Align DataAggregator (Linux perf and pre-aggregated profile reader) to
DataReader (fdata profile reader) behavior: set BF->RawBranchCount which
is used in profile density computation (#101094).
Reviewers: ayermolo, maksfb, dcci, rafaelauler, WenleiHe
Reviewed By: WenleiHe
Pull Request: https://github.com/llvm/llvm-project/pull/101093
For a large binary with BAT section of size 38 MB with ~170k maps,
reduces writeMaps time from 70s down to 1s.
The inefficiency was in the use of std::distance with std::map::iterator
which doesn't provide random access. Use sorted vector for lookups.
Test Plan: NFC
Reviewers: maksfb, rafaelauler, dcci, ayermolo
Reviewed By: maksfb
Pull Request: https://github.com/llvm/llvm-project/pull/112061
… segments in Elf binary.
The heuristic is improved by also taking into account that only
executable segments should contain instructions.
Fixes#109384.
Add probe inline tree information to YAML profile, at function level:
- function GUID,
- checksum,
- parent node id,
- call site in the parent.
This information is used for pseudo probe block matching (#99891).
The encoding adds/changes probe information in multiple levels of
YAML profile:
- BinaryProfile: add pseudo_probe_desc with GUIDs and Hashes, which
permits deduplication of data:
- many GUIDs are duplicate as the same callee is commonly inlined
into multiple callers,
- hashes are also very repetitive, especially for functions with
low block counts.
- FunctionProfile: add inline tree (see above). Top-level function
is included as root of function inline tree, which makes guid and
pseudo_probe_desc_hash fields redundant.
- BlockProfile: densely-encoded block probe information:
- probes reference their containing inline tree node,
- separate lists for block, call, indirect call probes,
- block probe encoding is specialized: ids are encoded as bitset
in uint64_t. If only block probe with id=1 is present, it's
encoded as implicit entry (id=0, omitted).
- inline tree nodes with identical probes share probe description
where node indices are combined into a list.
On top of #107970, profile with new probe encoding has the following
characteristics (profile for a large binary):
- Profile without probe information: 33MB, 3.8MB compressed (baseline).
- Profile with inline tree information: 92MB, 14MB compressed.
Profile processing time (YAML parsing, inference, attaching steps):
- profile without pseudo probes: 5s,
- profile with pseudo probes, without pseudo probe matching: 11s,
- with pseudo probe matching: 12.5s.
Test Plan: updated pseudoprobe-decoding-inline.test
Reviewers: wlei-llvm, ayermolo, rafaelauler, dcci, maksfb
Reviewed By: wlei-llvm, rafaelauler
Pull Request: https://github.com/llvm/llvm-project/pull/107137
The flag currently controls writing of probe information in YAML
profile. #99891 adds a separate flag to use probe information for stale
profile matching. Thus `profile-use-pseudo-probes` becomes a misnomer
and `profile-write-pseudo-probes` better captures the intent.
Reviewers: maksfb, WenleiHe, ayermolo, rafaelauler, dcci
Reviewed By: rafaelauler
Pull Request: https://github.com/llvm/llvm-project/pull/106364
This ensures forward compatibility, where old BOLT versions can consume
the profile created by newer versions with extra keys.
Test Plan: added yaml-unknown-keys.test
Replace the map from addresses to list of probes with a flat vector
containing probe references sorted by their addresses.
Reduces pseudo probe parsing time from 9.56s to 8.59s and peak RSS from
9.66 GiB to 9.08 GiB as part of perf2bolt processing a large binary.
Test Plan:
```
bin/llvm-lit -sv test/tools/llvm-profgen
```
Reviewers: maksfb, rafaelauler, dcci, ayermolo, wlei-llvm
Reviewed By: wlei-llvm
Pull Request: https://github.com/llvm/llvm-project/pull/102904
Implemented call graph function matching. First, two call graphs are
constructed for both profiled and binary functions. Then functions are
hashed based on the names of their callee/caller functions. Finally,
functions are matched based on these neighbor hashes and the
longest common prefix of their names. The `match-with-call-graph`
flag turns this matching on.
Test Plan: Added match-with-call-graph.test. Matched 164 functions
in a large binary with 10171 profiled functions.
Read pseudo probes in regular and BAT YAML profile generation, and
attach them to YAML profile basic blocks. This exposes GUID, probe id,
and probe type in profile for future use in stale profile matching.
Test Plan: updated pseudoprobe-decoding-inline.test
Reviewers: dcci, rafaelauler, ayermolo, maksfb
Reviewed By: rafaelauler
Pull Request: https://github.com/llvm/llvm-project/pull/99554
Add a BinaryFunction field for pseudo probe function GUID.
Populate it during pseudo probe section parsing, and emit it in YAML
profile (both regular and BAT), along with function checksum.
To be used for stale function matching.
