Revert "[mlir] [XeGPU] Add XeGPU workgroup to subgroup pass (#139477)" (#140779)

This reverts commit 747620db2a02b889ae3ba3921d6c0e526a3e7677.

Multiple bot failures
This commit is contained in:
Jan Patrick Lehr 2025-05-20 20:31:00 +02:00 committed by GitHub
parent 611f47c46c
commit b99e57583e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 12 additions and 676 deletions

View File

@ -6,6 +6,7 @@
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_DIALECT_XEGPU_TRANSFORMS_PASSES_TD
#define MLIR_DIALECT_XEGPU_TRANSFORMS_PASSES_TD
@ -17,7 +18,9 @@ def XeGPUFoldAliasOps : Pass<"xegpu-fold-alias-ops"> {
The pass folds aliasing ops into XeGPU ops that they operate on the original
source references.
}];
let dependentDialects = ["memref::MemRefDialect", "xegpu::XeGPUDialect"];
let dependentDialects = [
"memref::MemRefDialect", "xegpu::XeGPUDialect"
];
}
def XeGPUSubgroupDistribute : Pass<"xegpu-subgroup-distribute"> {
@ -25,24 +28,14 @@ def XeGPUSubgroupDistribute : Pass<"xegpu-subgroup-distribute"> {
let description = [{
The pass distributes subgroup level (SIMD) XeGPU ops to work items.
}];
let dependentDialects = ["memref::MemRefDialect", "xegpu::XeGPUDialect",
"vector::VectorDialect"];
let options = [Option<
"printOnly", "print-analysis-only", "bool",
let dependentDialects = [
"memref::MemRefDialect", "xegpu::XeGPUDialect", "vector::VectorDialect"
];
let options = [
Option<"printOnly", "print-analysis-only", "bool",
/*default=*/"false",
"Print the result of the subgroup map propagation analysis and exit.">];
}
def XeGPUWgToSgDistribute : Pass<"xegpu-wg-to-sg-distribute"> {
let summary = "Transform WorkGroup level XeGPU code to SubGroup level";
let description = [{
This transform pass distributes the workgroup level computation to
multiple subgroups based on the sg_layout and sg_data attributes.
}];
let dependentDialects = ["memref::MemRefDialect", "xegpu::XeGPUDialect",
"vector::VectorDialect", "arith::ArithDialect",
"gpu::GPUDialect", "index::IndexDialect"];
"Print the result of the subgroup map propagation analysis and exit.">
];
}
#endif // MLIR_DIALECT_XEGPU_TRANSFORMS_PASSES_TD

View File

@ -62,7 +62,6 @@ void populateXeGPUFoldAliasOpsPatterns(RewritePatternSet &patterns);
/// Appends patterns for XeGPU SIMT distribution into `patterns`.
void populateXeGPUSubgroupDistributePatterns(RewritePatternSet &patterns);
void populateXeGPUWgToSgDistributePatterns(RewritePatternSet &patterns);
/// Collect a set of patterns to unroll xegpu operations to a smaller shapes.
/// Users can control whether an operation to be unrolled or not, as well as

View File

@ -2,7 +2,6 @@ add_mlir_dialect_library(MLIRXeGPUTransforms
XeGPUFoldAliasOps.cpp
XeGPUSubgroupDistribute.cpp
XeGPUUnroll.cpp
XeGPUWgToSgDistribute.cpp
ADDITIONAL_HEADER_DIRS
${MLIR_MAIN_INCLUDE_DIR}/mlir/Dialect/XeGPU

View File

@ -1,378 +0,0 @@
//===- XeGPUWgToSgDistribute.cpp - XeGPU Workgroup to Subgroup Pass -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/XeGPU/Transforms/Passes.h"
#include "mlir/Dialect/Affine/Utils.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/Index/IR/IndexDialect.h"
#include "mlir/Dialect/Index/IR/IndexOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/XeGPU/IR/XeGPU.h"
#include "mlir/Dialect/XeGPU/Transforms/Transforms.h"
#include "mlir/Transforms/DialectConversion.h"
namespace mlir {
namespace xegpu {
#define GEN_PASS_DEF_XEGPUWGTOSGDISTRIBUTE
#include "mlir/Dialect/XeGPU/Transforms/Passes.h.inc"
} // namespace xegpu
} // namespace mlir
using namespace mlir;
namespace {
/// This pattern transforms the CreateNdDescOp to create a subgroup descriptor
/// from a workgroup descriptor. It replaces the offsets and sizes with
/// appropriate values for the subgroup.
/// It uses round-robin assignment to distribute the work to the subgroups.
/// Following create_nd_desc operation:,
/// %tdesc = xegpu.create_nd_tdesc %src[0, 0] : memref<24x24xf32>
/// -> !xegpu.tensor_desc<24x24xf32, #xegpu.layout<sg_layout = [4, 4],
/// sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
/// is converted to 9 subgroup level operations based on the sg_layout &
/// sg_data:
/// %tdesc = xegpu.create_nd_tdesc %src[off1, off2] : memref<24x24xf32> ->
/// !xegpu.tensor_desc<2x2xf32, #xegpu.layout<lane_layout = [2, 2],
/// lane_data = [1, 1]>>
///
/// The sg_layout and sg_data attributes are dropped after the pass as they are
/// no longer needed.
