This patch add cost kind to `getAddressComputationCost()` for #149955.
Note that this patch also remove all the default value in `getAddressComputationCost()`.
In some places we were passing the type of value being accessed, in
other cases we were passing the type of the pointer for the access.
The most "involved" user is
LoopVectorizationCostModel::getMemInstScalarizationCost, which is the
only call site that passes in the SCEV, and it passes along the pointer
type.
This changes call sites to consistently pass the pointer type, and
renames the arguments to clarify this.
No target actually checks the contents of the type passed, only to see
if it's a vector or not, so this shouldn't have an effect.
Using GEP to index into a vector is not disallowed, but not recommended.
The SPIR-V backend needs to generate structured access into types, which
is impossible with an untyped GEP instruction unless we add more info to
the IR. Finding a solution is a work-in-progress, but in the meantime,
we'd like to reduce the amount of failures.
Preventing this optimizations from rewritting extract/insert
instructions into a GEP helps us lower more code to SPIR-V. This change
should be OK as it's only active when targeting SPIR-V and disabling a
non-recommended transformation.
Related to #145002
FMV priority is the returned value of a polymorphic function. On RISC-V
and X86 targets a 32-bit value is enough. On AArch64 we currently need
64 bits and we will soon exceed that. APInt seems to be a suitable
replacement for uint64_t, presumably with minimal compile time overhead.
It allows bit manipulation, comparison and variable bit width.
getOrCreateResultFromMemIntrinsic can modify the current function by
inserting new instructions without EarlyCSE keeping track of the
changes.
Introduce a new CanCreate argument, and update the function to only create
new instructions when CanCreate = true. Use it when appropriate.
Fixes https://github.com/llvm/llvm-project/issues/145183
A shuffle will take two input vectors and a mask, to produce a new
vector of size <MaskElts x SrcEltTy>. Historically it has been assumed
that the SrcTy and the DstTy are the same for getShuffleCost, with that
being relaxed in recent years. If the Tp passed to getShuffleCost is the
SrcTy, then the DstTy can be calculated from the Mask elts and the src
elt size, but the Mask is not always provided and the Tp is not reliably
always the SrcTy. This has led to situations notably in the SLP
vectorizer but also in the generic cost routines where assumption about
how vectors will be legalized are built into the generic cost routines -
for example whether they will widen or promote, with the cost modelling
assuming they will widen but the default lowering to promote for integer
vectors.
This patch attempts to start improving that - it originally tried to
alter more of the cost model but that too quickly became too many
changes at once, so this patch just plumbs in a DstTy to getShuffleCost
so that DstTy and SrcTy can be reliably distinguished. The callers of
getShuffleCost have been updated to try and include a DstTy that is more
accurate. Otherwise it tries to be fairly non-functional, keeping the
SrcTy used as the primary type used in shuffle cost routines, only using
DstTy where it was in the past (for InsertSubVector for example).
Some asserts have been added that help to check for consistent values
when a Mask and a DstTy are provided to getShuffleCost. Some of them
took a while to get right, and some non-mask calls might still be
incorrect. Hopefully this will provide a useful base to build more
shuffles that alter size.
PPCTTIImpl defines hasActiveVectorLength and also getVPMemoryOpCost, but
they appear unused (i.e. no changes to tests).
Remove them, as they complicate the interface for hasActiveVectorLength.
This simplifies the only use in LV as now no placeholder values need to
be passed.
PR: https://github.com/llvm/llvm-project/pull/142310
This is a follow up from #141845.
TargetTransformInfo::getOperandInfo needs to be updated to check for
undef values as otherwise a splat is considered a constant, and some
RISC-V cost model tests will start adding a cost to materialize the
constant.
`ad9909d "[SLP]Fix perfect diamond match with extractelements in scalars" `
changed SLPVectorizer getScalarizationOverhead() to call
TTI.getVectorInstrCost() instead of TTI.getScalarizationOverhead() in some
cases. This was due to X86 specific handlings in these (overridden) methods,
and unfortunately the general preference of TTI.getScalarizationOverhead()
was dropped. If VL is available it should always be preferred to use
getScalarizationOverhead(), and this is indeed the case for SystemZ which
has a special insertion instruction that can insert two GPR64s.
Then ` 33af951 "[SLP]Synchronize cost of gather/buildvector nodes with
codegen"` reworked SLPVectorizer getGatherCost() which together with
ad9909d caused the SystemZ test vec-elt-insertion.ll to fail.
