I have to check for the sc list size being changed by the call-site
search, not just that it had more than one element.
Added a test for multiple CU's with the same name in a given module,
which would have caught this mistake.
We were also doing all the work to find call sites when the found decl
and specified decl's only difference was a column, but the incoming
specification hadn't specified a column (column number == 0).
This fixes the two test suite failures that I missed in the PR:
https://github.com/llvm/llvm-project/pull/112939
One was a poorly written test case - it assumed that on connect to a
gdb-remote with a running process, lldb MUST have fetched all the frame
0 registers. In fact, there's no need for it to do so (as the CallSite
patch showed...) and if we don't need to we shouldn't. So I fixed the
test to only expect a `g` packet AFTER calling read_registers.
The other was a place where some code had used 0 when it meant
LLDB_INVALID_LINE_NUMBER, which I had fixed but missed one place where
it was still compared to 0.
…ne stepping (#112939)"
This was breaking some gdb-remote packet counting tests on the bots. I
can't see how this patch could cause that breakage, but I'm reverting to
figure that out.
This reverts commit f14743794587db102c6d1b20f9c87a1ac20decfd.
Previously lldb didn't support setting breakpoints on call site
locations. This patch adds that ability.
It would be very slow if we did this by searching all the debug
information for every inlined subroutine record looking for a call-site
match, so I added one restriction to the call-site support. This change
will find all call sites for functions that also supply at least one
line to the regular line table. That way we can use the fact that the
line table search will move the location to that subsequent line (but
only within the same function). When we find an actually moved source
line match, we can search in the function that contained that line table
entry for the call-site, and set the breakpoint location back to that.
When I started writing tests for this new ability, it quickly became
obvious that our support for virtual inline stepping was pretty buggy.
We didn't print the right file & line number for the breakpoint, and we
didn't set the position in the "virtual inlined stack" correctly when we
hit the breakpoint. We also didn't step through the inlined frames
correctly. There was code to try to detect the right inlined stack
position, but it had been refactored a while back with the comment that
it was super confusing and the refactor was supposed to make it clearer,
but the refactor didn't work either.
That code was made much clearer by abstracting the job of "handling the
stack readjustment" to the various StopInfo's. Previously, there was a
big (and buggy) switch over stop info's. Moving the responsibility to
the stop info made this code much easier to reason about.
We also had no tests for virtual inlined stepping (our inlined stepping
test was actually written specifically to avoid the formation of a
virtual inlined stack... So I also added tests for that along with the
tests for setting the call-site breakpoints.
This is another step towards supporting DWARF5 checksums and inline
source code in LLDB. This is a reland of #85468 but without the
functional change of storing the support file from the line table (yet).
Store a SupportFile, rather than a FileSpec, in CompileUnit. This commit
works towards having the SourceManager operate on SupportFiles so that
it can (1) validate the Checksum and (2) materialize the content of
inline source information.
LLVM supports DWARF 5 linetable extension to store source files inline
in DWARF. This is particularly useful for compiler-generated source
code. This implementation tries to materialize them as temporary files
lazily, so SBAPI clients don't need to be aware of them.
rdar://110926168
CompileUnit::SetSupportFiles had two overloads, one that took and lvalue
reference and one that takes an rvalue reference. This removes both and
replaces it with an overload that takes the FileSpecList by value and
moves it into the member variable.
Because we're storing the value as a member, this covers both cases. If
the new FileSpecList was passed by lvalue reference, we'd copy it into
the member anyway. If it was passed as an rvalue reference, we'll have
created a new instance using its move and then immediately move it again
into our member. In either case the number of copies remains unchanged.
In preparation for eanbling 64bit support in LLDB switching to use llvm::formatv
instead of format MACROs.
Reviewed By: labath, JDevlieghere
Differential Revision: https://reviews.llvm.org/D139955
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Prior to this fix, if the compile unit function:
void CompileUnit::ResolveSymbolContext(const SourceLocationSpec &src_location_spec, SymbolContextItem resolve_scope, SymbolContextList &sc_list);
was called with a resolve scope that wasn't just eSymbolContextLineEntry, we would end up calling:
line_entry.range.GetBaseAddress().CalculateSymbolContext(&sc, resolve_scope);
This is ok as long as the line entry's base address is able to be resolved back to the same information, but there were problems when it didn't. The example I found was we have a file with a bad .debug_aranges section where the address to compile unit mapping was incomplete. When this happens, the above function call to calculate the symbol context would end up matching the module and it would NULL out the compile unit and line entry, which means we would fail to set this breakpoint. We have many other clients that ask for eSymbolContextEverything as the resolve_scope, so all other locations could end up failing as well.
