That is, on all targets except ARM and AArch64.
This field used to be required due to a bug, it was fixed long ago
by 23423c0ea8d414e56081cb6a13bd8b2cc91513a9.
This patch replaces SmallSet<T *, N> with SmallPtrSet<T *, N>. Note
that SmallSet.h "redirects" SmallSet to SmallPtrSet for pointer
element types:
template <typename PointeeType, unsigned N>
class SmallSet<PointeeType*, N> : public SmallPtrSet<PointeeType*, N>
{};
We only have 140 instances that rely on this "redirection", with the
vast majority of them under llvm/. Since relying on the redirection
doesn't improve readability, this patch replaces SmallSet with
SmallPtrSet for pointer element types.
These are identified by misc-include-cleaner. I've filtered out those
that break builds. Also, I'm staying away from llvm-config.h,
config.h, and Compiler.h, which likely cause platform- or
compiler-specific build failures.
Auto-generated decoder fails to add the $sgp10 operand because it has no
encoding bits.
Work around this by adding the missing operand after decoding is
complete.
Fixes#153829.
When matching integers, `m_ConstantInt` is a convenient alternative to
`m_APInt` for matching unsigned 64-bit integers, allowing one to
simplify
```cpp
const APInt *IntC;
if (match(V, m_APInt(IntC))) {
if (IntC->ule(UINT64_MAX)) {
uint64_t Int = IntC->getZExtValue();
// ...
}
}
```
to
```cpp
uint64_t Int;
if (match(V, m_ConstantInt(Int))) {
// ...
}
```
However, this simplification is only true if `V` is a scalar type.
Specifically, `m_APInt` also matches integer splats, but `m_ConstantInt`
does not.
This patch ensures that the matching behaviour of `m_ConstantInt`
parallels that of `m_APInt`, and also incorporates it in some obvious
places.
This patch add cost kind to `getAddressComputationCost()` for #149955.
Note that this patch also remove all the default value in `getAddressComputationCost()`.
In some places we were passing the type of value being accessed, in
other cases we were passing the type of the pointer for the access.
The most "involved" user is
LoopVectorizationCostModel::getMemInstScalarizationCost, which is the
only call site that passes in the SCEV, and it passes along the pointer
type.
This changes call sites to consistently pass the pointer type, and
renames the arguments to clarify this.
No target actually checks the contents of the type passed, only to see
if it's a vector or not, so this shouldn't have an effect.
The object file format specific derived classes are used in context
where the type is statically known. We don't use isa/dyn_cast and we
want to eliminate MCSymbol::Kind in the base class.
The object file format specific derived classes are used in context
where the type is statically known. We don't use isa/dyn_cast and we
want to eliminate MCSymbol::Kind in the base class.
`Data` now references the first byte of the fixup offset within the current fragment.
MCAssembler::layout asserts that the fixup offset is within either the
fixed-size content or the optional variable-size tail, as this is the
most the generic code can validate without knowing the target-specific
fixup size.
Many backends applyFixup assert
```
assert(Offset + Size <= F.getSize() && "Invalid fixup offset!");
```
This refactoring allows a subsequent change to move the fixed-size
content outside of MCSection::ContentStorage, fixing the
-fsanitize=pointer-overflow issue of #150846
Pull Request: https://github.com/llvm/llvm-project/pull/151724
to facilitate replacing `MutableArrayRef<char> Data` (fragment content)
with the relocated location. This is necessary to fix the
pointer-overflow sanitizer issue and reland #150846
These are identified by misc-include-cleaner. I've filtered out those
that break builds. Also, I'm staying away from llvm-config.h,
config.h, and Compiler.h, which likely cause platform- or
compiler-specific build failures.
Hexagon instructions are VLIW "bundles" of up to four instruction words
encoded as a single MCInst with operands for each sub-instruction.
Previously, the disassembler's getInstruction() returned the full
bundle, which made it difficult to work with llvm-objdump.
For example, since all instructions are bundles, and bundles do not
branch, branch targets could not be printed.
This patch modifies the Hexagon disassembler to return individual
sub-instructions instead of entire bundles, enabling correct printing of
branch targets and relocations. It also introduces
`MCDisassembler::getInstructionBundle` for cases where the full bundle
is still needed.