This patch restores the SystemZ test and reverts the change in SLPVectorizer
getScalarizationOverhead() so that TTI.getScalarizationOverhead() is always
called again. The ForPoisonSrc argument is now passed on to the TTI method
so that X86 can handle this as required.
Fixes: #135346
Replace "concept based polymorphism" with simpler PImpl idiom.
This pursues two goals:
* Enforce static type checking. Previously, target implementations hid
base class methods and type checking was impossible. Now that they
override the methods, the compiler will complain on mismatched
signatures.
* Make the code easier to navigate. Previously, if you asked your
favorite LSP server to show a method (e.g. `getInstructionCost()`), it
would show you methods from `TTI`, `TTI::Concept`, `TTI::Model`,
`TTIImplBase`, and target overrides. Now it is two less :)
There are three commits to hopefully simplify the review.
The first commit removes `TTI::Model`. This is done by deriving
`TargetTransformInfoImplBase` from `TTI::Concept`. This is possible
because they implement the same set of interfaces with identical
signatures.
The first commit makes `TargetTransformImplBase` polymorphic, which
means all derived classes should `override` its methods. This is done in
second commit to make the first one smaller. It appeared infeasible to
extract this into a separate PR because the first commit landed
separately would result in tons of `-Woverloaded-virtual` warnings (and
break `-Werror` builds).
The third commit eliminates `TTI::Concept` by merging it with the only
derived class `TargetTransformImplBase`. This commit could be extracted
into a separate PR, but it touches the same lines in
`TargetTransformInfoImpl.h` (removes `override` added by the second
commit and adds `virtual`), so I thought it may make sense to land these
two commits together.
Pull Request: https://github.com/llvm/llvm-project/pull/136674
This will likely not affect much with the current uses of the function,
but if we have getExtractWithExtendCost we can plumb CostKind through it
in the same way as other costmodel functions.
This patch changes the preferInLoopReduction function to take a
RecurKind instead of an unsigned Opcode.
This makes it possible to distinguish non-arithmetic reductions such as
min/max, AnyOf, and FindLastIV, and also helps unify IAnyOf with FAnyOf
and IFindLastIV with FFindLastIV.
Related patch #118393#131830
In order to facilitate targets that only support masked loads/stores
on certain address spaces (AMDGPU will support them in an upcoming
patch, but only for address space 7), add an AddressSpace parameter
to isLegalMaskedLoad and isLegalMaskedStore
In the implementation of the getExtendedReductionCost(), it ofter calls
getArithmeticReductionCost() with FMFs. But we shouldn't call
getArithmeticReductionCost() with FMFs for non-floating-point reductions
which will return the wrong cost.
This patch makes FMFs in getExtendedReductionCost() optional and align
to the getArithmeticReductionCost(). So the TTI will return the correct
cost for non-FP extended-reductions query without FMFs.
This patch is not quite NFC but it's hard to test from the CostModel
side.
Split from #113903.
This caused assertion failures:
llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp:16237:
Value *llvm::slpvectorizer::BoUpSLP::vectorizeTree(TreeEntry *):
Assertion `OpTE1.isSame( ArrayRef(E->Scalars).take_front(OpTE1.getVectorFactor())) && "Expected same first part of scalars."' failed.
See comment on the PR.
> Previous version was reviewed here https://github.com/llvm/llvm-project/pull/123360
> It is mostly the same, adjusted after graph-to-tree transformation
This reverts commit 7de895ff1146c17ec78877900c01c09f4140e692.
This caused failures such as:
Instruction does not dominate all uses!
%29 = insertelement <8 x i64> %28, i64 %xor6.i.5, i64 6
%17 = shufflevector <8 x i64> %29, <8 x i64> poison, <6 x i32> <i32 1, i32 2, i32 3, i32 4, i32 5, i32 6>
see comment on https://github.com/llvm/llvm-project/pull/123360
> Previous version was reviewed here https://github.com/llvm/llvm-project/pull/123360
> It is mostly the same, adjusted after graph-to-tree transformation
>
> Patch tries to remove wide alternate operations.