The solutions is to make sure the compile unit matches the current compile unit after calling the calculate symbol context. If the compile unit is NULL, then we report an error via the module/debugger as this indicates an entry in the line table fails to resolve back to any compile unit. If the compile unit is not NULL and it differs from the current compile unit, we restore the current compile unit and line entry to ensure the call to .CalculateSymbolContext doesn't match something completely different, as can easily happen if LTO or other link time optimizations are enabled that could end up outlining or merging functions.
This patch allows breakpoint succeeding to work as expected and not get short circuited by our address lookup logic failing.
Differential Revision: https://reviews.llvm.org/D136207
Currently a FileSpecList::FindFileIndex(...) will only match the specified FileSpec if:
- it has filename and directory and both match exactly
- if has a filename only and any filename in the list matches
Because of this, we modify our breakpoint resolving so it can handle relative paths by doing some extra code that removes the directory from the FileSpec when searching if the path is relative.
This patch is intended to fix breakpoints so they work as users expect them to by adding the following features:
- allow matches to relative paths in the file list to match as long as the relative path is at the end of the specified path at valid directory delimiters
- allow matches to paths to match if the specified path is relative and shorter than the file paths in the list
This allows us to remove the extra logic from BreakpointResolverFileLine.cpp that added support for setting breakpoints with relative paths.
This means we can still set breakpoints with relative paths when the debug info contains full paths. We add the ability to set breakpoints with full paths when the debug info contains relative paths.
Debug info contains "./a/b/c/main.cpp", the following will set breakpoints successfully:
- /build/a/b/c/main.cpp
- a/b/c/main.cpp
- b/c/main.cpp
- c/main.cpp
- main.cpp
- ./c/main.cpp
- ./a/b/c/main.cpp
- ./b/c/main.cpp
- ./main.cpp
This also ensures that we won't match partial directory names, if a relative path is in the list or is used for the match, things must match at the directory level.
The breakpoint resolving code will now use the new FileSpecList::FindCompatibleIndex(...) function to allow this fuzzy matching to work for breakpoints.
Differential Revision: https://reviews.llvm.org/D130401
This diff introduces a new symbol on-demand which skips
loading a module's debug info unless explicitly asked on
demand. This provides significant performance improvement
for application with dynamic linking mode which has large
number of modules.
The feature can be turned on with:
"settings set symbols.load-on-demand true"
The feature works by creating a new SymbolFileOnDemand class for
each module which wraps the actual SymbolFIle subclass as member
variable. By default, most virtual methods on SymbolFileOnDemand are
skipped so that it looks like there is no debug info for that module.
But once the module's debug info is explicitly requested to
be enabled (in the conditions mentioned below) SymbolFileOnDemand
will allow all methods to pass through and forward to the actual SymbolFile
which would hydrate module's debug info on-demand.
In an internal benchmark, we are seeing more than 95% improvement
for a 3000 modules application.
Currently we are providing several ways to on demand hydrate
a module's debug info:
* Source line breakpoint: matching in supported files
* Stack trace: resolving symbol context for an address
* Symbolic breakpoint: symbol table match guided promotion
* Global variable: symbol table match guided promotion
In all above situations the module's debug info will be on-demand
parsed and indexed.
Some follow-ups for this feature:
* Add a command that allows users to load debug info explicitly while using a
new or existing command when this feature is enabled
* Add settings for "never load any of these executables in Symbols On Demand"
that takes a list of globs
* Add settings for "always load the the debug info for executables in Symbols
On Demand" that takes a list of globs
* Add a new column in "image list" that shows up by default when Symbols On
Demand is enable to show the status for each shlib like "not enabled for
this", "debug info off" and "debug info on" (with a single character to
short string, not the ones I just typed)
Differential Revision: https://reviews.llvm.org/D121631
Previously, if no column was specified, ResolveSymbolContext would take
the first match returned by FindLineEntryIndexByFileIndex, and reuse it
to find subsequent exact matches. With the introduction of columns, columns
are now considered when matching the line entries.
This leads to a problem if one wants to get all existing line entries
that match that line, since now the column is also used for the exact match.
This way, all line entries are filtered out that have a different
column number, but the same line number.
This patch changes that by ignoring the column information of the first match
if the original request of ResolveSymbolContext was also ignoring it.
Reviewed By: mib
Differential Revision: https://reviews.llvm.org/D108816
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Testcases now require Linux as it is needed for -gsplit-dwarf.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
This patch refactors a good part of the code base turning the usual
FileSpec, Line, Column, CheckInlines, ExactMatch arguments into a
SourceLocationSpec object.
This change is required for a following patch that will add handling of the
column line information when doing symbol resolution.
