0.9.9 API documentation
Functions
GLM_GTX_matrix_factorisation

Functions

template<length_t C, length_t R, typename T , qualifier Q>
GLM_FUNC_DECL mat< C, R, T, Q > fliplr (mat< C, R, T, Q > const &in)
 
template<length_t C, length_t R, typename T , qualifier Q>
GLM_FUNC_DECL mat< C, R, T, Q > flipud (mat< C, R, T, Q > const &in)
 
template<length_t C, length_t R, typename T , qualifier Q>
GLM_FUNC_DECL void qr_decompose (mat< C, R, T, Q > const &in, mat<(C< R ? C :R), R, T, Q > &q, mat< C,(C< R ? C :R), T, Q > &r)
 
template<length_t C, length_t R, typename T , qualifier Q>
GLM_FUNC_DECL void rq_decompose (mat< C, R, T, Q > const &in, mat<(C< R ? C :R), R, T, Q > &r, mat< C,(C< R ? C :R), T, Q > &q)
 

Detailed Description

Include <glm/gtx/matrix_factorisation.hpp> to use the features of this extension.

Functions to factor matrices in various forms

Function Documentation

◆ fliplr()

GLM_FUNC_DECL mat<C, R, T, Q> glm::fliplr ( mat< C, R, T, Q > const &  in)

Flips the matrix columns right and left.

From GLM_GTX_matrix_factorisation extension.

◆ flipud()

GLM_FUNC_DECL mat<C, R, T, Q> glm::flipud ( mat< C, R, T, Q > const &  in)

Flips the matrix rows up and down.

From GLM_GTX_matrix_factorisation extension.

◆ qr_decompose()

GLM_FUNC_DECL void glm::qr_decompose ( mat< C, R, T, Q > const &  in)

Performs QR factorisation of a matrix.

Returns 2 matrices, q and r, such that the columns of q are orthonormal and span the same subspace than those of the input matrix, r is an upper triangular matrix, and q*r=in. Given an n-by-m input matrix, q has dimensions min(n,m)-by-m, and r has dimensions n-by-min(n,m).

From GLM_GTX_matrix_factorisation extension.

◆ rq_decompose()

GLM_FUNC_DECL void glm::rq_decompose ( mat< C, R, T, Q > const &  in)

Performs RQ factorisation of a matrix.

Returns 2 matrices, r and q, such that r is an upper triangular matrix, the rows of q are orthonormal and span the same subspace than those of the input matrix, and r*q=in. Note that in the context of RQ factorisation, the diagonal is seen as starting in the lower-right corner of the matrix, instead of the usual upper-left. Given an n-by-m input matrix, r has dimensions min(n,m)-by-m, and q has dimensions n-by-min(n,m).

From GLM_GTX_matrix_factorisation extension.