This introduces a new `ptrtoaddr` instruction which is similar to
`ptrtoint` but has two differences:
1) Unlike `ptrtoint`, `ptrtoaddr` does not capture provenance
2) `ptrtoaddr` only extracts (and then extends/truncates) the low
index-width bits of the pointer
For most architectures, difference 2) does not matter since index (address)
width and pointer representation width are the same, but this does make a
difference for architectures that have pointers that aren't just plain
integer addresses such as AMDGPU fat pointers or CHERI capabilities.
This commit introduces textual and bitcode IR support as well as basic code
generation, but optimization passes do not handle the new instruction yet
so it may result in worse code than using ptrtoint. Follow-up changes will
update capture tracking, etc. for the new instruction.
RFC: https://discourse.llvm.org/t/clarifiying-the-semantics-of-ptrtoint/83987/54
Reviewed By: nikic
Pull Request: https://github.com/llvm/llvm-project/pull/139357
The last use was removed in:
commit 05e6bb40ebfd285cc87f7ce326b7ba76c3c7f870
Author: Roger Ferrer Ibáñez <rofirrim@gmail.com>
Date: Thu May 30 14:55:32 2024 +0200
These three intrinsics are similar to llvm.vector.(de)interleave2 but
work with 3/5/7 vector operands or results.
For RISC-V, it's important to have them in order to support segmented
load/store with factor of 2 to 8: factor of 2/4/8 can be synthesized
from (de)interleave2; factor of 6 can be synthesized from factor of 2
and 3; factor 5 and 7 have their own intrinsics added by this patch.
This patch only adds codegen support for these intrinsics, we still need
to teach vectorizer to generate them as well as teaching
InterleavedAccessPass to use them.
---------
Co-authored-by: Craig Topper <craig.topper@sifive.com>
Once we get to SelectionDAG the IR should not be changing anymore, so we
can use BatchAAResults rather than AAResults to cache AA queries.
This should be a NFC change for targets that enable AA during codegen
(such as AArch64), but also give a nice compile-time improvement in some
cases. See:
https://github.com/llvm/llvm-project/pull/123787#issuecomment-2606797041
Note: This follows Nikita's suggestion on #123787.
As discussed in #112738, it may be better to have an intrinsic to represent vector element extracts based on mask bits. This intrinsic is for the case of extracting the last active element, if any, or a default value if the mask is all-false.
The target-agnostic SelectionDAG lowering is similar to the IR in #106560.
Remove support for the icmp and fcmp constant expressions.
This is part of:
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179
As usual, many of the updated tests will no longer test what they were
originally intended to -- this is hard to preserve when constant
expressions get removed, and in many cases just impossible as the
existence of a specific kind of constant expression was the cause of the
issue in the first place.
This adds codegen support for the "ptrauth" operand bundles, which can
be used to augment indirect calls with the equivalent of an
`@llvm.ptrauth.auth` intrinsic call on the call target (possibly
preceded by an `@llvm.ptrauth.blend` on the auth discriminator if
applicable.)
This allows the generation of combined authenticating calls
on AArch64 (in the BLRA* PAuth instructions), while avoiding
the raw just-authenticated function pointer from being
exposed to attackers.
This is done by threading a PtrAuthInfo descriptor through
the call lowering infrastructure, eventually selecting a BLRA
pseudo. The pseudo encapsulates the safe discriminator
computation, which together with the real BLRA* call get emitted
in late pseudo expansion in AsmPrinter.
Note that this also applies to the other forms of indirect calls,
notably invokes, rvmarker, and tail calls. Tail-calls in particular
bring some additional complexity, with the intersecting register
constraints of BTI and PAC discriminator computation.
However this doesn't currently support PAuth_LR tail-call variants.
This also adopts an x8+ allocation order for GPR64noip, matching
GPR64.
Based on discussion from
https://discourse.llvm.org/t/rfc-vectorization-support-for-histogram-count-operations/74788
Current interface is:
llvm.experimental.histogram(<vecty> ptrs, <intty> inc_amount, <vecty> mask)
The integer type used by 'inc_amount' needs to match the type of the buckets in memory.
The intrinsic covers the following operations:
* Gather load
* histogram on the elements of 'ptrs'
* multiply the histogram results by 'inc_amount'
* add the result of the multiply to the values loaded by the gather
* scatter store the results of the add
Supports lowering to histcnt instructions for AArch64 targets, and scalarization for all others at present.