> Currently SLP vectorizer emits something like this:
> ```
> %0 = add i32
> %1 = sub i32
> %2 = add i32
> %3 = sub i32
> %4 = add i32
> %5 = sub i32
> %6 = add i32
> %7 = sub i32
>
> transformes to
>
> %v1 = add <8 x i32>
> %v2 = sub <8 x i32>
> %res = shuffle %v1, %v2, <0, 9, 2, 11, 4, 13, 6, 15>
> ```
> i.e. half of the results are just unused. This leads to increased
> register pressure and potentially doubles number of operations.
>
> Patch introduces SplitVectorize mode, where it splits the operations by
> opcodes and produces instead something like this:
> ```
> %v1 = add <4 x i32>
> %v2 = sub <4 x i32>
> %res = shuffle %v1, %v2, <0, 4, 1, 5, 2, 6, 3, 7>
> ```
> It allows to improve the performance by reducing number of ops. Also, it
> turns on some other improvements, like improved graph reordering.
>
> [...]
This reverts commit 9d37e61fc77d3d6de891c30630f1c0227522031d as well as
the follow-up commit 72bb0a9a9c6fdde43e1e191f2dc0d5d2d46aff4e.
No in-tree targets currently use it in the
preferInLoopReduction/preferPredicatedReductionSelect TTI hooks. It
looks like it used to be used in LoopUtils, at least in
8ca60db40bd944dc5f67e0f200a403b4e03818ea, but I presume it was replaced
by RecurrenceDescriptor.
This patch updates the cost model to cost intrinsics that return
multiple values (in structs) correctly. Previously, the cost model only
thought intrinsics that return `VectorType` need scalarizing, which
meant it cost intrinsics that return multiple vectors (that need
scalarizing) way too cheap (giving it the cost of a single function
call).
This patch also adds a custom cost for llvm.sincos when a vector
function library is available, as certain VFs can be expanded (later in
code gen) to a vector function, reducing the cost to a single call (+
the possible loads from the vector function returns values via output
pointers).
Pulled out of #122236, this allows Splats constants to be recognized by
getOperandInfo, allowing "better" costs for instructions like divides by
constants to be produced (which are expanded into mul+add+shift). Some
of the costs are not very accurate yet, but the comparison of scalar vs
fixed-width vs scalable for the same div can become more accurate,
especially with patches like #122236.
This patch adds initial support for vectorizing literal struct return
values. Currently, this is limited to the case where the struct is
homogeneous (all elements have the same type) and not packed. The users
of the call also must all be `extractvalue` instructions.
The intended use case for this is vectorizing intrinsics such as:
```
declare { float, float } @llvm.sincos.f32(float %x)
```
Mapping them to structure-returning library calls such as:
```
declare { <4 x float>, <4 x float> } @Sleef_sincosf4_u10advsimd(<4 x float>)
```
Or their widened form (such as `@llvm.sincos.v4f32` in this case).
Implementing this required two main changes:
1. Supporting widening `extractvalue`
2. Adding support for vectorized struct types in LV
* This is mostly limited to parts of the cost model and scalarization
Since the supported use case is narrow, the required changes are
relatively small.
This patch adds methods for cost estimation for
llvm.masked.expandload/llvm.masked.compressstore intrinsics in TTI. If
backend doesn't support custom lowering of these intrinsics it will be
processed by ScalarizeMaskedMemIntrin so we estimate its cost via
getCommonMaskedMemoryOpCost as gather/scatter operation; for RISC-V
backend, this patch implements custom hook to calculate the cost based
on current lowering scheme.
Patch tries to remove wide alternate operations.
Currently SLP vectorizer emits something like this:
```
%0 = add i32
%1 = sub i32
%2 = add i32
%3 = sub i32
%4 = add i32
%5 = sub i32
%6 = add i32
%7 = sub i32
transformes to
%v1 = add <8 x i32>
%v2 = sub <8 x i32>
%res = shuffle %v1, %v2, <0, 9, 2, 11, 4, 13, 6, 15>
```
i.e. half of the results are just unused. This leads to increased
register pressure and potentially doubles number of operations.
Patch introduces SplitVectorize mode, where it splits the operations by
opcodes and produces instead something like this:
```
%v1 = add <4 x i32>
%v2 = sub <4 x i32>
%res = shuffle %v1, %v2, <0, 4, 1, 5, 2, 6, 3, 7>
```
It allows to improve the performance by reducing number of ops. Also, it
turns on some other improvements, like improved graph reordering.