///
/// 24x24 matrix distribution example:
/// sg_layout = [4, 4], sg_data = [2, 2]
/// Each 8x8 matrix within the 24x24 matrix is called a distribution unit.
/// dist_unit_shape = [8, 8] --> sg_layout[i] * sg_data[i]
///
/// +------------------------+
/// | 8x8 | 8x8 | 8x8 | <- 3 tiles across
/// |-----+-----+-----|
/// | 8x8 | 8x8 | 8x8 | <- 3 tiles down
/// |-----+-----+-----|
/// | 8x8 | 8x8 | 8x8 |
/// +------------------------+
///
/// Each 8x8 tile is further subdivided among subgroups:
/// +------------------------+
/// | 2x2 2x2 2x2 2x2 | <- 4 subgroups across (each handles 2 columns)
/// | 2x2 2x2 2x2 2x2 | <- 4 subgroups down (each handles 2 rows)
/// | 2x2 2x2 2x2 2x2 |
/// | 2x2 2x2 2x2 2x2 |
/// +------------------------+
///
/// Since the 24x24 matrix is divided into 8x8 distribution units, there will be
/// 9 distribution units (3x3) in total. Hence the 9 subgroup level operations.
/// The pass currently has entire distribution logic in the WgToSgCreateNdOp
/// pattern and all the other ops just follow.
/// TODO: Decouple the distribution logic from WgToSgCreateNdOp for all the
/// ops in the pass.
struct WgToSgCreateNdOp : public OpConversionPattern<xegpu::CreateNdDescOp> {
using OpConversionPattern<xegpu::CreateNdDescOp>::OpConversionPattern;
// Calculate offset for each subgroup
SmallVector<OpFoldResult>
calculateGlobalOffsets(ConversionPatternRewriter &rewriter, Location loc,
const SmallVector<OpFoldResult> &originalOffsets,
const SmallVector<Value> &localOffset,
const SmallVector<int64_t> &distUnitBaseAddr,
const SmallVector<int64_t> &distUnitShape) const {
assert(localOffset.size() == distUnitBaseAddr.size() &&
"localOffset and distUnitBaseAddr must have the same rank");
SmallVector<OpFoldResult> globalOffsets(originalOffsets.begin(),
originalOffsets.end());
size_t rank = localOffset.size();
for (size_t i = 0; i < rank; ++i) {
size_t dimIdx = originalOffsets.size() - rank + i;
Value constOffset =
rewriter.create<arith::ConstantIndexOp>(loc, distUnitBaseAddr[i]);
Value offset =
rewriter.createOrFold<index::AddOp>(loc, localOffset[i], constOffset);
Value modValue =
rewriter.create<arith::ConstantIndexOp>(loc, distUnitShape[i]);
Value offsetMod =
rewriter.createOrFold<index::RemUOp>(loc, offset, modValue);
Value origOffset = getValueOrCreateConstantIndexOp(
rewriter, loc, originalOffsets[dimIdx]);
Value globalOffset =
rewriter.createOrFold<index::AddOp>(loc, origOffset, offsetMod);
globalOffsets[dimIdx] = globalOffset;
}
return globalOffsets;
}
LogicalResult
matchAndRewrite(xegpu::CreateNdDescOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
MLIRContext *ctx = op.getContext();
xegpu::TensorDescType tdescTy = op.getType();
auto layout = dyn_cast<xegpu::LayoutAttr>(tdescTy.getLayout());
if (!layout)
return failure();
Type elemTy = tdescTy.getElementType();
ArrayRef<int64_t> wgShape = tdescTy.getShape();
// sgLayout must be present for workgroup-level distribution.
