…210)"
This reverts commit 9a14b1d254a43dc0d4445c3ffa3d393bca007ba3.
Revert "RuntimeLibcalls: Return StringRef for libcall names (#153209)"
This reverts commit cb1228fbd535b8f9fe78505a15292b0ba23b17de.
Revert "TableGen: Emit statically generated hash table for runtime
libcalls (#150192)"
This reverts commit 769a9058c8d04fc920994f6a5bbb03c8a4fbcd05.
Reverted three changes because of a CMake error while building llvm-nm
as reported in the following PR:
https://github.com/llvm/llvm-project/pull/150192#issuecomment-3192223073
a96121089b9c94e08c6632f91f2dffc73c0ffa28 reverted a change
to use a binary search on the string name table because it
was too slow. This replaces it with a static string hash
table based on the known set of libcall names. Microbenchmarking
shows this is similarly fast to using DenseMap. It's possibly
slightly slower than using StringSet, though these aren't an
exact comparison. This also saves on the one time use construction
of the map, so it could be better in practice.
This search isn't simple set check, since it does find the
range of possible matches with the same name. There's also
an additional check for whether the current target supports
the name. The runtime constructed set doesn't require this,
since it only adds the symbols live for the target.
Followed algorithm from this post
http://0x80.pl/notesen/2023-04-30-lookup-in-strings.html
I'm also thinking the 2 special case global symbols should
just be added to RuntimeLibcalls. There are also other global
references emitted in the backend that aren't tracked; we probably
should just use this as a centralized database for all compiler
selected symbols.
Also replace the current static DenseMap of preserved symbol
names in the Symtab hack with this. That was broken statefulness
across compiles, so this at least fixes that. However this is
still broken, llvm-as shouldn't really depend on the triple.
Work towards separating the ABI existence of libcalls vs. the
lowering selection. Set libcall selection through enums, rather
than through raw string names.
Replace RuntimeLibcalls.def with a tablegenerated version. This
is in preparation for splitting RuntimeLibcalls into two components.
For now match the existing functionality.
We need the full set of ABI options to accurately compute
the full set of libcalls. This partially resolves missing
information required to compute the set of ARM calls.
The module currently stores the target triple as a string. This means
that any code that wants to actually use the triple first has to
instantiate a Triple, which is somewhat expensive. The change in #121652
caused a moderate compile-time regression due to this. While it would be
easy enough to work around, I think that architecturally, it makes more
sense to store the parsed Triple in the module, so that it can always be
directly queried.
For this change, I've opted not to add any magic conversions between
std::string and Triple for backwards-compatibilty purses, and instead
write out needed Triple()s or str()s explicitly. This is because I think
a decent number of them should be changed to work on Triple as well, to
avoid unnecessary conversions back and forth.
The only interesting part in this patch is that the default triple is
Triple("") instead of Triple() to preserve existing behavior. The former
defaults to using the ELF object format instead of unknown object
format. We should fix that as well.
This reverts commit 740161a9b98c9920dedf1852b5f1c94d0a683af5.
I moved the `ISD` dependencies into the CodeGen portion of the handling,
it's a little awkward but it's the easiest solution I can think of for
now.
Summary:
The LTO pass and LLD linker have logic in them that forces extraction
and prevent internalization of needed runtime calls. However, these
currently take all RTLibcalls into account, even if the target does not
support them. The target opts-out of a libcall if it sets its name to
nullptr. This patch pulls this logic out into a class in the header so
that LTO / lld can use it to determine if a symbol actually needs to be
kept.
This is important for targets like AMDGPU that want to be able to use
`lld` to perform the final link step, but does not want the overhead of
uncalled functions. (This adds like a second to the link time trivially)
This patch replaces the uses of PointerUnion.is function by llvm::isa,
PointerUnion.get function by llvm::cast, and PointerUnion.dyn_cast by
llvm::dyn_cast_if_present. This is according to the FIXME in
the definition of the class PointerUnion.