-O3+LTO, AVX512
Metric: size..text
Program size..text
results results0 diff
test-suite :: MultiSource/Benchmarks/Prolangs-C/TimberWolfMC/timberwolfmc.test 277800.00 280536.00 1.0%
test-suite :: MultiSource/Benchmarks/FreeBench/pifft/pifft.test 81802.00 82426.00 0.8%
test-suite :: External/SPEC/CINT2006/464.h264ref/464.h264ref.test 790552.00 790952.00 0.1%
test-suite :: MultiSource/Applications/JM/ldecod/ldecod.test 383795.00 383987.00 0.1%
test-suite :: External/SPEC/CINT2017speed/600.perlbench_s/600.perlbench_s.test 2075541.00 2076501.00 0.0%
test-suite :: External/SPEC/CINT2017rate/500.perlbench_r/500.perlbench_r.test 2075541.00 2076501.00 0.0%
test-suite :: MultiSource/Benchmarks/Bullet/bullet.test 312702.00 312766.00 0.0%
test-suite :: External/SPEC/CFP2017rate/526.blender_r/526.blender_r.test 12569783.00 12569751.00 -0.0%
test-suite :: External/SPEC/CFP2017rate/510.parest_r/510.parest_r.test 2049374.00 2049358.00 -0.0%
test-suite :: External/SPEC/CINT2006/400.perlbench/400.perlbench.test 1091836.00 1091772.00 -0.0%
test-suite :: MultiSource/Applications/JM/lencod/lencod.test 852339.00 852211.00 -0.0%
test-suite :: MultiSource/Applications/oggenc/oggenc.test 190651.00 190523.00 -0.1%
test-suite :: MultiSource/Benchmarks/DOE-ProxyApps-C/miniGMG/miniGMG.test 44203.00 44155.00 -0.1%
test-suite :: SingleSource/UnitTests/Vector/AVX512BWVL/Vector-AVX512BWVL-mask_set_bw.test 12997.00 12981.00 -0.1%
test-suite :: External/SPEC/CINT2017speed/625.x264_s/625.x264_s.test 668971.00 658427.00 -1.6%
test-suite :: External/SPEC/CINT2017rate/525.x264_r/525.x264_r.test 668971.00 658427.00 -1.6%
Prolangs-C/TimberWolfMC/timberwolfmc - small variations, some code not
inlined
FreeBench/pifft - extra stores <8 x double> vectorized, some other extra
vectorizations
CINT2006/464.h264ref - some smaller code + changes similar to x264
JM/ldecod - changes similar x264
CINT2017speed/600.perlbench_s
CINT2017rate/500.perlbench_r - significantly compact vector code
Benchmarks/Bullet - small variations
CFP2017rate/526.blender_r - small variations
CFP2017rate/510.parest_r - small variations
CINT2006/400.perlbench - extra vector code
JM/lencod - extra store <16 x i32> and other changes similar x264
Applications/oggenc - extra store <16 x i8>, small variations
DOE-ProxyApps-C/miniGMG - small variations
Vector/AVX512BWVL/Vector-AVX512BWVL-mask_set_bw - better vector code
CINT2017speed/625.x264_s
CINT2017rate/525.x264_r - the number of instructions increased, but
looks like they are more performant. E.g., for function
x264_pixel_satd_8x8, llvm-mca reports better throughput - 84 for the
current version and 59 for the new version.