Test Plan: update pseudoprobe-decoding-inline.test
Added another hash level – call hash – following opcode hash matching
for stale block matching. Call hash strings are the concatenation of the
lexicographically ordered names of each blocks’ called functions. This
change bolsters block matching in cases where some instructions have
been removed or added but calls remain constant.
Test Plan: added match-functions-with-calls-as-anchors.test.
In three-way split functions, if only .warm fragment is present, BAT
incorrectly overwrites the map for .warm fragment by empty .cold
fragment.
Test Plan: updated register-fragments-bolt-symbols.s
Moved function matching techniques into separate helper functions for
ease of understanding and to make space for additional function
matching techniques to be added (e.g. call graph function matching).
A mapping - from namespace to associated binary functions - is used to
match function profiles to binary based on the
'--name-similarity-function-matching-threshold' flag set edit distance
threshold. The flag is set to 0 (exact name matching) by default as it is
expensive, requiring the processing of all BFs.
Test Plan: Added name-similarity-function-matching.test. On a binary
with 5M functions, rewrite passes took ~520s without the flag and
~2018s with the flag set to 20.
Added flag '--match-profile-with-function-hash' to match functions
based on exact hash. After identical and LTO name matching, more
functions can be recovered for inference with exact hash, in the case
of function renaming with no functional changes. Collisions are
possible in the unlikely case where multiple functions share the same
exact hash. The flag is off by default as it requires the processing of
all binary functions and subsequently is expensive.
Test Plan: added hashing-based-function-matching.test.
Summary: Constructing an artificial sink block for the
flow CFG in stale profile inference to allow profile
inference to be run on CFGs with blocks that terminate
and have successors.
Testing Plan: Added infer_no_exits.test to verify that
functions with exit blocks with a landing pad are
covered by stale profile inference.
---------
Co-authored-by: Amir Ayupov <fads93@gmail.com>
Summary: Functions with high discrepancy
(measured by matched function blocks)
can be ignored with an added command line
argument for better performance.
Test Plan: Added
stale-matching-min-matched-block.test
---------
Co-authored-by: Amir Ayupov <aaupov@fb.com>
Removed mutability from BB::LayoutIndex, subsequently removed const from
BB::SetLayout, and changed BF::dfs to track visited blocks with a set as
opposed to tracking and altering LayoutIndexes for more consistent code.
We compute BF hashes in `YAMLProfileReader::readProfile` when first
matching profile functions with binary functions, and second time in
`YAMLProfileReader::parseFunctionProfile` during the profile assignment
(we need to do that to account for LTO private functions with
mismatching suffix).
Avoid recomputing the hash if it's been set.
Disambiguate local functions using the containing file symbol in BAT
mode. Make local function naming consistent across BAT fdata and YAML
profiles.
Test Plan: updated register-fragments-bolt-symbols.s
To align YAML and fdata profiles produced in BAT mode, lift two
restrictions applied in non-relocation mode when BAT is present:
1) register secondary entry points from ignored functions,
2) treat functions with secondary entry points as simple.
This allows constructing CFG for non-simple functions in non-relocation
mode and emitting YAML profile for them, which can then be used for
optimizations in relocation mode.
Test Plan: added test ignored-interprocedural-reference.s
YAML profile for non-simple functions without CFG is
1) useless for optimizations,
2) can't be attached, similar to fdata profile,
3) would be reported as invalid/stale even if the profile is valid.
Don't attempt to attach the profile in this case, aligning the behavior
to DataReader.
Test Plan: added yaml-non-simple.test
Align the name to its counterpart `FTInfo` which avoids name aliasing
with llvm::bolt::BranchInfo and allows to drop namespace specifier.
Test Plan: NFC
Reviewers: maksfb, rafaelauler, ayermolo, dcci
Reviewed By: dcci
Pull Request: https://github.com/llvm/llvm-project/pull/92017
Switch from FuncBranchData intermediate maps (Intra/InterIndex)
to aggregated Data, same as one used by DataReader:
e62ce1f884/bolt/lib/Profile/DataReader.cpp (L385-L389)
This aligns the order of the output between YAMLProfileWriter and
writeBATYAML.
Test Plan: updated bolt-address-translation-yaml.test
Reviewers: rafaelauler, dcci, ayermolo, maksfb
Reviewed By: ayermolo, maksfb
Pull Request: https://github.com/llvm/llvm-project/pull/91289
I'm planning to remove StringRef::equals in favor of
StringRef::operator==.
- StringRef::operator==/!= outnumber StringRef::equals by a factor of
276 under llvm-project/ in terms of their usage.
- The elimination of StringRef::equals brings StringRef closer to
std::string_view, which has operator== but not equals.
- S == "foo" is more readable than S.equals("foo"), especially for
!Long.Expression.equals("str") vs Long.Expression != "str".