Reapplying changes from https://github.com/llvm/llvm-project/pull/125638
after buildbot failures.
Buildbot failures fixed in 029e7e98dc9956086adc6c1dfb0c655a273fbee6,
latest commit on this PR. It was a problem with a declared class member
with same name as its type. Sorry!
Fixes https://github.com/llvm/llvm-project/issues/123459.
Previously, when the StackAddrEscapeChecker checked return values, it
did not scan into the structure of the return SVal. Now it does, and we
can catch some more false negatives that were already mocked out in the
tests in addition to those mentioned in
https://github.com/llvm/llvm-project/issues/123459.
The warning message at the moment for these newly caught leaks is not
great. I think they would be better if they had a better trace of why
and how the region leaks. If y'all are happy with these changes, I would
try to improve these warnings and work on normalizing this SVal checking
on the `checkEndFunction` side of the checker also.
Two of the stack address leak test cases now have two warnings, one
warning from return expression checking and another from`
checkEndFunction` `iterBindings` checking. For these two cases, I prefer
the warnings from the return expression checking, but I couldn't figure
out a way to drop the `checkEndFunction` without breaking other
`checkEndFunction` warnings that we do want. Thoughts here?
The motivating example: https://compiler-explorer.com/z/WjsxYfs43
```C++
#include <stdlib.h>
void inf_loop_break_callee() {
void* data = malloc(10);
while (1) {
(void)data; // line 3
break; // -> execution continues on line 3 ?!!
}
}
```
To correct the flow steps in this example (see the fixed version in the
added test case) I changed two things in the engine:
- Make `processCallExit` create a new StmtPoint only for return
statements. If the last non-jump statement is not a return statement,
e.g. `(void)data;`, it is no longer inserted in the exploded graph after
the function exit.
- Skip the purge program points. In the example above, purge
points are still inserted after the `break;` executes. Now, when the bug
reporter is looking for the next statement executed after the function
execution is finished, it will ignore the purge program points, so it
won't confusingly pick the `(void)data;` statement.
CPP-5778
Fix some false negatives of StackAddrEscapeChecker:
- Output parameters
```
void top(int **out) {
int local = 42;
*out = &local; // Noncompliant
}
```
- Indirect global pointers
```
int **global;
void top() {
int local = 42;
*global = &local; // Noncompliant
}
```
Note that now StackAddrEscapeChecker produces a diagnostic if a function
with an output parameter is analyzed as top-level or as a callee. I took
special care to make sure the reports point to the same primary location
and, in many cases, feature the same primary message. That is the
motivation to modify Core/BugReporter.cpp and Core/ExplodedGraph.cpp
To avoid false positive reports when a global indirect pointer is
assigned a local address, invalidated, and then reset, I rely on the
fact that the invalidation symbol will be a DerivedSymbol of a
ConjuredSymbol that refers to the same memory region.
The checker still has a false negative for non-trivial escaping via a
returned value. It requires a more sophisticated traversal akin to
scanReachableSymbols, which out of the scope of this change.
CPP-4734
---------
This is the last of the 3 stacked PRs, it must not be merged before
https://github.com/llvm/llvm-project/pull/105652 and
https://github.com/llvm/llvm-project/pull/105653
In case when the prvalue is returned from the function (kind is one
of `SimpleReturnedValueKind`, `CXX17ElidedCopyReturnedValueKind`),
then it construction happens in context of the caller.
We pass `BldrCtx` explicitly, as `currBldrCtx` will always refer to callee
context.
In the following example:
```
struct Result {int value; };
Result create() { return Result{10}; }
int accessValue(Result r) { return r.value; }
void test() {
for (int i = 0; i < 2; ++i)
accessValue(create());
}
```
In case when the returned object was constructed directly into the
argument to a function call `accessValue(create())`, this led to
inappropriate value of `blockCount` being used to locate parameter region,
and as a consequence resulting object (from `create()`) was constructed
into a different region, that was later read by inlined invocation of
outer function (`accessValue`).
This manifests itself only in case when calling block is visited more
than once (loop in above example), as otherwise there is no difference
in `blockCount` value between callee and caller context.
This happens only in case when copy elision is disabled (before C++17).
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D132030
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could expose a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
This reverts commit 7c51f02effdbd0d5e12bfd26f9c3b2ab5687c93f because it
stills breaks the LLDB tests. This was re-landed without addressing the
issue or even agreement on how to address the issue. More details and
discussion in https://reviews.llvm.org/D112374.
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could exposed a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
This reverts commit bdc6974f92304f4ed542241b9b89ba58ba6b20aa because it
breaks all the LLDB tests that import the std module.
import-std-module/array.TestArrayFromStdModule.py
import-std-module/deque-basic.TestDequeFromStdModule.py
import-std-module/deque-dbg-info-content.TestDbgInfoContentDequeFromStdModule.py
import-std-module/forward_list.TestForwardListFromStdModule.py
import-std-module/forward_list-dbg-info-content.TestDbgInfoContentForwardListFromStdModule.py
import-std-module/list.TestListFromStdModule.py
import-std-module/list-dbg-info-content.TestDbgInfoContentListFromStdModule.py
import-std-module/queue.TestQueueFromStdModule.py
import-std-module/stack.TestStackFromStdModule.py
import-std-module/vector.TestVectorFromStdModule.py
import-std-module/vector-bool.TestVectorBoolFromStdModule.py
import-std-module/vector-dbg-info-content.TestDbgInfoContentVectorFromStdModule.py
import-std-module/vector-of-vectors.TestVectorOfVectorsFromStdModule.py
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/45301/
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
Not only global variables can hold references to dead stack variables.
Consider this example:
void write_stack_address_to(char **q) {
char local;
*q = &local;
}
void test_stack() {
char *p;
write_stack_address_to(&p);
}
The address of 'local' is assigned to 'p', which becomes a dangling
pointer after 'write_stack_address_to()' returns.
The StackAddrEscapeChecker was looking for bindings in the store which
referred to variables of the popped stack frame, but it only considered
global variables in this regard. This patch relaxes this, catching
stack variable bindings as well.
---
This patch also works for temporary objects like:
struct Bar {
const int &ref;
explicit Bar(int y) : ref(y) {
// Okay.
} // End of the constructor call, `ref` is dangling now. Warning!
};
void test() {
Bar{33}; // Temporary object, so the corresponding memregion is
// *not* a VarRegion.
}
---
The return value optimization aka. copy-elision might kick in but that
is modeled by passing an imaginary CXXThisRegion which refers to the
parent stack frame which is supposed to be the 'return slot'.
Objects residing in the 'return slot' outlive the scope of the inner
call, thus we should expect no warning about them - except if we
explicitly disable copy-elision.
Reviewed By: NoQ, martong
Differential Revision: https://reviews.llvm.org/D107078
Once CFG-side support for argument construction contexts landed in r338436,
the analyzer could make use of them to evaluate argument constructors properly.
When evaluated as calls, constructors of arguments now use the variable region
of the parameter as their target. The corresponding stack frame does not yet
exist when the parameter is constructed, and this stack frame is created
eagerly.
Construction of functions whose body is unavailable and of virtual functions
is not yet supported. Part of the reason is the analyzer doesn't consistently
use canonical declarations o identify the function in these cases, and every
re-declaration or potential override comes with its own set of parameter
declarations. Also it is less important because if the function is not
inlined, there's usually no benefit in inlining the argument constructor.
Differential Revision: https://reviews.llvm.org/D49443
llvm-svn: 339745