This is a major change on how we represent nested name qualifications in
the AST.
* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.
This patch offers a great performance benefit.
It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.
This has great results on compile-time-tracker as well:

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.
It has some other miscelaneous drive-by fixes.
About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.
There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.
How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.
The rest and bulk of the changes are mostly consequences of the changes
in API.
PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.
Fixes#136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
`sret` arguments are always going to reside in the stack/`alloca`
address space, which makes the current formulation where their AS is
derived from the pointee somewhat quaint. This patch ensures that `sret`
ends up pointing to the `alloca` AS in IR function signatures, and also
guards agains trying to pass a casted `alloca`d pointer to a `sret` arg,
which can happen for most languages, when compiled for targets that have
a non-zero `alloca` AS (e.g. AMDGCN) / map `LangAS::default` to a
non-zero value (SPIR-V). A target could still choose to do something
different here, by e.g. overriding `classifyReturnType` behaviour.
In a broader sense, this patch extends non-aliased indirect args to also
carry an AS, which leads to changing the `getIndirect()` interface. At
the moment we're only using this for (indirect) returns, but it allows
for future handling of indirect args themselves. We default to using the
AllocaAS as that matches what Clang is currently doing, however if, in
the future, a target would opt for e.g. placing indirect returns in some
other storage, with another AS, this will require revisiting.
---------
Co-authored-by: Matt Arsenault <arsenm2@gmail.com>
Co-authored-by: Matt Arsenault <Matthew.Arsenault@amd.com>
To authenticate pointers, CodeGen needs access to the key and
discriminators that were used to sign the pointer. That information is
sometimes known from the context, but not always, which is why `Address`
needs to hold that information.
This patch adds methods and data members to `Address`, which will be
needed in subsequent patches to authenticate signed pointers, and uses
the newly added methods throughout CodeGen. Although this patch isn't
strictly NFC as it causes CodeGen to use different code paths in some
cases (e.g., `mergeAddressesInConditionalExpr`), it doesn't cause any
changes in functionality as it doesn't add any information needed for
authentication.
In addition to the changes mentioned above, this patch introduces class
`RawAddress`, which contains a pointer that we know is unsigned, and
adds several new functions for creating `Address` and `LValue` objects.
This reapplies d9a685a9dd589486e882b722e513ee7b8c84870c, which was
reverted because it broke ubsan bots. There seems to be a bug in
coroutine code-gen, which is causing EmitTypeCheck to use the wrong
alignment. For now, pass alignment zero to EmitTypeCheck so that it can
compute the correct alignment based on the passed type (see function
EmitCXXMemberOrOperatorMemberCallExpr).
This patch replaces dyn_cast<> with cast<> to resolve potential static
analyzer bugs for
1. Dereferencing a pointer issue with nullptr GVar when calling
addAttribute() in AIXTargetCodeGenInfo::setTargetAttributes(clang::Decl
const *, llvm::GlobalValue *, clang::CodeGen::CodeGenModule &).
2. Dereferencing a pointer issue with nullptr GG when calling
getCorrespondingConstructor() in
DeclareImplicitDeductionGuidesForTypeAlias(clang::Sema &,
clang::TypeAliasTemplateDecl *, clang::SourceLocation).
3. Dereferencing a pointer issue with nullptr CurrentBT when calling
getKind() in
ComplexExprEmitter::GetHigherPrecisionFPType(clang::QualType).
To authenticate pointers, CodeGen needs access to the key and
discriminators that were used to sign the pointer. That information is
sometimes known from the context, but not always, which is why `Address`
needs to hold that information.
This patch adds methods and data members to `Address`, which will be
needed in subsequent patches to authenticate signed pointers, and uses
the newly added methods throughout CodeGen. Although this patch isn't
strictly NFC as it causes CodeGen to use different code paths in some
cases (e.g., `mergeAddressesInConditionalExpr`), it doesn't cause any
changes in functionality as it doesn't add any information needed for
authentication.
In addition to the changes mentioned above, this patch introduces class
`RawAddress`, which contains a pointer that we know is unsigned, and
adds several new functions for creating `Address` and `LValue` objects.
This reapplies 8bd1f9116aab879183f34707e6d21c7051d083b6. The commit
broke msan bots because LValue::IsKnownNonNull was uninitialized.
To authenticate pointers, CodeGen needs access to the key and
discriminators that were used to sign the pointer. That information is
sometimes known from the context, but not always, which is why `Address`
needs to hold that information.
This patch adds methods and data members to `Address`, which will be
needed in subsequent patches to authenticate signed pointers, and uses
the newly added methods throughout CodeGen. Although this patch isn't
strictly NFC as it causes CodeGen to use different code paths in some
cases (e.g., `mergeAddressesInConditionalExpr`), it doesn't cause any
changes in functionality as it doesn't add any information needed for
authentication.
In addition to the changes mentioned above, this patch introduces class
`RawAddress`, which contains a pointer that we know is unsigned, and
adds several new functions for creating `Address` and `LValue` objects.
This is part of the efforts adding .gnu_attribute support for PowerPC.
In Clang, an extra metadata field will be added as float-abi to show
current long double format. So backend can emit .gnu_attribute section
data from this metadata.
To avoid breaking existing behavior, the module metadata will only be
emitted when this module makes use of long double.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D116016
- Update CodeGenTypeCache to use a single union for all pointers in
address space zero.
- Introduce a UnqualPtrTy in CodeGenTypeCache, and use that (for
example instead of llvm::PointerType::getUnqual) in some places.
- Drop some redundant bit/pointers casts from ptr to ptr.
Partial progress towards replacing `CreateElementBitCast`, as it no
longer does what its name suggests. Either replace its uses with
`Address::withElementType()`, or remove them if no longer needed.
Reviewed By: barannikov88, nikic
Differential Revision: https://reviews.llvm.org/D153314
This commit breaks up CodeGen/TargetInfo.cpp into a set of *.cpp files,
one file per target. There are no functional changes, mostly just code moving.
Non-code-moving changes are:
* A virtual destructor has been added to DefaultABIInfo to pin the vtable to a cpp file.
* A few methods of ABIInfo and DefaultABIInfo were split into declaration + definition
in order to reduce the number of transitive includes.
* Several functions that used to be static have been placed in clang::CodeGen
namespace so that they can be accessed from other cpp files.
RFC: https://discourse.llvm.org/t/rfc-splitting-clangs-targetinfo-cpp/69883
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D148094