The ID argument of `gc.statepoint` gets incorrectly truncated to 32 bits
during code generation.
This is fixed by using `uint64_t` instead of `unsigned` for the `ID`
member in `SelectionDAGBuilder::StatepointLoweringInfo`, and a
`patchpoint` test case is extended to check for 64 bit ID generation in
stackmaps.
This restores commit c7fdd8c11e54585dc9d15d63de9742067e0506b9.
Previously reverted in f010b1bef4dda2c7082cbb41dbabf1f149cce306.
LLVM function calls carry convergence control tokens as operand bundles, where
the tokens themselves are produced by convergence control intrinsics. This patch
implements convergence control tokens in MIR as follows:
1. Introduce target-independent ISD opcodes and MIR opcodes for convergence
control intrinsics.
2. Model token values as untyped virtual registers in MIR.
The change also introduces an additional ISD opcode CONVERGENCECTRL_GLUE and a
corresponding machine opcode with the same spelling. This glues the convergence
control token to SDNodes that represent calls to intrinsics. The glued token is
later translated to an implicit argument in the MIR.
The lowering of calls to user-defined functions is target-specific. On AMDGPU,
the convergence control operand bundle at a non-intrinsic call is translated to
an explicit argument to the SI_CALL_ISEL instruction. Post-selection adjustment
converts this explicit argument to an implicit argument on the SI_CALL
instruction.
Changes in Recommit:
1) Fix non-determanism by using `SmallMapVector` instead of
`SmallPtrSet`.
2) Fix bug in dependency pruning where we discounted the actual
`and/or` combining the two conditions. This lead to over pruning.
Closes#81689
This reverts commit c7fdd8c11e54585dc9d15d63de9742067e0506b9.
Reason: Broke the sanitizer buildbots. See the comments at
https://github.com/llvm/llvm-project/pull/71785
for more information.
Original commit 79889734b940356ab3381423c93ae06f22e772c9.
Perviously reverted in commit a2afcd5721869d1d03c8146bae3885b3385ba15e.
LLVM function calls carry convergence control tokens as operand bundles, where
the tokens themselves are produced by convergence control intrinsics. This patch
implements convergence control tokens in MIR as follows:
1. Introduce target-independent ISD opcodes and MIR opcodes for convergence
control intrinsics.
2. Model token values as untyped virtual registers in MIR.
The change also introduces an additional ISD opcode CONVERGENCECTRL_GLUE and a
corresponding machine opcode with the same spelling. This glues the convergence
control token to SDNodes that represent calls to intrinsics. The glued token is
later translated to an implicit argument in the MIR.
The lowering of calls to user-defined functions is target-specific. On AMDGPU,
the convergence control operand bundle at a non-intrinsic call is translated to
an explicit argument to the SI_CALL_ISEL instruction. Post-selection adjustment
converts this explicit argument to an implicit argument on the SI_CALL
instruction.
LLVM function calls carry convergence control tokens as operand bundles, where
the tokens themselves are produced by convergence control intrinsics. This patch
implements convergence control tokens in MIR as follows:
1. Introduce target-independent ISD opcodes and MIR opcodes for convergence
control intrinsics.
2. Model token values as untyped virtual registers in MIR.
The change also introduces an additional ISD opcode CONVERGENCECTRL_GLUE and a
corresponding machine opcode with the same spelling. This glues the convergence
control token to SDNodes that represent calls to intrinsics. The glued token is
later translated to an implicit argument in the MIR.
The lowering of calls to user-defined functions is target-specific. On AMDGPU,
the convergence control operand bundle at a non-intrinsic call is translated to
an explicit argument to the SI_CALL_ISEL instruction. Post-selection adjustment
converts this explicit argument to an implicit argument on the SI_CALL
instruction.
This patch abstracts visitEntryValueDbgValue to deal with the substance
of variable locations (Value, Var, Expr, DebugLoc) rather than how
they're stored. That allows us to call it from handleDebugValue, which
is similarly abstracted. This allows the entry-value behaviour (see the
test) to be supported with non-instruction debug-info too!.
This is a boring mechanical update to support DPValues that look like
dbg.declares in SelectionDAG.
The tests will become "live" once #74090 lands (see for more info).
DPValues are the non-intrinsic replacements for dbg.values, and when an
IR function is converted by SelectionDAG we need to convert the variable
location information in the same way. Happily all the information is in
the same format, it's just stored in a slightly different object,
therefore this patch refactors a few things to store the set of
{Variable,Expr,DILocation,Location} instead of just a pointer to a
DbgValueInst.
