0.9.9 API documentation
|
Functions | |
template<length_t C, length_t R, typename T , qualifier Q> | |
GLM_FUNC_DECL mat< C, R, T, Q > | fliplr (mat< C, R, T, Q > const &in) |
template<length_t C, length_t R, typename T , qualifier Q> | |
GLM_FUNC_DECL mat< C, R, T, Q > | flipud (mat< C, R, T, Q > const &in) |
template<length_t C, length_t R, typename T , qualifier Q> | |
GLM_FUNC_DECL void | qr_decompose (mat< C, R, T, Q > const &in, mat<(C< R ? C :R), R, T, Q > &q, mat< C,(C< R ? C :R), T, Q > &r) |
template<length_t C, length_t R, typename T , qualifier Q> | |
GLM_FUNC_DECL void | rq_decompose (mat< C, R, T, Q > const &in, mat<(C< R ? C :R), R, T, Q > &r, mat< C,(C< R ? C :R), T, Q > &q) |
Include <glm/gtx/matrix_factorisation.hpp> to use the features of this extension.
Functions to factor matrices in various forms
GLM_FUNC_DECL mat<C, R, T, Q> glm::fliplr | ( | mat< C, R, T, Q > const & | in | ) |
Flips the matrix columns right and left.
From GLM_GTX_matrix_factorisation extension.
GLM_FUNC_DECL mat<C, R, T, Q> glm::flipud | ( | mat< C, R, T, Q > const & | in | ) |
Flips the matrix rows up and down.
From GLM_GTX_matrix_factorisation extension.
GLM_FUNC_DECL void glm::qr_decompose | ( | mat< C, R, T, Q > const & | in | ) |
Performs QR factorisation of a matrix.
Returns 2 matrices, q and r, such that the columns of q are orthonormal and span the same subspace than those of the input matrix, r is an upper triangular matrix, and q*r=in. Given an n-by-m input matrix, q has dimensions min(n,m)-by-m, and r has dimensions n-by-min(n,m).
From GLM_GTX_matrix_factorisation extension.
GLM_FUNC_DECL void glm::rq_decompose | ( | mat< C, R, T, Q > const & | in | ) |
Performs RQ factorisation of a matrix.
Returns 2 matrices, r and q, such that r is an upper triangular matrix, the rows of q are orthonormal and span the same subspace than those of the input matrix, and r*q=in. Note that in the context of RQ factorisation, the diagonal is seen as starting in the lower-right corner of the matrix, instead of the usual upper-left. Given an n-by-m input matrix, r has dimensions min(n,m)-by-m, and q has dimensions n-by-min(n,m).
From GLM_GTX_matrix_factorisation extension.