof(typeU64);
for(std::size_t i = 0; i < Count; ++i)
{
glm::uint64 Return = glm::bitfieldReverse(Data64[i].Value);
bool Compare = Data64[i].Return == Return; bool Compare = Data64[i].Return == Return;
if(Data64[i].Result == SUCCESS && Compare) if(Data64[i].Result == SUCCESS)
continue; Error += Compare ? 0 : 1;
else if(Data64[i].Result == FAIL && !Compare) else
continue; Error += Compare ? 1 : 0;
std::printf("glm::extractfield test fail on test %d\n", static_cast<unsigned int>(i));
return 1;
} }
return 0; return Error;
}
int test64_bitfieldReverseLoop()
{
int Error = 0;
std::size_t const Count = sizeof(Data64) / sizeof(typeU64);
for(std::size_t i = 0; i < Count; ++i)
{
glm::uint64 Return = bitfieldReverseLoop(Data64[i].Value);
bool Compare = Data64[i].Return == Return;
if(Data32[i].Result == SUCCESS)
Error += Compare ? 0 : 1;
else
Error += Compare ? 1 : 0;
}
return Error;
}
int test64_bitfieldReverseUint64()
{
int Error = 0;
std::size_t const Count = sizeof(Data64) / sizeof(typeU64);
for(std::size_t i = 0; i < Count; ++i)
{
glm::uint64 Return = bitfieldReverseUint64(Data64[i].Value);
bool Compare = Data64[i].Return == Return;
if(Data64[i].Result == SUCCESS)
Error += Compare ? 0 : 1;
else
Error += Compare ? 1 : 0;
}
return Error;
}
int test64_bitfieldReverseOps()
{
int Error = 0;
std::size_t const Count = sizeof(Data64) / sizeof(typeU64);
for(std::size_t i = 0; i < Count; ++i)
{
glm::uint64 Return = bitfieldReverseOps(Data64[i].Value);
bool Compare = Data64[i].Return == Return;
if(Data64[i].Result == SUCCESS)
Error += Compare ? 0 : 1;
else
Error += Compare ? 1 : 0;
}
return Error;
} }
int test() int test()
{ {
int Error = 0; int Error = 0;
Error += test32(); Error += test32_bitfieldReverse();
Error += test64(); Error += test32_bitfieldReverseLoop();
Error += test32_bitfieldReverseUint32();
Error += test32_bitfieldReverseOps();
Error += test64_bitfieldReverse();
Error += test64_bitfieldReverseLoop();
Error += test64_bitfieldReverseUint64();
Error += test64_bitfieldReverseOps();
return Error;
}
int perf32()
{
int Error = 0;
glm::uint32 Count = 10000000;
std::vector<glm::uint32> Data;
Data.resize(static_cast<std::size_t>(Count));
std::clock_t Timestamps0 = std::clock();
for(glm::uint32 k = 0; k < Count; ++k)
Data[k] = glm::bitfieldReverse(k);
std::clock_t Timestamps1 = std::clock();
for(glm::uint32 k = 0; k < Count; ++k)
Data[k] = bitfieldReverseLoop(k);
std::clock_t Timestamps2 = std::clock();
for(glm::uint32 k = 0; k < Count; ++k)
Data[k] = bitfieldReverseUint32(k);
std::clock_t Timestamps3 = std::clock();
for(glm::uint32 k = 0; k < Count; ++k)
Data[k] = bitfieldReverseOps(k);
std::clock_t Timestamps4 = std::clock();
std::printf("glm::bitfieldReverse: %d clocks\n", static_cast<unsigned int>(Timestamps1 - Timestamps0));
std::printf("bitfieldReverseLoop: %d clocks\n", static_cast<unsigned int>(Timestamps2 - Timestamps1));
std::printf("bitfieldReverseUint32: %d clocks\n", static_cast<unsigned int>(Timestamps3 - Timestamps2));
std::printf("bitfieldReverseOps: %d clocks\n", static_cast<unsigned int>(Timestamps4 - Timestamps3));
return Error;
}
int perf64()
{
int Error = 0;
glm::uint64 Count = 10000000;
std::vector<glm::uint64> Data;
Data.resize(static_cast<std::size_t>(Count));
std::clock_t Timestamps0 = std::clock();
for(glm::uint32 k = 0; k < Count; ++k)
Data[k] = glm::bitfieldReverse(k);
std::clock_t Timestamps1 = std::clock();
for(glm::uint64 k = 0; k < Count; ++k)
Data[k] = bitfieldReverseLoop(k);
std::clock_t Timestamps2 = std::clock();
for(glm::uint64 k = 0; k < Count; ++k)
Data[k] = bitfieldReverseUint64(k);
std::clock_t Timestamps3 = std::clock();
for(glm::uint64 k = 0; k < Count; ++k)
Data[k] = bitfieldReverseOps(k);
std::clock_t Timestamps4 = std::clock();
std::printf("glm::bitfieldReverse - 64: %d clocks\n", static_cast<unsigned int>(Timestamps1 - Timestamps0));
std::printf("bitfieldReverseLoop - 64: %d clocks\n", static_cast<unsigned int>(Timestamps2 - Timestamps1));
std::printf("bitfieldReverseUint - 64: %d clocks\n", static_cast<unsigned int>(Timestamps3 - Timestamps2));
std::printf("bitfieldReverseOps - 64: %d clocks\n", static_cast<unsigned int>(Timestamps4 - Timestamps3));
return Error;
}
int perf()
{
int Error = 0;
Error += perf32();
Error += perf64();
return Error; return Error;
} }
@ -909,7 +1231,7 @@ namespace bitCount
// bitCount - TimeVec4 // bitCount - TimeVec4
{ {
for(std::size_t i = 0, n = v.size(); i < n; ++i) for(std::size_t i = 0, n = v.size(); i < n; ++i)
w[i] = glm::bitCount(glm::ivec4(i)); w[i] = glm::bitCount(glm::ivec4(static_cast<int>(i)));
} }
std::clock_t TimestampsE = std::clock(); std::clock_t TimestampsE = std::clock();
@ -946,6 +1268,8 @@ int main()
{ {
int Error = 0; int Error = 0;
Error += ::bitfieldReverse::test();
Error += ::bitfieldReverse::perf();
Error += ::findMSB::test(); Error += ::findMSB::test();
Error += ::findMSB::perf(); Error += ::findMSB::perf();
Error += ::findLSB::test(); Error += ::findLSB::test();
@ -955,7 +1279,6 @@ int main()
Error += ::usubBorrow::test(); Error += ::usubBorrow::test();
Error += ::bitfieldInsert::test(); Error += ::bitfieldInsert::test();
Error += ::bitfieldExtract::test(); Error += ::bitfieldExtract::test();
Error += ::bitfieldReverse::test();
Error += ::bitCount::test(); Error += ::bitCount::test();
Error += ::bitCount::perf(); Error += ::bitCount::perf();