In gcc there exist a modifier option -Wformat-signedness that turns on
additional signedness warnings in the already existing -Wformat warning.
This patch implements that support in clang. This is done by adding a dummy
warning diag::warn_format_conversion_argument_type_mismatch_signedness that
is never emitted and only used as an option to toggle the signedness warning
in -Wformat. This will ensure gcc compatibility.
This reverts commit ca4c4a6758d184f209cb5d88ef42ecc011b11642.
This was intended not to introduce new consistency diagnostics for
smart pointer types, but failed to ignore sugar around types when
detecting this.
Fixed and test added.
It is currently not possible to use "RVV type" and "RVV intrinsics" if
the "zve32x" is not enabled globally. However in some cases we may want
to use them only in some functions, for instance:
```
#include <riscv_vector.h>
__attribute__((target("+zve32x")))
vint32m1_t rvv_add(vint32m1_t v1, vint32m1_t v2, size_t vl) {
return __riscv_vadd(v1, v2, vl);
}
int other_add(int i1, int i2) {
return i1 + i2;
}
```
, it is supposed to be compilable even the vector is not specified, e.g.
`clang -target riscv64 -march=rv64gc -S test.c`.
In PR #79382, I need to add a new type that derives from
ConstantArrayType. This means that ConstantArrayType can no longer use
`llvm::TrailingObjects` to store the trailing optional Expr*.
This change refactors ConstantArrayType to store a 60-bit integer and
4-bits for the integer size in bytes. This replaces the APInt field
previously in the type but preserves enough information to recreate it
where needed.
To reduce the number of places where the APInt is re-constructed I've
also added some helper methods to the ConstantArrayType to allow some
common use cases that operate on either the stored small integer or the
APInt as appropriate.
Resolves#85124.
This patch replaces getAs<> with castAs<> to resolve potential static
analyzer bugs for
1. Dereferencing a pointer issue with nullptr FPT when calling
ResolveExceptionSpec() in
checkEscapingByref(clang::VarDecl *, clang::Sema &).
3. Dereferencing a pointer issue with nullptr ElementTy->getAs() when
calling getElementType() in
clang::Sema::SemaBuiltinFPClassification(clang::CallExpr *, unsigned
int).
4. Dereferencing a pointer issue with nullptr ConvType->getAs() when
calling getKeyword() in
clang::Sema::ActOnConversionDeclarator(clang::CXXConversionDecl *).
fixes#86551closes#86552
Thanks to #86440 and #86407 it makes more sense for us to do type checks
early via Sema to prevent the generation of invalid intrinsics.
this implements part 1 of 2 for #83626
- `CGBuiltin.cpp` - modified to have seperate cases for signed and
unsigned integers.
- `SemaChecking.cpp` - modified to prevent the generation of a double
dot product intrinsic if the builtin were to be called directly.
- `IntrinsicsDirectX.td` creation of the signed and unsigned dot
intrinsics needed for instruction expansion.
- `DXILIntrinsicExpansion.cpp` - handle instruction expansion cases for
integer dot product.
This pull request fixes#77601 where using the `bitand` operator with
boolean operands should not trigger the warning, as it would indicate an
intentional use of bitwise AND rather than a typo or error.
Fixes#77601
rldimi is 64-bit instruction, so the corresponding builtin should not
be available in 32-bit mode. Rotate amount should be in range and
cases when mask is zero needs special handling.
This change also swaps the first and second operands of rldimi/rlwimi
to match previous behavior. For masks not ending at bit 63-SH,
rotation will be inserted before rldimi.
This defines the basic set of pointer authentication clang builtins
(provided in a new header, ptrauth.h), with diagnostics and IRGen
support. The availability of the builtins is gated on a new flag,
`-fptrauth-intrinsics`.
Note that this only includes the basic intrinsics, and notably excludes
`ptrauth_sign_constant`, `ptrauth_type_discriminator`, and
`ptrauth_string_discriminator`, which need extra logic to be fully
supported.
This also introduces clang/docs/PointerAuthentication.rst, which
describes the ptrauth model in general, in addition to these builtins.
Co-Authored-By: Akira Hatanaka <ahatanaka@apple.com>
Co-Authored-By: John McCall <rjmccall@apple.com>
This reverts commit 92a09c0165b87032e1bd05020a78ed845cf35661.