By default, llvm-objdump separates instructions with newlines. However,
this does not work well for Hexagon syntax:
{ inst1
inst2
inst3
inst4 <branch> } :endloop0
Instructions may be followed by a closing brace, a closing brace with
`:endloop`, or a newline. Branches must appear within the braces.
To address this, `PrettyPrinter::getInstructionSeparator()` is added and
overridden for Hexagon.
The pattern i32xi32->i64, should be matched to the sign-extended
multiply op, instead of explicit sign- extension of the operands
followed by non-widening multiply (this takes 4 operations instead of
one). Currently, if one of the operands of multiply inside a loop is a
constant, the sign-extension of this constant is hoisted out of the loop
by LICM pass and this pattern is not matched by the ISEL.
This change handles multiply operand with Opcode of the type AssertSext
which is seen when the sign-extension is hoisted out-of the loop.
Modifies the DetectUseSxtw() to check for this.
Refactor the fragment representation of `push rax; jmp foo; nop; jmp foo`,
previously encoded as
`MCDataFragment(nop); MCRelaxableFragment(jmp foo); MCDataFragment(nop); MCRelaxableFragment(jmp foo)`,
to
```
MCFragment(fixed: push rax, variable: jmp foo)
MCFragment(fixed: nop, variable: jmp foo)
```
Changes:
* Eliminate MCEncodedFragment, moving content and fixup storage to MCFragment.
* The new MCFragment contains a fixed-size content (similar to previous
MCDataFragment) and an optional variable-size tail.
* The variable-size tail supports FT_Relaxable, FT_LEB, FT_Dwarf, and
FT_DwarfFrame, with plans to extend to other fragment types.
dyn_cast/isa should be avoided for the converted fragment subclasses.
* In `setVarFixups`, source fixup offsets are relative to the variable part's start.
Stored fixup (in `FixupStorage`) offsets are relative to the fixed part's start.
A lot of code does `getFragmentOffset(Frag) + Fixup.getOffset()`,
expecting the fixup offset to be relative to the fixed part's start.
* HexagonAsmBackend::fixupNeedsRelaxationAdvanced needs to know the
associated instruction for a fixup. We have to add a `const MCFragment &` parameter.
* In MCObjectStreamer, extend `absoluteSymbolDiff` to apply to
FT_Relaxable as otherwise there would be many more FT_DwarfFrame
fragments in -g compilations.
https://llvm-compile-time-tracker.com/compare.php?from=28e1473e8e523150914e8c7ea50b44fb0d2a8d65&to=778d68ad1d48e7f111ea853dd249912c601bee89&stat=instructions:u
```
stage2-O0-g instructins:u geomeon (-0.07%)
stage1-ReleaseLTO-g (link only) max-rss geomean (-0.39%)
```
```
% /t/clang-old -g -c sqlite3.i -w -mllvm -debug-only=mc-dump &| awk '/^[0-9]+/{s[$2]++;tot++} END{print "Total",tot; n=asorti(s, si); for(i=1;i<=n;i++) print si[i],s[si[i]]}'
Total 59675
Align 2215
Data 29700
Dwarf 12044
DwarfCallFrame 4216
Fill 92
LEB 12
Relaxable 11396
% /t/clang-new -g -c sqlite3.i -w -mllvm -debug-only=mc-dump &| awk '/^[0-9]+/{s[$2]++;tot++} END{print "Total",tot; n=asorti(s, si); for(i=1;i<=n;i++) print si[i],s[si[i]]}'
Total 32287
Align 2215
Data 2312
Dwarf 12044
DwarfCallFrame 4216
Fill 92
LEB 12
Relaxable 11396
```
Pull Request: https://github.com/llvm/llvm-project/pull/148544
UGP contains the pointer for thread data:
> The TLS area is accessed at the processor level through the special
register UGP This register is set to the address one location above the
TLS area, which grows downwards from UGP.
From the Hexagon ABI spec -
https://docs.qualcomm.com/bundle/publicresource/80-N2040-23_REV_K_Qualcomm_Hexagon_Application_Binary_Interface_User_Guide.pdf
Also: disable clang-format for `NodeType` enum in
`llvm/lib/Target/Hexagon/HexagonISelLowering.h` to avoid disruptive
formatting.