This patch does not remove them as they are being used in other
subprojects.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D148449
Most notably,
llvm/Object/Binary.h no longer includes llvm/Support/MemoryBuffer.h
llvm/Object/MachOUniversal*.h no longer include llvm/Object/Archive.h
llvm/Object/TapiUniversal.h no longer includes llvm/Object/TapiFile.h
llvm-project preprocessed size:
before: 1068185081
after: 1068324320
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D119457
Bitcode upgrade automatically takes in place when the current compiler version doesn't match the one building the input modules. The upgrade is very expansive for large applications and unnecessary when users are sure the two compilers do not have a version issue, even if their versions mismatch literally. An optional to disable the automatic bitcode upgrade will be handy in such case.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D109869
`__stack_chk_guard` is a global variable that has no uses before the LLVM code generation phase (how it is defined is platform-dependent). LTO needs to preserve this symbol for that reason. Currently, legacy LTO API preserves it by hardcoding the logic in Internalizer, but this symbol is not preserved by regular LTO API in thinlink phase. This patch marks `__stack_chk_guard` used during IR symbol table writing since this is how builtin functions are preserved by thinlink by using `RuntimeLibcalls.def`.
Reviewed By: MaskRay, tejohnson
Differential Revision: https://reviews.llvm.org/D112595
To better reflect the meaning of the now-disambiguated {GlobalValue,
GlobalAlias}::getBaseObject after breaking off GlobalIFunc::getResolverFunction
(D109792), the function is renamed to getAliaseeObject.
While both GlobalAlias and GlobalIFunc are GlobalIndirectSymbol, their
`getIndirectSymbol()` usage is quite different (GlobalIFunc's resolver
is an entity different from GlobalIFunc itself).
As discussed on https://lists.llvm.org/pipermail/llvm-dev/2020-September/144904.html
("[IR] Modelling of GlobalIFunc"), the name `getBaseObject` is confusing when
used with GlobalIFunc.
To resolve the confusion:
* Move GloalIndirectSymol::getBaseObject to GlobalAlias:: (GlobalIFunc should use `getResolver` instead)
* Change GlobalValue::getBaseObject not to inspect GlobalIFunc. Note: the function has 7 references.
* Add GlobalIFunc::getResolverFunction to peel off potential ConstantExpr indirection
(`strlen` in `test/LTO/Resolution/X86/ifunc.ll`)
Note: GlobalIFunc::getResolver (like GlobalAlias::getAliasee which does not peel
off ConstantExpr indirection) is kept to be used by ValueEnumerator.
Reviewed By: ibookstein
Differential Revision: https://reviews.llvm.org/D109792
In PGO, a C++ external linkage function `foo` has a private counter
`__profc_foo` and a private `__profd_foo` in a `comdat nodeduplicate`.
A `__attribute__((weak))` function `foo` has a weak hidden counter `__profc_foo`
and a private `__profd_foo` in a `comdat nodeduplicate`.
In `ld.lld a.o b.o`, say a.o defines an external linkage `foo` and b.o
defines a weak `foo`. Currently we treat `comdat nodeduplicate` as `comdat any`,
ld.lld will incorrectly consider `b.o:__profc_foo` non-prevailing. In the worst
case when `b.o:__profd_foo` is retained and `b.o:__profc_foo` isn't, there will
be dangling reference causing an `undefined hidden symbol` error.
Add SelectionKind to `Comdat` in IRSymtab and let linkers ignore nodeduplicate comdat.
Differential Revision: https://reviews.llvm.org/D106228
C++23 will make these conversions ambiguous - so fix them to make the
codebase forward-compatible with C++23 (& a follow-up change I've made
will make this ambiguous/invalid even in <C++23 so we don't regress
this & it generally improves the code anyway)
IR symbol table does not parse inline asm. A symbol only referenced by inline
asm is not in the IR symbol table, so LTO does not know that the definition (in
another translation unit) is referenced and may internalize it, even if that
definition has `__attribute__((used))` (which lowers to `llvm.compiler.used` on
ELF targets since D97446).