This is triggering a bunch of new -Wnullability-completeness warnings
in code with existing raw pointer nullability annotations.
The intent was the new nullability locations wouldn't affect those
warnings, so this is a bug at least for now.
This change implements lowering for #70076, #70100, #70072, & #70102
`CGBuiltin.cpp` - - simplify `lerp` intrinsic
`IntrinsicsDirectX.td` - simplify `lerp` intrinsic
`SemaChecking.cpp` - remove unnecessary check
`DXILIntrinsicExpansion.*` - add intrinsic to instruction expansion
cases
`DXILOpLowering.cpp` - make sure `DXILIntrinsicExpansion` happens first
`DirectX.h` - changes to support new pass
`DirectXTargetMachine.cpp` - changes to support new pass
Why `any`, and `lerp` as instruction expansion just for DXIL?
- SPIR-V there is an
[OpAny](https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpAny)
- SPIR-V has a GLSL lerp extension via
[Fmix](https://registry.khronos.org/SPIR-V/specs/1.0/GLSL.std.450.html#FMix)
Why `exp` instruction expansion?
- We have an `exp2` opcode and `exp` reuses that opcode. So instruction
expansion is a convenient way to do preprocessing.
- Further SPIR-V has a GLSL exp extension via
[Exp](https://registry.khronos.org/SPIR-V/specs/1.0/GLSL.std.450.html#Exp)
and
[Exp2](https://registry.khronos.org/SPIR-V/specs/1.0/GLSL.std.450.html#Exp2)
Why `rcp` as instruction expansion?
This one is a bit of the odd man out and might have to move to
`cgbuiltins` when we better understand SPIRV requirements. However I
included it because it seems like [fast math mode has an AllowRecip
flag](https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#_fp_fast_math_mode)
which lets you compute the reciprocal without performing the division.
We don't have that in DXIL so thought to include it.
This change implements part 1 of 2 for #70095
- `hlsl_intrinsics.h` - add the `isinf` api
- `Builtins.td` - add an hlsl builtin for `isinf`.
- `CGBuiltin.cpp` add the ir generation for `isinf` intrinsic.
- `SemaChecking.cpp` - add a non-math elementwise checks because this is
a bool return.
- `IntrinsicsDirectX.td` - add an `isinf` intrinsic.
`DXIL.td` lowering is left, but changes need to be made there before we
can support this case.
This change implements #70074
- `hlsl_intrinsics.h` - add the `rsqrt` api
- `DXIL.td` add the llvm intrinsic to DXIL op lowering map.
- `Builtins.td` - add an hlsl builtin for rsqrt.
- `CGBuiltin.cpp` add the ir generation for the rsqrt intrinsic.
- `SemaChecking.cpp` - reuse the one arg float only checks.
- `IntrinsicsDirectX.td` -add an `rsqrt` intrinsic.
This enables clang and external nullability checkers to make use of
these annotations on nullable C++ class types like unique_ptr.
These types are recognized by the presence of the _Nullable attribute.
Nullable standard library types implicitly receive this attribute.
Existing static warnings for raw pointers are extended to smart
pointers:
- nullptr used as return value or argument for non-null functions
(`-Wnonnull`)
- assigning or initializing nonnull variables with nullable values
(`-Wnullable-to-nonnull-conversion`)
It doesn't implicitly add these attributes based on the assume_nonnull
pragma, nor warn on missing attributes where the pragma would apply
them.
I'm not confident that the pragma's current behavior will work well for
C++ (where type-based metaprogramming is much more common than C/ObjC).
We'd like to revisit this once we have more implementation experience.
Support can be detected as `__has_feature(nullability_on_classes)`.
This is needed for back-compatibility, as previously clang would issue a
hard error when _Nullable appears on a smart pointer.
UBSan's `-fsanitize=nullability` will not check smart-pointer types.
It can be made to do so by synthesizing calls to `operator bool`, but
that's left for future work.
Discussion:
https://discourse.llvm.org/t/rfc-allowing-nonnull-etc-on-smart-pointers/77201/26
There are code bases that inline `std::move` manually via `static_cast`.
Treat a static cast to an xvalue as an inlined `std::move` call and warn
on a self move.