This also adds a hook in llc that's much like the one I've added to opt
in PR #71937, allowing tests to optionally ask for the use RemoveDIs
mode if support for it is built into the compiler.
I've added that flag to a variety of SelectionDAG debug-info tests to
ensure that we get some coverage on the RemoveDIs / debug-info-iterator
buildbot.
The current lowering of statepoints does not take into account return
attributes present on the `gc.result` leading to different code being
generated than if one were to not use statepoints. These return
attributes can affect the ABI which is why it is important that they are
applied in the lowering.
This will make it easy for callers to see issues with and fix up calls
to createTargetMachine after a future change to the params of
TargetMachine.
This matches other nearby enums.
For downstream users, this should be a fairly straightforward
replacement,
e.g. s/CodeGenOpt::Aggressive/CodeGenOptLevel::Aggressive
or s/CGFT_/CodeGenFileType::
Should add some minor type safety to the use of this information, since
there's quite a bit of metadata being laundered through an `unsigned`.
I'm looking to potentially add more bitfields to that `unsigned`, but I
find InlineAsm's big ol' bag of enum values and usage of `unsigned`
confusing, type-unsafe, and un-ergonomic. These can probably be better
abstracted.
I think the lack of static_cast outside of InlineAsm indicates the prior
code smell fixed here.
Reviewed By: qcolombet
Differential Revision: https://reviews.llvm.org/D159242
When SelectiondDAG converts dbg.value intrinsics, it first ensures we have
already generated code for the value operator of the intrinsic. The rationale
being that if we haven't had the need to generate code for this value, it won't
be a debug value that causes the generation.
For example, if the first use the physical register of an argument is a
dbg.value, we are going to hit this code path. However, this is irrelevant for
entry value expressions: by definition we are not interested in the _current_
value of the physical register, but rather on its value at the start of the
function. To deal with this, this patch changes lowering to handle this case as
early as possible.
Differential Revision: https://reviews.llvm.org/D158649
This is rework of;
- rG13e77db2df94 (r328395; MVT)
Since `LowLevelType.h` has been restored to `CodeGen`, `MachinveValueType.h`
can be restored as well.
Depends on D148767
Differential Revision: https://reviews.llvm.org/D149024
This patch replaces the uses of PointerUnion.is function by llvm::isa,
PointerUnion.get function by llvm::cast, and PointerUnion.dyn_cast by
llvm::dyn_cast_if_present. This is according to the FIXME in
the definition of the class PointerUnion.
This patch does not remove them as they are being used in other
subprojects.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D148449
This change initializes the members TSI, LI, DT, PSI, and ORE pointer feilds of the SelectOptimize class to nullptr.
Reviewed By: LuoYuanke
Differential Revision: https://reviews.llvm.org/D148303
Use RawLocationWrapper rather than a Value to represent the location operand(s)
so that it's possible to represent multiple location
operands. AssignmentTrackingAnalysis still converts variadic debug intrinsics
to kill locations so this patch is NFC.
Reviewed By: StephenTozer
Differential Revision: https://reviews.llvm.org/D145911
This removes the unused `FuncArgumentDbgValueKind::Addr` value originally added
by e24f5348798605a799c63ff09169d177d262cd37. The intent was to signal the
original intrinsic that marked a function argument, but the `Addr` part was
never used.
Part of `dbg.addr` removal
Discussed in https://discourse.llvm.org/t/what-is-the-status-of-dbg-addr/62898
Differential Revision: https://reviews.llvm.org/D144794
This patch adds 2 new intrinsics:
; Interleave two vectors into a wider vector
<vscale x 4 x i64> @llvm.vector.interleave2.nxv2i64(<vscale x 2 x i64> %even, <vscale x 2 x i64> %odd)
; Deinterleave the odd and even lanes from a wider vector
{<vscale x 2 x i64>, <vscale x 2 x i64>} @llvm.vector.deinterleave2.nxv2i64(<vscale x 4 x i64> %vec)
The main motivator for adding these intrinsics is to support vectorization of
complex types using scalable vectors.
The intrinsics are kept simple by only supporting a stride of 2, which makes
them easy to lower and type-legalize. A stride of 2 is sufficient to handle
complex types which only have a real/imaginary component.