SmallVector<int64_t> sgLayout;
if (auto sgLayoutAttr = layout.getSgLayout())
sgLayout = llvm::to_vector_of<int64_t>(sgLayoutAttr.asArrayRef());
else
return rewriter.notifyMatchFailure(
op, "sgLayout attribute is required in layout");
SmallVector<int64_t> sgShape;
if (auto sgDataAttr = layout.getSgData()) {
sgShape = llvm::to_vector_of<int64_t>(sgDataAttr.asArrayRef());
} else {
assert(wgShape.size() == sgLayout.size() &&
"sgLayout and wgShape must have the same rank");
sgShape.reserve(wgShape.size());
for (size_t i = 0; i < wgShape.size(); ++i) {
assert(sgLayout[i] != 0 && "sgLayout elements must be non-zero");
sgShape.push_back(wgShape[i] / sgLayout[i]);
}
}
// TODO : Handle order attribute
// Get the subgroup ID
auto linearSgId =
rewriter.create<gpu::SubgroupIdOp>(loc, /*upper_bound=*/nullptr);
// Create constants for layout dimensions
SmallVector<Value> sgLayoutDim(sgLayout.size());
SmallVector<Value> sgDataDim(sgShape.size());
for (size_t i = 0; i < sgLayout.size(); i++) {
sgLayoutDim[i] =
rewriter.create<arith::ConstantIndexOp>(loc, sgLayout[i]);
sgDataDim[i] = rewriter.create<arith::ConstantIndexOp>(loc, sgShape[i]);
}
auto deLinearizeSgId =
affine::delinearizeIndex(rewriter, loc, linearSgId, sgLayoutDim);
if (failed(deLinearizeSgId))
return failure();
SmallVector<Value> sgIds = *deLinearizeSgId;
// Calculate distribution unit shape and local offsets for subgroup
SmallVector<int64_t> distUnitShape(sgLayout.size());
SmallVector<Value> localOffset(sgLayout.size());
for (size_t i = 0; i < sgLayout.size(); i++) {
distUnitShape[i] = std::min(sgLayout[i] * sgShape[i], wgShape[i]);
localOffset[i] =
rewriter.createOrFold<index::MulOp>(loc, sgIds[i], sgDataDim[i]);
}
SmallVector<OpFoldResult> originalOffsets = op.getMixedOffsets();
xegpu::TensorDescType newTdescTy =
xegpu::TensorDescType::get(ctx, sgShape, elemTy, tdescTy.getEncoding(),
layout.dropSgLayoutAndData());
SmallVector<Value> newCreateNdOps;
for (SmallVector<int64_t> distUnitBaseAddr :
StaticTileOffsetRange(wgShape, distUnitShape)) {
SmallVector<OpFoldResult> globalOffsets =
calculateGlobalOffsets(rewriter, loc, originalOffsets, localOffset,
distUnitBaseAddr, distUnitShape);
auto newCreateNdOp = rewriter.create<xegpu::CreateNdDescOp>(
loc, newTdescTy, op.getSource(), globalOffsets, op.getMixedSizes(),
op.getMixedStrides());
newCreateNdOps.push_back(newCreateNdOp);
}
rewriter.replaceOpWithMultiple(op, {newCreateNdOps});
return success();
}
};
/// This pattern transforms the LoadNdOp to load subgroup data.
struct WgToSgLoadNdOp : public OpConversionPattern<xegpu::LoadNdOp> {
using OpConversionPattern<xegpu::LoadNdOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(xegpu::LoadNdOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SmallVector<Value> newLoadOps;
for (auto src : adaptor.getTensorDesc()) {
xegpu::TensorDescType tdescTy =
dyn_cast<xegpu::TensorDescType>(src.getType());
ArrayRef<int64_t> srcShape = tdescTy.getShape();
VectorType newResTy = VectorType::get(srcShape, tdescTy.getElementType());
auto newLoadOp = rewriter.create<xegpu::LoadNdOp>(op.getLoc(), newResTy,
src, op->getAttrs());
newLoadOps.push_back(newLoadOp);
}
rewriter.replaceOpWithMultiple(op, {newLoadOps});
return mlir::success();
}
};
/// This pattern transforms the StoreNdOp to store to a subgroup descriptor
/// It creates a StoreNdOp op to store the updated values to the new subgroup
/// src tensor descriptors.
struct WgToSgStoreNdOp : public OpConversionPattern<xegpu::StoreNdOp> {
using OpConversionPattern<xegpu::StoreNdOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(xegpu::StoreNdOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
for (auto [v, t] : llvm::zip(adaptor.getValue(), adaptor.getTensorDesc()))
rewriter.create<xegpu::StoreNdOp>(op.getLoc(), v, t, op.getL1HintAttr(),
op.getL2HintAttr(), op.getL3HintAttr());
rewriter.eraseOp(op);
return success();
}
};
/// This pattern transforms the UpdateNdOffsetOp to update the offsets of a
/// subgroup descriptor. It creates an UpdateNdOffsetOp op to update the
/// offsets of the new subgroup src tensor descriptors.
struct WgToSgUpdateNdOffsetOp
: public OpConversionPattern<xegpu::UpdateNdOffsetOp> {
using OpConversionPattern<xegpu::UpdateNdOffsetOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(xegpu::UpdateNdOffsetOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
llvm::SmallVector<Value> newUpdateTileOffsetOps;
for (auto tDesc : adaptor.getTensorDesc()) {
auto newUpdateTileOffsetOp = rewriter.create<xegpu::UpdateNdOffsetOp>(
op.getLoc(), tDesc.getType(), tDesc, op.getOffsets(),
op.getConstOffsets());
newUpdateTileOffsetOps.push_back(newUpdateTileOffsetOp);
}
rewriter.replaceOpWithMultiple(op, {newUpdateTileOffsetOps});
return success();
}
};
/// This pattern transforms the DpasOp to work at subgroup level.
struct WgToSgDpasOp : public OpConversionPattern<xegpu::DpasOp> {
using OpConversionPattern<xegpu::DpasOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(xegpu::DpasOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
VectorType resultTy = op.getResult().getType();
if (resultTy.getRank() != 2)
return failure();
auto originalLayout =
llvm::dyn_cast_or_null<xegpu::LayoutAttr>(op->getAttr("layout"));
if (!originalLayout)
return failure();
SmallVector<Value> newDpasOps;
size_t i = 0;
for (auto aVec : adaptor.getLhs()) {
for (auto bVec : adaptor.getRhs()) {
llvm::SmallVector<Value> operands({aVec, bVec});
Value tmpC;
if (op.getAcc()) {
tmpC = adaptor.getAcc()[i++];
operands.push_back(tmpC);
}
ArrayRef<int64_t> aVecShape =
llvm::cast<VectorType>(aVec.getType()).getShape();
ArrayRef<int64_t> bVecShape =
llvm::cast<VectorType>(bVec.getType()).getShape();
VectorType resTy = VectorType::get({aVecShape[0], bVecShape[1]},
resultTy.getElementType());
tmpC = rewriter.create<xegpu::DpasOp>(
loc, resTy, operands,
llvm::ArrayRef<NamedAttribute>(
{"layout_result_0", originalLayout.dropSgLayoutAndData()}));
newDpasOps.push_back(tmpC);
}
}
rewriter.replaceOpWithMultiple(op, {newDpasOps});
return success();
}
};
/// This pattern transforms the PrefetchNdOp to prefetch the subgroup data.