Summary:
This patch implements the LLVM floating point environment control
intrinsics and also exposes it through clang. We encode the floating
point environment as a 64-bit value that simply concatenates the values
of the mode registers and the current trap status. We only fetch the
bits relevant for floating point instructions. That is, rounding mode,
denormalization mode, ieee, dx10 clamp, debug, enabled traps, f16
overflow, and active exceptions.
Currently using the command `clang -cc1 -triple riscv64` to compile the
code below:
```
#include <riscv_vector.h>
void foo() {
vfloat64m1_t f64m1;
}
```
would get the error message "RISC-V type 'vfloat64m1_t' ... requires the
'zve64x' extension"
which is supposed to be "RISC-V type 'vfloat64m1_t' ... requires the
'zve64d' extension".
This PR implements the frontend for llvm#70100
This PR is part 1 of 2.
Part 2 requires an intrinsic to instructions lowering.
- `Builtins.td` - add an `rcp` builtin
- `CGBuiltin.cpp` - add the builtin to intrinsic lowering
- `hlsl_intrinsics.h` - add the `rcp` api
- `SemaChecking.cpp` - reuse frac's sema checks
- `IntrinsicsDirectX.td` - add the llvm intrinsic
This PR implements the frontend for #70076
This PR is part 1 of 2.
Part 2 requires an intrinsic to instructions lowering.
- `Builtins.td` - add an `any` builtin
- `CGBuiltin.cpp` add the builtin to intrinsic lowering
- `hlsl_basic_types.h` -add the `bool` vectors since that is an input
for any
- `hlsl_intrinsics.h` - add the `any` api
- `SemaChecking.cpp` - addy `any` builtin checking
- `IntrinsicsDirectX.td` - add the llvm intrinsic
This change implements #83736
The dot product lowering needs a tertiary multipy add operation. DXIL
has three mad opcodes for `fmad`(46), `imad`(48), and `umad`(49). Dot
product in DXIL only uses `imad`\ `umad`, but for completeness and
because the hlsl `mad` intrinsic requires it `fmad` was also included.
Two new intrinsics were needed to be created to complete this change.
the `fmad` case already supported by llvm via `fmuladd` intrinsic.
- `hlsl_intrinsics.h` - exposed mad api call.
- `Builtins.td` - exposed a `mad` builtin.
- `Sema.h` - make `tertiary` calls check for float types optional.
- `CGBuiltin.cpp` - pick the intrinsic for singed\unsigned & float also
reuse `int_fmuladd`.
- `SemaChecking.cpp` - type checks for `__builtin_hlsl_mad`.
- `IntrinsicsDirectX.td` create the two new intrinsics for
`imad`\`umad`/
- `DXIL.td` - create the llvm intrinsic to `DXIL` opcode mapping.
---------
Co-authored-by: Farzon Lotfi <farzon@farzon.com>
removing the additions of `err_vec_builtin_non_vector_all` &
`err_vec_builtin_incompatible_vector_all`
caused by https://github.com/llvm/llvm-project/pull/83077.
Instead adding a select option to `err_vec_builtin_non_vector` &
`err_vec_builtin_incompatible_vector` to account for uses where there
are more than two arguments.
I have seen two internal pieces of code that uses a template type
parameter to accept any callable type (function pointer, std::function,
closure type, etc). The diagnostic added in #83152 would require
adaptation to the template, which is difficult and also seems
unnecessary. Example:
```cpp
template <typename... Ts>
static bool IsFalse(const Ts&...) { return false; }
template <typename T, typename... Ts,
typename = typename std::enable_if<std::is_constructible<bool, const T&>::value>::type>
static bool IsFalse(const T& p, const Ts&...) {
return p ? false : true;
}
template <typename... Args>
void Init(Args&&... args) {
if (IsFalse(absl::implicit_cast<const typename std::decay<Args>::type&>(
args)...)) {
// A callable object convertible to false is either a null pointer or a
// null functor (e.g., a default-constructed std::function).
empty_ = true;
} else {
empty_ = false;
new (&factory_) Factory(std::forward<Args>(args)...);
}
}
```
The patch fixes https://github.com/llvm/llvm-project/issues/83407
modifing __builtin_cpu_supports behaviour so that it returns false if
unsupported features names provided in parameter and issue a warning.
__builtin_cpu_supports is target independent, but currently supported by
X86, AArch64 and PowerPC only.