-O3+LTO, march=rva32u64
CINT2017rate/525.x264_r - similar to x86, extra code in pixel_hadamard_ac
function vectorized, idct4x4dc stopped being vectorized (looks like
issue with shuffles cost)
CINT2006/400.perlbench - better vector code
CINT2006/445.gobmk - some variations in vector code
CINT2006/464.h264ref - extra code vectorized
CINT2017rate/500.perlbench_r - small variations
-O3+LTO, mcpu=sifive-p470
Metric: size..text
Program size..text
results results0 diff
test-suite :: External/SPEC/CINT2006/464.h264ref/464.h264ref.test 587336.00 587668.00 0.1%
test-suite :: MultiSource/Applications/JM/lencod/lencod.test 643308.00 643614.00 0.0%
test-suite :: MultiSource/Applications/d/make_dparser.test 79678.00 79710.00 0.0%
test-suite :: MultiSource/Benchmarks/Bullet/bullet.test 277322.00 277420.00 0.0%
test-suite :: External/SPEC/CINT2006/400.perlbench/400.perlbench.test 933660.00 933682.00 0.0%
test-suite :: External/SPEC/CFP2017rate/526.blender_r/526.blender_r.test 9497722.00 9497682.00 -0.0%
test-suite :: External/SPEC/CINT2017rate/500.perlbench_r/500.perlbench_r.test 1767806.00 1767772.00 -0.0%
test-suite :: External/SPEC/CINT2017speed/600.perlbench_s/600.perlbench_s.test 1767806.00 1767772.00 -0.0%
test-suite :: MultiSource/Benchmarks/MiBench/consumer-lame/consumer-lame.test 148038.00 148024.00 -0.0%
test-suite :: MultiSource/Applications/JM/ldecod/ldecod.test 283036.00 283008.00 -0.0%
test-suite :: MultiSource/Benchmarks/mediabench/g721/g721encode/encode.test 4776.00 4772.00 -0.1%
test-suite :: External/SPEC/CINT2017rate/525.x264_r/525.x264_r.test 540582.00 511772.00 -5.3%
test-suite :: External/SPEC/CINT2017speed/625.x264_s/625.x264_s.test 540582.00 511772.00 -5.3%
CINT2006/464.h264ref - extra vector code in find_sad_16x16
JM/lencod - extra vector code in find_sad_16x16
d/make_dparser - smaller vector code
Benchmarks/Bullet - small variations
CINT2006/400.perlbench - smaller vector code
CFP2017rate/526.blender_r - small variations, extra store <8 x float> in
the loop, extra store <8 x i8> in loop
CINT2017rate/500.perlbench_r
CINT2017speed/600.perlbench_s - small variations
MiBench/consumer-lame - small variations
JM/ldecod - extra vector code
mediabench/g721/g721encode - small variations
CINT2017rate/525.x264_r
CINT2017speed/625.x264_s - reduced number of wide operations and
shuffles, saving the registers, similar to X86, extra code in
pixel_hadamard_ac vectorized, idct4x4dc not vectorized (issue with some
TTI costs)
Reviewers: RKSimon, hiraditya
Reviewed By: RKSimon
Pull Request: https://github.com/llvm/llvm-project/pull/123360
This patch implements an LLVM IR pass, named kernel-info, that reports
various statistics for codes compiled for GPUs. The ultimate goal of
these statistics to help identify bad code patterns and ways to mitigate
them. The pass operates at the LLVM IR level so that it can, in theory,
support any LLVM-based compiler for programming languages supporting
GPUs. It has been tested so far with LLVM IR generated by Clang for
OpenMP offload codes targeting NVIDIA GPUs and AMD GPUs.
By default, the pass runs at the end of LTO, and options like
``-Rpass=kernel-info`` enable its remarks. Example `opt` and `clang`
command lines appear in `llvm/docs/KernelInfo.rst`. Remarks include
summary statistics (e.g., total size of static allocas) and individual
occurrences (e.g., source location of each alloca). Examples of its
output appear in tests in `llvm/test/Analysis/KernelInfo`.
To deduce whether the optimization is legal we need to compare the target
features between caller and callee versions. The criteria for bypassing
the resolver are the following:
* If the callee's feature set is a subset of the caller's feature set,
then the callee is a candidate for direct call.
* Among such candidates the one of highest priority is the best match
and it shall be picked, unless there is a version of the callee with
higher priority than the best match which cannot be picked from a
higher priority caller (directly or through the resolver).
* For every higher priority callee version than the best match, there
is a higher priority caller version whose feature set availability
is implied by the callee's feature set.
Example:
Callers and Callees are ordered in decreasing priority.
The arrows indicate successful call redirections.
Caller Callee Explanation
=========================================================================
mops+sve2 --+--> mops all the callee versions are subsets of the
| caller but mops has the highest priority
|
mops --+ sve2 between mops and default callees, mops wins
sve sve between sve and default callees, sve wins
but sve2 does not have a high priority caller
default -----> default sve (callee) implies sve (caller),
sve2(callee) implies sve (caller),
mops(callee) implies mops(caller)
This relands the reverted #120721 with a fix for cases where neither
reduction operand are the reduction phi. Only
63114239cc8d26225a0ef9920baacfc7cc00fc58 and
63114239cc8d26225a0ef9920baacfc7cc00fc58 are new on top of the reverted
PR.