struct WgToSgPrefetchNdOp : public OpConversionPattern<xegpu::PrefetchNdOp> {
using OpConversionPattern<xegpu::PrefetchNdOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(xegpu::PrefetchNdOp op, OneToNOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
for (auto src : adaptor.getTensorDesc())
rewriter.create<xegpu::PrefetchNdOp>(op.getLoc(), TypeRange(), src,
op->getAttrs());
rewriter.eraseOp(op);
return success();
}
};
} // namespace
namespace mlir {
namespace xegpu {
void populateXeGPUWgToSgDistributePatterns(RewritePatternSet &patterns) {
patterns.add<WgToSgCreateNdOp, WgToSgLoadNdOp, WgToSgStoreNdOp,
WgToSgUpdateNdOffsetOp, WgToSgDpasOp, WgToSgPrefetchNdOp>(
patterns.getContext());
}
} // namespace xegpu
} // namespace mlir
namespace {
struct XeGPUWgToSgDistributePass
: public xegpu::impl::XeGPUWgToSgDistributeBase<XeGPUWgToSgDistributePass> {
void runOnOperation() override;
};
} // namespace
void XeGPUWgToSgDistributePass::runOnOperation() {
MLIRContext *ctx = &getContext();
RewritePatternSet patterns(ctx);
ConversionTarget target(*ctx);
auto getTensorDescType = [](Operation *op) -> xegpu::TensorDescType {
if (auto createOp = dyn_cast<xegpu::CreateNdDescOp>(op))
return createOp.getType();
if (auto loadOp = dyn_cast<xegpu::LoadNdOp>(op))
return loadOp.getTensorDescType();
if (auto storeOp = dyn_cast<xegpu::StoreNdOp>(op))
return storeOp.getTensorDescType();
if (auto updateOp = dyn_cast<xegpu::UpdateNdOffsetOp>(op))
return updateOp.getType();
if (auto prefetchOp = dyn_cast<xegpu::PrefetchNdOp>(op))
return prefetchOp.getTensorDescType();
return xegpu::TensorDescType();
};
auto isLegal = [&](xegpu::LayoutAttr layout) -> bool {
return !layout || layout.getSgLayout() == nullptr;
};
target.addDynamicallyLegalOp<xegpu::CreateNdDescOp, xegpu::LoadNdOp,
xegpu::StoreNdOp, xegpu::UpdateNdOffsetOp,
xegpu::PrefetchNdOp>([=](Operation *op) -> bool {
auto tdescTy = getTensorDescType(op);
auto layout = dyn_cast_or_null<xegpu::LayoutAttr>(tdescTy.getLayout());
return isLegal(layout);
});
target.addDynamicallyLegalOp<xegpu::DpasOp>([=](xegpu::DpasOp op) -> bool {
auto layout = dyn_cast_or_null<xegpu::LayoutAttr>(op->getAttr("layout"));
return isLegal(layout);
});
target.markUnknownOpDynamicallyLegal([](Operation *) { return true; });
xegpu::populateXeGPUWgToSgDistributePatterns(patterns);
if (failed(
applyPartialConversion(getOperation(), target, std::move(patterns))))
return signalPassFailure();
}

View File

@ -1,105 +0,0 @@
// RUN: mlir-opt --xegpu-wg-to-sg-distribute -split-input-file %s | FileCheck %s
gpu.module @test_round_robin_assignment {
// CHECK-LABEL: test_create_nd_tdesc
// CHECK-SAME: %[[ARG_0:.*]]: memref<24x32xf32>
gpu.func @test_create_nd_tdesc(%src: memref<24x32xf32>) {
// CHECK-COUNT-12: xegpu.create_nd_tdesc %[[ARG_0]][%{{.*}}, %{{.*}}] : memref<24x32xf32>
// CHECK-SAME: -> !xegpu.tensor_desc<2x2xf32, #xegpu.layout<lane_layout = [2, 2], lane_data = [1, 1]>>
// CHECK-NOT: xegpu.create_nd_tdesc
%tdesc = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32>
-> !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [4, 4], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
gpu.return
}
// CHECK-LABEL: test_load_nd_tdesc
// CHECK-SAME: %[[ARG_0:.*]]: memref<24x32xf32>
gpu.func @test_load_nd_tdesc(%src: memref<24x32xf32>) {
%tdesc = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32>
-> !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [4, 4], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
// CHECK-COUNT-12: xegpu.load_nd %{{.*}}
// CHECK-SAME-COUNT-12: : !xegpu.tensor_desc<2x2xf32, #xegpu.layout<lane_layout = [2, 2], lane_data = [1, 1]>>
// CHECK-SAME-COUNT-12: -> vector<2x2xf32>
// CHECK-NOT: xegpu.load_nd