This change implements the frontend for #70099
Builtins.td - add the frac builtin
CGBuiltin.cpp - add the builtin to DirectX intrinsic mapping
hlsl_intrinsics.h - add the frac api
SemaChecking.cpp - add type checks for builtin
IntrinsicsDirectX.td - add the frac intrinsic
The backend changes for this are going to be very simple:
f309a0eb55
They were not included because llvm/lib/Target/DirectX/DXIL.td is going
through a major refactor.
This is the start of implementing the lerp intrinsic
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-lerp
Builtins.td - defines the builtin
hlsl_intrinsics.h - defines the lerp api
DiagnosticSemaKinds.td - needed a new error to be inclusive for more
than two operands.
CGBuiltin.cpp - add the lerp intrinsic lowering
SemaChecking.cpp - type checks for lerp builtin
IntrinsicsDirectX.td - define the lerp intrinsic
this change implements the first half of #70102
Co-authored-by: Xiang Li <python3kgae@outlook.com>
Adds diagnostics for lambda expressions being cast to boolean values,
which results in the expression always evaluating to true.
Earlier, Clang allowed compilation of such erroneous programs, but now
emits a warning through `-Wpointer-bool-conversion`.
Fixes#82512
Our implementation previously accepted signed arguments and performed
integer promotion on the argument. GCC's implementation requires an
unsigned argument and does not perform integer promotion on it.
…C mode
Factored logic from `CheckImplicitConversion` into new methods
`Expr::getEnumConstantDecl` and `Expr::getEnumCoercedType` for use in
`checkEnumArithmeticConversions`.
Fix#29217
This change implements https://github.com/llvm/llvm-project/issues/70073
HLSL has a dot intrinsic defined here:
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-dot
The intrinsic itself is defined as a HLSL_LANG LangBuiltin in
Builtins.td.
This is used to associate all the dot product typdef defined
hlsl_intrinsics.h
with a single intrinsic check in CGBuiltin.cpp & SemaChecking.cpp.
In IntrinsicsDirectX.td we define the llvmIR for the dot product.
A few goals were in mind for this IR. First it should operate on only
vectors. Second the return type should be the vector element type. Third
the second parameter vector should be of the same size as the first
parameter. Finally `a dot b` should be the same as `b dot a`.
In CGBuiltin.cpp hlsl has built on top of existing clang intrinsics via
EmitBuiltinExpr. Dot
product though is language specific intrinsic and so is guarded behind
getLangOpts().HLSL.
The call chain looks like this: EmitBuiltinExpr -> EmitHLSLBuiltinExp
EmitHLSLBuiltinExp dot product intrinsics makes a destinction
between vectors and scalars. This is because HLSL supports dot product
on scalars which simplifies down to multiply.
Sema.h & SemaChecking.cpp saw the addition of
CheckHLSLBuiltinFunctionCall, a language specific semantic validation
that can be expanded for other hlsl specific intrinsics.
Fixes#70073
This patch implements said defect report resolution by adding additional
check to common initial sequence evaluation. Consequently, this fixes
CWG2759.
This patch implements `__is_layout_compatible` intrinsic, which supports
`std::is_layout_compatible` type trait introduced in C++20
([P0466R5](https://wg21.link/p0466r5) "Layout-compatibility and
Pointer-interconvertibility Traits"). Name matches GCC and MSVC
intrinsic.
Basically, this patch exposes our existing machinery for checking for
layout compatibility and figuring out common initial sequences. Said
machinery is a bit outdated, as it doesn't implement
[CWG1719](https://cplusplus.github.io/CWG/issues/1719.html) "Layout
compatibility and cv-qualification revisited" and
[CWG2759](https://cplusplus.github.io/CWG/issues/2759.html)
"`[[no_unique_address]` and common initial sequence". Those defect
reports are considered out of scope of of this PR, but will be
implemented in subsequent PRs.
Partially addresses #48204
HLSL supports vector truncation and element conversions as part of
standard conversion sequences. The vector truncation conversion is a C++
second conversion in the conversion sequence. If a vector truncation is
in a conversion sequence an element conversion may occur after it before
the standard C++ third conversion.
Vector element conversions can be boolean conversions, floating point or
integral conversions or promotions.
[HLSL Draft
Specification](https://microsoft.github.io/hlsl-specs/specs/hlsl.pdf)
---------
Co-authored-by: Aaron Ballman <aaron@aaronballman.com>