```
// cabac.c
__attribute__((used)) const uint8_t ff_h264_cabac_tables[...] = {...};
// h264_cabac.c
asm("lea ff_h264_cabac_tables(%rip), %0" : ...);
```
`__attribute__((used))` is the recommended way to tell the compiler there may
be inline asm references, so the usage is perfectly fine. This patch
conservatively sets the `FB_used` bit on `llvm.compiler.used` symbols to work
around the IR symbol table limitation. Note: before D97446, Clang never emitted
symbols in the `llvm.compiler.used` list, so this change does not punish any
Clang emitted global object.
Without the patch, `ff_h264_cabac_tables` may be assigned to a non-external
partition and get internalized. Then we will get a linker error because the
`cabac.c` definition is not exposed.
Differential Revision: https://reviews.llvm.org/D97755
And delete the SmallPtrSetImpl overload.
While here, decrease inline element counts from 8 to 4. See D97128 for the choice.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D97257
This function is deceptive at best: it doesn't return what you'd expect.
If you have an arbitrary GlobalValue and you want to determine the
alignment of that pointer, Value::getPointerAlignment() returns the
correct value. If you want the actual declared alignment of a function
or variable, GlobalObject::getAlignment() returns that.
This patch switches all the users of GlobalValue::getAlignment to an
appropriate alternative.
Differential Revision: https://reviews.llvm.org/D80368
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
This patch implements a limited form of autolinking primarily designed to allow
either the --dependent-library compiler option, or "comment lib" pragmas (
https://docs.microsoft.com/en-us/cpp/preprocessor/comment-c-cpp?view=vs-2017) in
C/C++ e.g. #pragma comment(lib, "foo"), to cause an ELF linker to automatically
add the specified library to the link when processing the input file generated
by the compiler.
Currently this extension is unique to LLVM and LLD. However, care has been taken
to design this feature so that it could be supported by other ELF linkers.
The design goals were to provide:
- A simple linking model for developers to reason about.
- The ability to to override autolinking from the linker command line.
- Source code compatibility, where possible, with "comment lib" pragmas in other
environments (MSVC in particular).
Dependent library support is implemented differently for ELF platforms than on
the other platforms. Primarily this difference is that on ELF we pass the
dependent library specifiers directly to the linker without manipulating them.
This is in contrast to other platforms where they are mapped to a specific
linker option by the compiler. This difference is a result of the greater
variety of ELF linkers and the fact that ELF linkers tend to handle libraries in
a more complicated fashion than on other platforms. This forces us to defer
handling the specifiers to the linker.
In order to achieve a level of source code compatibility with other platforms
we have restricted this feature to work with libraries that meet the following
"reasonable" requirements:
1. There are no competing defined symbols in a given set of libraries, or
if they exist, the program owner doesn't care which is linked to their
program.
2. There may be circular dependencies between libraries.
The binary representation is a mergeable string section (SHF_MERGE,
SHF_STRINGS), called .deplibs, with custom type SHT_LLVM_DEPENDENT_LIBRARIES
(0x6fff4c04). The compiler forms this section by concatenating the arguments of
the "comment lib" pragmas and --dependent-library options in the order they are
encountered. Partial (-r, -Ur) links are handled by concatenating .deplibs
sections with the normal mergeable string section rules. As an example, #pragma
comment(lib, "foo") would result in:
.section ".deplibs","MS",@llvm_dependent_libraries,1
.asciz "foo"
For LTO, equivalent information to the contents of a the .deplibs section can be
retrieved by the LLD for bitcode input files.
LLD processes the dependent library specifiers in the following way:
1. Dependent libraries which are found from the specifiers in .deplibs sections
of relocatable object files are added when the linker decides to include that
file (which could itself be in a library) in the link. Dependent libraries
behave as if they were appended to the command line after all other options. As
a consequence the set of dependent libraries are searched last to resolve
symbols.