%load = xegpu.load_nd %tdesc
: !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [4, 4], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
-> vector<24x32xf32>
gpu.return
}
// CHECK-LABEL: test_store_nd
// CHECK-SAME: %[[ARG_0:.*]]: memref<24x32xf32>
gpu.func @test_store_nd(%src: memref<24x32xf32>) {
%tdesc = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32>
-> !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [4, 4], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
// CHECK-COUNT-12: xegpu.store_nd %{{.*}}, %{{.*}}
// CHECK-SAME-COUNT-12: : vector<2x2xf32>, !xegpu.tensor_desc<2x2xf32, #xegpu.layout<lane_layout = [2, 2], lane_data = [1, 1]>>
// CHECK-NOT : xegpu.store_nd
%load = xegpu.load_nd %tdesc
: !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [4, 4], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
-> vector<24x32xf32>
xegpu.store_nd %load, %tdesc
: vector<24x32xf32>, !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [4, 4], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
gpu.return
}
// CHECK-LABEL: test_update_nd
// CHECK-SAME: %[[ARG_0:.*]]: memref<24x32xf32>
gpu.func @test_update_nd(%src: memref<24x32xf32>){
%tdesc = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32>
-> !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [4, 4], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
// CHECK-COUNT-12: xegpu.update_nd_offset %{{.*}}, [0, 16]
// CHECK-SAME-COUNT-12: : !xegpu.tensor_desc<2x2xf32, #xegpu.layout<lane_layout = [2, 2], lane_data = [1, 1]>>
// CHECK-NOT: xegpu.update_nd_offset
%update = xegpu.update_nd_offset %tdesc, [0, 16]
: !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [4, 4], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
gpu.return
}
// CHECK-LABEL: test_dpas
// CHECK-SAME: (%[[ARG_0:.*]]: memref<8x8xf32>, %[[ARG_1:.*]]: memref<8x8xf32>, %[[ARG_2:.*]]: memref<8x8xf32>)
gpu.func @test_dpas(%a: memref<8x8xf32>, %b: memref<8x8xf32>, %c: memref<8x8xf32>) {
// CHECK-COUNT-4: xegpu.create_nd_tdesc %[[ARG_0]][%{{.*}}, %{{.*}}] : memref<8x8xf32>
// CHECK-SAME-COUNT-4: -> !xegpu.tensor_desc<2x2xf32, #xegpu.layout<lane_layout = [2, 2], lane_data = [1, 1]>>
// CHECK-NOT: xegpu.create_nd_tdesc
// CHECK-COUNT-4: xegpu.create_nd_tdesc %[[ARG_1]][%{{.*}}, %{{.*}}] : memref<8x8xf32>
// CHECK-SAME-COUNT-4: -> !xegpu.tensor_desc<2x2xf32, #xegpu.layout<lane_layout = [2, 2], lane_data = [1, 1]>>
// CHECK-NOT: xegpu.create_nd_tdesc
// CHECK-COUNT-4: xegpu.create_nd_tdesc %{{.*}}[%{{.*}}, %{{.*}}] : memref<8x8xf32>
// CHECK-SAME-COUNT-4: -> !xegpu.tensor_desc<2x2xf32, #xegpu.layout<lane_layout = [2, 2], lane_data = [1, 1]>>
// CHECK-NOT: xegpu.create_nd_tdesc
// CHECK-COUNT-16: xegpu.dpas %{{.*}}, %{{.*}}
// CHECK-SAME-COUNT-16: {layout = #xegpu.layout<lane_layout = [2, 2], lane_data = [1, 1]>}
// CHECK-SAME-COUNT-16: : vector<2x2xf32>, vector<2x2xf32> -> vector<2x2xf32>
// CHECK-NOT: xegpu.dpas
%tdesc_a = xegpu.create_nd_tdesc %a[0, 0] : memref<8x8xf32>
-> !xegpu.tensor_desc<8x8xf32, #xegpu.layout<sg_layout = [2, 2], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
%load_a = xegpu.load_nd %tdesc_a
: !xegpu.tensor_desc<8x8xf32, #xegpu.layout<sg_layout = [2, 2], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
-> vector<8x8xf32>
%tdesc_b = xegpu.create_nd_tdesc %b[0, 0] : memref<8x8xf32>
-> !xegpu.tensor_desc<8x8xf32, #xegpu.layout<sg_layout = [2, 2], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
%load_b = xegpu.load_nd %tdesc_b
: !xegpu.tensor_desc<8x8xf32, #xegpu.layout<sg_layout = [2, 2], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
-> vector<8x8xf32>
%tdesc_c = xegpu.create_nd_tdesc %c[0, 0] : memref<8x8xf32>
