Matt Arsenault e8e816344e AMDGPU: Allow folding multiple uses of some immediates into copies
In some cases this will require an avoidable re-defining of
a register, but it works out better most of the time. Also allow
folding 64-bit immediates into subregister extracts, unless it would
break an inline constant.

We could be more aggressive here, but this set of conditions seems
to do a reasonable job without introducing too many regressions.
2025-08-22 20:34:20 +09:00
2025-04-14 16:54:14 +08:00

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.

Description
The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.
Readme 5.3 GiB
Languages
LLVM 42%
C++ 30.8%
C 13%
Assembly 9.5%
MLIR 1.4%
Other 2.9%