Generate the saturating add instructions for sadd.sat for scalar and
vector instructions
Co-authored-by: aankit-quic <aankit@quicinc.com>
Co-authored-by: Jyotsna Verma <jverma@quicinc.com>
Add LLVM Context to getOptimalMemOpType and findOptimalMemOpLowering. So
that we can use EVT::getVectorVT to generate EVT type in
getOptimalMemOpType.
Related to [#146673](https://github.com/llvm/llvm-project/pull/146673).
Follow-up to #146307
Moved MCInst storage to MCSection, enabling trivial ~MCRelaxableFragment
and eliminating the need for a fragment walk in ~MCSection.
Updated MCRelaxableFragment::getInst to construct an MCInst on demand.
Modified MCAssembler::relaxInstruction's mayNeedRelaxation to accept
opcode and operands instead of an MCInst, avoiding redundant MCInst
creation. Note that MCObjectStreamer::emitInstructionImpl calls
mayNeedRelaxation before determining the target fragment for the MCInst.
Unfortunately, we also have to encode `MCInst::Flags` to support
the EVEX prefix, e.g. `{evex} xorw $foo, %ax`
There is a small decrease in max-rss (stage1-ReleaseLTO-g (link only))
with negligible instructions:u change.
https://llvm-compile-time-tracker.com/compare.php?from=0b533f2d9f0551aaffb13dcac8e0fd0a952185b5&to=f26b57f33bc7ccae749a57dfc841de7ce2acc2ef&stat=max-rss&linkStats=on
Next: Enable MCFragment to store fixed-size data (was MCDataFragment's job)
and optional Opcode/Operands data (was MCRelaxableFragment's job),
and delete MCDataFragment/MCRelaxableFragment.
This will allow re-encoding of Data+Relax+Data+Relax sequences as
Frag+Frag. The saving should outweigh the downside of larger
MCFragment.
Pull Request: https://github.com/llvm/llvm-project/pull/147229
This commit updates the Hexagon backend to handle vxi1 call operands
Without HVX enabled. It ensures compatibility for vector types of sizes
4, 8, 16, 32, 64, and 128 x i1 when HVX is not enabled.
The generic FK_Data_ fixup kinds handle both absolute and PC-relative
fixups. ELFObjectWriter sets IsPCRel to true for `.long foo-.`, so the
backend has to handle PC-relative FK_Data_.
However, the existence of FK_PCRel_ encouraged backends to implement it
as a separate fixup type, leading to redundant and error-prone code.
Removing FK_PCRel_ simplifies the overall fixup mechanism.
Avoid reliance on the MCAssembler::evaluateFixup workaround that checks
MCFixupKindInfo::FKF_IsPCRel. Additionally, standardize how fixups are
appended. This helper will facilitate future fixup data structure
optimizations.
Follow-up to #141333. Relocation generation called both addReloc and
applyFixup, with the default addReloc invoking shouldForceRelocation,
resulting in three virtual calls. This approach was also inflexible, as
targets needing additional data required extending
`shouldForceRelocation` (see #73721, resolved by #141311).
This change integrates relocation handling into applyFixup, eliminating
two virtual calls. The prior default addReloc is renamed to
maybeAddReloc. Targets overriding addReloc now call their customized
addReloc implementation.
To align with the majority of targets where these overrides are
out-of-line. The consistency helps the pending change that
merges addReloc and applyFixup.
This will convert loads of constant strings to immediate values. Put
this behind a flag that is enabled by default so that we can toggle it
if need be.
so that subclasses can provide the appropriate MCAsmInfo to print
MCExpr objects.
At present, llvm/utils/TableGen/AsmMatcherEmitter.cpp constucts a
generic MCAsmInfo.
There is a lot of redundant code that needs to be modified when new
Hexagon versions are added. Reduce the amount of this redundancy.
- compute ELF flags and attributes based on version feature names;
- simplify EnableHVX option handling by using arch features instead of
arch version enums;
- simplify completeHVXFeatures() by using features;
- delete several unused or redundant functions and constants:
isCPUValid, getCpu, getHexagonCPUSuffix;
- do not set HexagonArchVersion in initializeSubtargetDependencies, it
is set in ParseSubtargetFeatures;
Signed-off-by: Alexey Karyakin <akaryaki@quicinc.com>