-> !xegpu.tensor_desc<8x8xf32, #xegpu.layout<sg_layout = [2, 2], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
%dpas = xegpu.dpas %load_a, %load_b
{layout = #xegpu.layout<sg_layout = [2, 2], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>}
: vector<8x8xf32>, vector<8x8xf32> -> vector<8x8xf32>
gpu.return
}
// CHECK-LABEL: test_prefetch_nd_tdesc
// CHECK-SAME: %[[ARG_0:.*]]: memref<24x32xf32>
gpu.func @test_prefetch_nd_tdesc(%src: memref<24x32xf32>) {
// CHECK-COUNT-12: xegpu.prefetch_nd %{{.*}}
// CHECK-SAME-COUNT-12 : !xegpu.tensor_desc<2x2xf32, #xegpu.layout<lane_layout = [2, 2], lane_data = [1, 1]>>
// CHECK-NOT: xegpu.prefetch_nd
%tdesc = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32>
-> !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [4, 4], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
xegpu.prefetch_nd %tdesc
: !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [4, 4], sg_data = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>>
gpu.return
}
}

View File

@ -1,172 +0,0 @@
// RUN: mlir-opt --xegpu-wg-to-sg-distribute -split-input-file %s | FileCheck %s
//CHECK: #map = affine_map<()[s0] -> (s0 floordiv 4)>
//CHECK: #map1 = affine_map<()[s0] -> (s0 mod 4)>
gpu.module @test_1_1_assignment {
// CHECK-LABEL: test_create_nd_tdesc
// CHECK-SAME: %[[ARG_0:.*]]: memref<24x32xf32>
gpu.func @test_create_nd_tdesc(%src: memref<24x32xf32>) {
// CHECK: %[[SGID:.*]] = gpu.subgroup_id
// CHECK: %[[C12:.*]] = arith.constant 12 : index
// CHECK: %[[C4:.*]] = arith.constant 4 : index
// CHECK: %[[C8:.*]] = arith.constant 8 : index
// CHECK: %[[DIV:.*]] = affine.apply #map()[%[[SGID]]]
// CHECK: %[[REM:.*]] = affine.apply #map1()[%[[SGID]]]
// CHECK: %[[MUL1:.*]] = index.mul %[[DIV]], %[[C12]]
// CHECK: %[[MUL2:.*]] = index.mul %[[REM]], %[[C8]]
// CHECK: %[[C24:.*]] = arith.constant 24 : index
// CHECK: %[[MOD:.*]] = index.remu %[[MUL1]], %[[C24]]
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %[[ADD1:.*]] = index.add %[[MOD]], %[[C0]]
// CHECK: %[[C32:.*]] = arith.constant 32 : index
// CHECK: %[[MOD1:.*]] = index.remu %[[MUL2]], %[[C32]]
// CHECK: %[[C0_1:.*]] = arith.constant 0 : index
// CHECK: %[[ADD2:.*]] = index.add %[[MOD1]], %[[C0_1]]
// CHECK: %[[TDESC:.*]] = xegpu.create_nd_tdesc %[[ARG_0]][%[[ADD1]], %[[ADD2]]] : memref<24x32xf32>
// CHECK-SAME: -> !xegpu.tensor_desc<12x8xf32, #xegpu.layout<lane_layout = [2, 8], lane_data = [1, 1]>>
// CHECK: gpu.return
%tdesc = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32>
-> !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [2, 4], sg_data = [12, 8], lane_layout = [2, 8], lane_data = [1, 1]>>
gpu.return
}
// CHECK-LABEL: test_load_nd_tdesc
// CHECK-SAME: %[[ARG_0:.*]]: memref<24x32xf32>
gpu.func @test_load_nd_tdesc(%src: memref<24x32xf32>) {
// CHECK: %[[TDESC:.*]] = xegpu.create_nd_tdesc %[[ARG_0]][{{%.*}}, {{%.*}}] : memref<24x32xf32>
// CHECK-SAME: -> !xegpu.tensor_desc<12x8xf32, #xegpu.layout<lane_layout = [2, 8], lane_data = [1, 1]>>
// CHECK: %[[LOAD:.*]] = xegpu.load_nd %[[TDESC]]
// CHECK-SAME: : !xegpu.tensor_desc<12x8xf32, #xegpu.layout<lane_layout = [2, 8], lane_data = [1, 1]>>
// CHECK-SAME: -> vector<12x8xf32>
%tdesc = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32>
-> !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [2, 4], sg_data = [12, 8], lane_layout = [2, 8], lane_data = [1, 1]>>
%load = xegpu.load_nd %tdesc
: !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [2, 4], sg_data = [12, 8], lane_layout = [2, 8], lane_data = [1, 1]>>
-> vector<24x32xf32>
gpu.return
}
// CHECK-LABEL: test_store_nd
// CHECK-SAME: %[[ARG_0:.*]]: memref<24x32xf32>
gpu.func @test_store_nd(%src: memref<24x32xf32>) {
// CHECK: %[[TDESC:.*]] = xegpu.create_nd_tdesc %[[ARG_0]][{{%.*}}, {{%.*}}] : memref<24x32xf32>