---------
Co-authored-by: Nicholas Guy <nicholas.guy@arm.com>
This re-lands the reverted #92418
When the VF is small enough so that dividing the VF by the scaling
factor results in 1, the reduction phi execution thinks the VF is scalar
and sets the reduction's output as a scalar value, tripping assertions
expecting a vector value. The latest commit in this PR fixes that by
using `State.VF` in the scalar check, rather than the divided VF.
---------
Co-authored-by: Nicholas Guy <nicholas.guy@arm.com>
- update `VectorUtils:isVectorIntrinsicWithScalarOpAtArg` to use TTI for
all uses, to allow specifiction of target specific intrinsics
- add TTI to the `isVectorIntrinsicWithStructReturnOverloadAtField` api
- update TTI api to provide `isTargetIntrinsicWith...` functions and
consistently name them
- move `isTriviallyScalarizable` to VectorUtils
- update all uses of the api and provide the TTI parameter
Resolves#117030
Following on from https://github.com/llvm/llvm-project/pull/94499, this
patch adds support to the Loop Vectorizer to emit the partial reduction
intrinsics where they may be beneficial for the target.
---------
Co-authored-by: Samuel Tebbs <samuel.tebbs@arm.com>
As vector element loads are free on SystemZ, this patch improves the cost
computation in getGatherCost() to reflect this.
getScalarizationOverhead() gets an optional parameter which can hold the actual
Values so that they in turn can be passed (by BasicTTIImpl) to
getVectorInstrCost().
SystemZTTIImpl::getVectorInstrCost() will now recognize a LoadInst and
typically return a 0 cost for it, with some exceptions.
This changes allows target intrinsics to specify and overwrite overloaded types.
- Updates `ReplaceWithVecLib` to not provide TTI as there most probably won't be a use-case
- Updates `SLPVectorizer` to use available TTI
- Updates `VPTransformState` to pass down TTI
- Updates `VPlanRecipe` to use passed-down TTI
This change will let us add scalarization for `asdouble`: #114847
Set the maximum interleaving factor to 4, aligning with the number of available
SIMD pipelines. This increases the number of vector instructions in the vectorised
loop body, enhancing performance during its execution. However, for very low
iteration counts, the vectorised body might not execute at all, leaving only the
epilogue loop to run. This issue affects e.g. cam4_r from SPEC FP, which
experienced a performance regression. To address this, the patch reduces the
minimum epilogue vectorisation factor from 16 to 8, enabling the epilogue to be
vectorised and largely mitigating the regression.
…er possible
In case of Neon, if there exists extractelement from lane != 0 such that
1. extractelement does not necessitate a move from vector_reg -> GPR
2. extractelement result feeds into fmul
3. Other operand of fmul is a scalar or extractelement from lane 0 or
lane equivalent to 0
then the extractelement can be merged with fmul in the backend and it
incurs no cost.
e.g.
```
define double @foo(<2 x double> %a) {
%1 = extractelement <2 x double> %a, i32 0
%2 = extractelement <2 x double> %a, i32 1
%res = fmul double %1, %2
ret double %res
}
```
`%2` and `%res` can be merged in the backend to generate:
`fmul d0, d0, v0.d[1]`
The change was tested with SPEC FP(C/C++) on Neoverse-v2.
**Compile time impact**: None
**Performance impact**: Observing 1.3-1.7% uplift on lbm benchmark with -flto depending upon the config.
This is a recommit of #107120 . The original PR was approved but failed
buildbot. The newly added tests should only be run for compilers that
support the ARM target. This has been resolved by adding a config file
for these tests.
- Pass optimizes memcpy's by padding out destinations and sources to a
full word to make ARM backend generate full word loads instead of
loading a single byte (ldrb) and/or half word (ldrh). Only pads
destination when it's a stack allocated constant size array and source
when it's constant string. Heuristic to decide whether to pad or not
is very basic and could be improved to allow more examples to be
padded.
- Pass works at the midend level
- Pass optimizes memcpy's by padding out destinations and sources to a
full word to make backend generate full word loads instead of loading a
single byte (ldrb) and/or half word (ldrh). Only pads destination when
it's a stack allocated constant size array and source when it's constant
array. Heuristic to decide whether to pad or not is very basic and could
be improved to allow more examples to be padded.
- Pass works within GlobalOpt but is disabled by default on all targets
except ARM.