2. It is an error if a file cannot be found for a given specifier.
3. Any command line options in effect at the end of the command line parsing apply
to the dependent libraries, e.g. --whole-archive.
4. The linker tries to add a library or relocatable object file from each of the
strings in a .deplibs section by; first, handling the string as if it was
specified on the command line; second, by looking for the string in each of the
library search paths in turn; third, by looking for a lib<string>.a or
lib<string>.so (depending on the current mode of the linker) in each of the
library search paths.
5. A new command line option --no-dependent-libraries tells LLD to ignore the
dependent libraries.
Rationale for the above points:
1. Adding the dependent libraries last makes the process simple to understand
from a developers perspective. All linkers are able to implement this scheme.
2. Error-ing for libraries that are not found seems like better behavior than
failing the link during symbol resolution.
3. It seems useful for the user to be able to apply command line options which
will affect all of the dependent libraries. There is a potential problem of
surprise for developers, who might not realize that these options would apply
to these "invisible" input files; however, despite the potential for surprise,
this is easy for developers to reason about and gives developers the control
that they may require.
4. This algorithm takes into account all of the different ways that ELF linkers
find input files. The different search methods are tried by the linker in most
obvious to least obvious order.
5. I considered adding finer grained control over which dependent libraries were
ignored (e.g. MSVC has /nodefaultlib:<library>); however, I concluded that this
is not necessary: if finer control is required developers can fall back to using
the command line directly.
RFC thread: http://lists.llvm.org/pipermail/llvm-dev/2019-March/131004.html.
Differential Revision: https://reviews.llvm.org/D60274
llvm-svn: 360984
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
When building with LTO, builtin functions that are defined but whose calls have not been inserted yet, get internalized. The Global Dead Code Elimination phase in the new LTO implementation then removes these function definitions. Later optimizations add calls to those functions, and the linker then dies complaining that there are no definitions. This CL fixes the new LTO implementation to check if a function is builtin, and if so, to not internalize (and later DCE) the function. As part of this fix I needed to move the RuntimeLibcalls.{def,h} files from the CodeGen subidrectory to the IR subdirectory. I have updated all the files that accessed those two files to access their new location.
Fixes PR34169
Patch by Caroline Tice!
Differential Revision: https://reviews.llvm.org/D49434
llvm-svn: 337847
See r331124 for how I made a list of files missing the include.
I then ran this Python script:
for f in open('filelist.txt'):
f = f.strip()
fl = open(f).readlines()
found = False
for i in xrange(len(fl)):
p = '#include "llvm/'
if not fl[i].startswith(p):
continue
if fl[i][len(p):] > 'Config':
fl.insert(i, '#include "llvm/Config/llvm-config.h"\n')
found = True
break
if not found:
print 'not found', f
else:
open(f, 'w').write(''.join(fl))
and then looked through everything with `svn diff | diffstat -l | xargs -n 1000 gvim -p`
and tried to fix include ordering and whatnot.
No intended behavior change.
llvm-svn: 331184
Change the representation of COFF comdats so that a COFF linker
is able to accurately resolve comdats between IR and native object
files. Specifically, apply name mangling to comdat names consistently
with native object files, and do not export comdats with an internal
leader because they do not affect symbol resolution.
Differential Revision: https://reviews.llvm.org/D40278
llvm-svn: 318805
Summary:
ELF linkers generate __start_<secname> and __stop_<secname> symbols
when there is a value in a section <secname> where the name is a valid
C identifier. If dead stripping determines that the values declared
in section <secname> are dead, and we then internalize (and delete)
such a symbol, programs that reference the corresponding start and end
section symbols will get undefined reference linking errors.
To fix this, add the section name to the IRSymtab entry when a symbol is
defined in a specific section. Then use this in the gold-plugin to mark
the symbol as external and visible from outside the summary when the
section name is a valid C identifier.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D35639
llvm-svn: 309009
This will be needed in order to share the irsymtab string table with
the bitcode string table.
Differential Revision: https://reviews.llvm.org/D33971
llvm-svn: 305937