// CHECK-SAME: -> !xegpu.tensor_desc<12x8xf32, #xegpu.layout<lane_layout = [2, 8], lane_data = [1, 1]>>
// CHECK: %[[LOAD:.*]] = xegpu.load_nd %[[TDESC]]
// CHECK-SAME: : !xegpu.tensor_desc<12x8xf32, #xegpu.layout<lane_layout = [2, 8], lane_data = [1, 1]>>
// CHECK-SAME: -> vector<12x8xf32>
// CHECK: xegpu.store_nd %[[LOAD]], %[[TDESC]]
// CHECK-SAME: : vector<12x8xf32>, !xegpu.tensor_desc<12x8xf32, #xegpu.layout<lane_layout = [2, 8], lane_data = [1, 1]>>
%tdesc = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32>
-> !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [2, 4], sg_data = [12, 8], lane_layout = [2, 8], lane_data = [1, 1]>>
%load = xegpu.load_nd %tdesc
: !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [2, 4], sg_data = [12, 8], lane_layout = [2, 8], lane_data = [1, 1]>>
-> vector<24x32xf32>
xegpu.store_nd %load, %tdesc
: vector<24x32xf32>, !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [2, 4], sg_data = [12, 8], lane_layout = [2, 8], lane_data = [1, 1]>>
gpu.return
}
// CHECK-LABEL: test_update_nd
// CHECK-SAME: %[[ARG_0:.*]]: memref<24x32xf32>
gpu.func @test_update_nd(%src: memref<24x32xf32>){
// CHECK: %[[TDESC:.*]] = xegpu.create_nd_tdesc %[[ARG_0]][{{%.*}}, {{%.*}}] : memref<24x32xf32>
// CHECK-SAME: -> !xegpu.tensor_desc<12x8xf32, #xegpu.layout<lane_layout = [2, 8], lane_data = [1, 1]>>
// CHECK: %[[UPDATE:.*]] = xegpu.update_nd_offset %[[TDESC]], [0, 16]
// CHECK-SAME: : !xegpu.tensor_desc<12x8xf32, #xegpu.layout<lane_layout = [2, 8], lane_data = [1, 1]>>
%tdesc = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32>
-> !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [2, 4], sg_data = [12, 8], lane_layout = [2, 8], lane_data = [1, 1]>>
%update = xegpu.update_nd_offset %tdesc, [0, 16]
: !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [2, 4], sg_data = [12, 8], lane_layout = [2, 8], lane_data = [1, 1]>>
gpu.return
}
// CHECK-LABEL: test_dpas
// CHECK-SAME: %[[ARG_0:.*]]: memref<24x32xf32>
// CHECK-SAME: %[[ARG_1:.*]]: memref<32x24xf32>
gpu.func @test_dpas(%a: memref<24x32xf32>, %b: memref<32x24xf32>) {
// CHECK: %[[TDESC_A:.*]] = xegpu.create_nd_tdesc %[[ARG_0]][{{%.*}}, {{%.*}}] : memref<24x32xf32>
// CHECk-SAME: -> !xegpu.tensor_desc<12x8xf32, #xegpu.layout<lane_layout = [2, 8], lane_data = [1, 1]>>
// CHECK: %[[LOAD_A:.*]] = xegpu.load_nd %[[TDESC_A]]
// CHECK-SAME: : !xegpu.tensor_desc<12x8xf32, #xegpu.layout<lane_layout = [2, 8], lane_data = [1, 1]>>
// CHECK-SAME: -> vector<12x8xf32>
// CHECK: %[[TDESC_B:.*]] = xegpu.create_nd_tdesc %[[ARG_1]][{{%.*}}, {{%.*}}] : memref<32x24xf32>
// CHECK-SAME: -> !xegpu.tensor_desc<8x12xf32, #xegpu.layout<lane_layout = [8, 2], lane_data = [1, 1]>>
// CHECK: %[[LOAD_B:.*]] = xegpu.load_nd %[[TDESC_B]]
// CHECK-SAME: : !xegpu.tensor_desc<8x12xf32, #xegpu.layout<lane_layout = [8, 2], lane_data = [1, 1]>>
// CHECK-SAME: -> vector<8x12xf32>
// CHECK: %[[DPAS:.*]] = xegpu.dpas %[[LOAD_A]], %[[LOAD_B]]
// CHECK-SAME: {layout_result_0 = #xegpu.layout<lane_layout = [2, 2], lane_data = [1, 1]>}
// CHECK-SAME: : vector<12x8xf32>, vector<8x12xf32> -> vector<12x12xf32>
%tdesc_a = xegpu.create_nd_tdesc %a[0, 0] : memref<24x32xf32>
-> !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [2, 4], sg_data = [12, 8], lane_layout = [2, 8], lane_data = [1, 1]>>
%load_a = xegpu.load_nd %tdesc_a
: !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [2, 4], sg_data = [12, 8], lane_layout = [2, 8], lane_data = [1, 1]>>
-> vector<24x32xf32>
%tdesc_b = xegpu.create_nd_tdesc %b[0, 0] : memref<32x24xf32>
-> !xegpu.tensor_desc<32x24xf32, #xegpu.layout<sg_layout = [4, 2], sg_data = [8, 12], lane_layout = [8, 2], lane_data = [1, 1]>>