The format of the intrinsics matches how `shufflevector` is used in
LoopVectorize. For example:
using cf = std::complex<float>;
void foo(cf * dst, int N) {
for (int i=0; i<N; ++i)
dst[i] += cf(1.f, 2.f);
}
For this loop, LoopVectorize:
(1) Loads a wide vector (e.g. <8 x float>)
(2) Extracts odd lanes using shufflevector (leading to <4 x float>)
(3) Extracts even lanes using shufflevector (leading to <4 x float>)
(4) Performs the addition
(5) Interleaves the two <4 x float> vectors into a single <8 x float> using
shufflevector
(6) Stores the wide vector.
In this example, we can 1-1 replace shufflevector in (2) and (3) with the
deinterleave intrinsic, and replace the shufflevector in (5) with the
interleave intrinsic.
The SelectionDAG nodes might be extended to support higher strides (3, 4, etc)
as well in the future.
Similar to what was done for vector.splice and vector.reverse, the intrinsic
is lowered to a shufflevector when the type is fixed width, so to benefit from
existing code that was written to recognize/optimize shufflevector patterns.
Note that this approach does not prevent us from adding new intrinsics for other
strides, or adding a more generic shuffle intrinsic in the future. It just solves
the immediate problem of being able to vectorize loops with complex math.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D141924
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Add initial revision of assignment tracking analysis pass
---------------------------------------------------------
This patch squashes five individually reviewed patches into one:
#1https://reviews.llvm.org/D136320#2https://reviews.llvm.org/D136321#3https://reviews.llvm.org/D136325#4https://reviews.llvm.org/D136331#5https://reviews.llvm.org/D136335
Patch #1 introduces 2 new files: AssignmentTrackingAnalysis.h and .cpp. The
two subsequent patches modify those files only. Patch #4 plumbs the analysis
into SelectionDAG, and patch #5 is a collection of tests for the analysis as
a whole.
The analysis was broken up into smaller chunks for review purposes but for the
most part the tests were written using the whole analysis. It would be possible
to break up the tests for patches #1 through #3 for the purpose of landing the
patches seperately. However, most them would require an update for each
patch. In addition, patch #4 - which connects the analysis to SelectionDAG - is
required by all of the tests.
If there is build-bot trouble, we might try a different landing sequence.
Analysis problem and goal
-------------------------
Variables values can be stored in memory, or available as SSA values, or both.
Using the Assignment Tracking metadata, it's not possible to determine a
variable location just by looking at a debug intrinsic in
isolation. Instructions without any metadata can change the location of a
variable. The meaning of dbg.assign intrinsics changes depending on whether
there are linked instructions, and where they are relative to those
instructions. So we need to analyse the IR and convert the embedded information
into a form that SelectionDAG can consume to produce debug variable locations
in MIR.
The solution is a dataflow analysis which, aiming to maximise the memory
location coverage for variables, outputs a mapping of instruction positions to
variable location definitions.
API usage
---------
The analysis is named `AssignmentTrackingAnalysis`. It is added as a required
pass for SelectionDAGISel when assignment tracking is enabled.
The results of the analysis are exposed via `getResults` using the returned
`const FunctionVarLocs *`'s const methods:
const VarLocInfo *single_locs_begin() const;
const VarLocInfo *single_locs_end() const;
const VarLocInfo *locs_begin(const Instruction *Before) const;
const VarLocInfo *locs_end(const Instruction *Before) const;
void print(raw_ostream &OS, const Function &Fn) const;
Debug intrinsics can be ignored after running the analysis. Instead, variable
location definitions that occur between an instruction `Inst` and its
predecessor (or block start) can be found by looping over the range:
locs_begin(Inst), locs_end(Inst)
Similarly, variables with a memory location that is valid for their lifetime
can be iterated over using the range:
single_locs_begin(), single_locs_end()
Further detail
--------------
For an explanation of the dataflow implementation and the integration with
SelectionDAG, please see the reviews linked at the top of this commit message.
Reviewed By: jmorse
Hide the underlying DbgValueInst by adding methods to extract the necessary
information and by adding a raw_ostream &operator<< overload to print it.
Remove the DebugLoc field as this is always the same as the DbgValueInst's
DebugLoc (see D136247).
Reviewed By: StephenTozer
Differential Revision: https://reviews.llvm.org/D136249
handleDebugValue has two DebugLoc parameters that appear to always take the
same value. Remove one of the duplicate parameters. See phabricator review for
more detail.
Reviewed By: StephenTozer
Differential Revision: https://reviews.llvm.org/D136247