%load_b = xegpu.load_nd %tdesc_b
: !xegpu.tensor_desc<32x24xf32, #xegpu.layout<sg_layout = [4, 2], sg_data = [8, 12], lane_layout = [8, 2], lane_data = [1, 1]>>
-> vector<32x24xf32>
%dpas = xegpu.dpas %load_a, %load_b
{layout = #xegpu.layout<sg_layout = [2, 2], sg_data = [12, 12], lane_layout = [2, 2], lane_data = [1, 1]>}
: vector<24x32xf32>, vector<32x24xf32> -> vector<24x24xf32>
gpu.return
}
// CHECK-LABEL: test_dpas_no_sg_data
// CHECK-SAME: %[[ARG_0:.*]]: memref<24x32xf32>
// CHECK-SAME: %[[ARG_1:.*]]: memref<32x24xf32>
gpu.func @test_dpas_no_sg_data(%a: memref<24x32xf32>, %b: memref<32x24xf32>) {
// CHECK: %[[TDESC_A:.*]] = xegpu.create_nd_tdesc %[[ARG_0]][{{%.*}}, {{%.*}}] : memref<24x32xf32>
// CHECk-SAME: -> !xegpu.tensor_desc<12x8xf32, #xegpu.layout<lane_layout = [2, 8], lane_data = [1, 1]>>
// CHECK: %[[LOAD_A:.*]] = xegpu.load_nd %[[TDESC_A]]
// CHECK-SAME: : !xegpu.tensor_desc<12x8xf32, #xegpu.layout<lane_layout = [2, 8], lane_data = [1, 1]>>
// CHECK-SAME: -> vector<12x8xf32>
// CHECK: %[[TDESC_B:.*]] = xegpu.create_nd_tdesc %[[ARG_1]][{{%.*}}, {{%.*}}] : memref<32x24xf32>
// CHECK-SAME: -> !xegpu.tensor_desc<8x12xf32, #xegpu.layout<lane_layout = [8, 2], lane_data = [1, 1]>>
// CHECK: %[[LOAD_B:.*]] = xegpu.load_nd %[[TDESC_B]]
// CHECK-SAME: : !xegpu.tensor_desc<8x12xf32, #xegpu.layout<lane_layout = [8, 2], lane_data = [1, 1]>>
// CHECK-SAME: -> vector<8x12xf32>
// CHECK: %[[DPAS:.*]] = xegpu.dpas %[[LOAD_A]], %[[LOAD_B]]
// CHECK-SAME: {layout_result_0 = #xegpu.layout<lane_layout = [2, 2], lane_data = [1, 1]>}
// CHECK-SAME: : vector<12x8xf32>, vector<8x12xf32> -> vector<12x12xf32>
%tdesc_a = xegpu.create_nd_tdesc %a[0, 0] : memref<24x32xf32>
-> !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [2, 4], lane_layout = [2, 8], lane_data = [1, 1]>>
%load_a = xegpu.load_nd %tdesc_a
: !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [2, 4], lane_layout = [2, 8], lane_data = [1, 1]>>
-> vector<24x32xf32>
%tdesc_b = xegpu.create_nd_tdesc %b[0, 0] : memref<32x24xf32>
-> !xegpu.tensor_desc<32x24xf32, #xegpu.layout<sg_layout = [4, 2], lane_layout = [8, 2], lane_data = [1, 1]>>
%load_b = xegpu.load_nd %tdesc_b
: !xegpu.tensor_desc<32x24xf32, #xegpu.layout<sg_layout = [4, 2], lane_layout = [8, 2], lane_data = [1, 1]>>
-> vector<32x24xf32>
%dpas = xegpu.dpas %load_a, %load_b
{layout = #xegpu.layout<sg_layout = [2, 2], lane_layout = [2, 2], lane_data = [1, 1]>}
: vector<24x32xf32>, vector<32x24xf32> -> vector<24x24xf32>
gpu.return
}
// CHECK-LABEL: test_prefetch_nd_tdesc
// CHECK-SAME: %[[ARG_0:.*]]: memref<24x32xf32>
gpu.func @test_prefetch_nd_tdesc(%src: memref<24x32xf32>) {
// CHECK: %[[TDESC:.*]] = xegpu.create_nd_tdesc %[[ARG_0]][{{%.*}}, {{%.*}}] : memref<24x32xf32>
// CHECK-SAME: -> !xegpu.tensor_desc<12x8xf32, #xegpu.layout<lane_layout = [2, 8], lane_data = [1, 1]>>
// CHECK: xegpu.prefetch_nd %[[TDESC]]
// CHECK-SAME: : !xegpu.tensor_desc<12x8xf32, #xegpu.layout<lane_layout = [2, 8], lane_data = [1, 1]>>
%tdesc = xegpu.create_nd_tdesc %src[0, 0] : memref<24x32xf32>
-> !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [2, 4], sg_data = [12, 8], lane_layout = [2, 8], lane_data = [1, 1]>>
xegpu.prefetch_nd %tdesc
: !xegpu.tensor_desc<24x32xf32, #xegpu.layout<sg_layout = [2, 4], sg_data = [12, 8], lane_layout = [2, 8], lane_data = [1, 1]>>
gpu.return
}
// CHECK-LABEL: test_dpas_with_no_create_nd_desc
gpu.func @test_dpas_with_no_create_nd_desc(%a: vector<24x32xf32>, %b: vector<32x24xf32>) {
// CHECK-NOT: vector<12x12xf32>
%dpas = xegpu.dpas %a, %b
{layout = #xegpu.layout<sg_layout = [2, 2], sg_data = [12, 12], lane_layout = [2, 2], lane_data = [1, 1]>}
: vector<24x32xf32>, vector<32x24xf32> -> vector<24x24xf32>
gpu.return
}
}