Differential Revision: https://reviews.llvm.org/D100965
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
SymbolFileDWARF::ResolveSymbolContext is currently unaware that in DWARF5 the primary file is specified at file index 0. As a result it misses to correctly resolve the symbol context for the primary file when DWARF5 debug data is used and the primary file is only specified at index 0.
This change makes use of CompileUnit::ResolveSymbolContext to resolve the symbol context. The ResolveSymbolContext in CompileUnit has been previously already updated to reflect changes in DWARF5
and contains a more readable version. It can resolve more, but will also do a bit more work than
SymbolFileDWARF::ResolveSymbolContext (getting the Module, and going through SymbolFileDWARF::ResolveSymbolContextForAddress), however, it's mostly directed by $resolve_scope
what will be resolved, and ensures that code is easier to maintain if there's only one path.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D98619
This patch introduces a LLDB_SCOPED_TIMER macro to hide the needlessly
repetitive creation of scoped timers in LLDB. It's similar to the
LLDB_LOG(F) macro.
Differential revision: https://reviews.llvm.org/D93663
Summary:
A *.cpp file header in LLDB (and in LLDB) should like this:
```
//===-- TestUtilities.cpp -------------------------------------------------===//
```
However in LLDB most of our source files have arbitrary changes to this format and
these changes are spreading through LLDB as folks usually just use the existing
source files as templates for their new files (most notably the unnecessary
editor language indicator `-*- C++ -*-` is spreading and in every review
someone is pointing out that this is wrong, resulting in people pointing out that this
is done in the same way in other files).
This patch removes most of these inconsistencies including the editor language indicators,
all the different missing/additional '-' characters, files that center the file name, missing
trailing `===//` (mostly caused by clang-format breaking the line).
Reviewers: aprantl, espindola, jfb, shafik, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: dexonsmith, wuzish, emaste, sdardis, nemanjai, kbarton, MaskRay, atanasyan, arphaman, jfb, abidh, jsji, JDevlieghere, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73258
Summary:
Lldb's "format-independent" debug info made use of the fact that DWARF
(<=4) did not use the file index zero, and reused the support file index
zero for storing the compile unit name.
While this provided some convenience for DWARF<=4, it meant that the PDB
plugin needed to artificially remap file indices in order to free up
index 0. Furthermore, DWARF v5 make file index 0 legal, which meant that
similar remapping would be needed in the dwarf plugin too.
What this patch does instead is remove the requirement of having the
compile unit name in the index 0. It is not that useful since the name
can always be fetched from the CompileUnit object. Remapping code in the
pdb plugin(s) has been removed or simplified.
DWARF plugin has started inserting an empty FileSpec at index 0 to
ensure the indices keep matching up (in case of DWARF<=4). For DWARF5,
we insert the file 0 from the line table.
I add a test to ensure we can correctly lookup line table entries
referencing file 0, and in particular the case where the file 0 is also
duplicated in another file entry, as this is how clang produces line
tables in some circumstances (see pr44170). Though this is probably a
bug in clang, this is not forbidden by DWARF, and lldb already has
support for that in some (but not all) cases -- this adds a test for the
code path which was not fixed in this patch.
Reviewers: clayborg, JDevlieghere, jdoerfert
Subscribers: aprantl, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70954
Summary:
The FileSpec class is often used as a sort of a pattern -- one specifies
a bare file name to search, and we check if in matches the full file
name of an existing module (for example).
These comparisons used FileSpec::Equal, which had some support for it
(via the full=false argument), but it was not a good fit for this job.
For one, it did a symmetric comparison, which makes sense for a function
called "equal", but not for typical searches (when searching for
"/foo/bar.so", we don't want to find a module whose name is just
"bar.so"). This resulted in patterns like:
if (FileSpec::Equal(pattern, file, pattern.GetDirectory()))
which would request a "full" match only if the pattern really contained
a directory. This worked, but the intended behavior was very unobvious.
On top of that, a lot of the code wanted to handle the case of an
"empty" pattern, and treat it as matching everything. This resulted in
conditions like:
if (pattern && !FileSpec::Equal(pattern, file, pattern.GetDirectory())
which are nearly impossible to decipher.
This patch introduces a FileSpec::Match function, which does exactly
what most of FileSpec::Equal callers want, an asymmetric match between a
"pattern" FileSpec and a an actual FileSpec. Empty paterns match
everything, filename-only patterns match only the filename component.
I've tried to update all callers of FileSpec::Equal to use a simpler
interface. Those that hardcoded full=true have been changed to use
operator==. Those passing full=pattern.GetDirectory() have been changed
to use FileSpec::Match.
There was also a handful of places which hardcoded full=false. I've
changed these to use FileSpec::Match too. This is a slight change in
semantics, but it does not look like that was ever intended, and it was
more likely a result of a misunderstanding of the "proper" way to use
FileSpec::Equal.
[In an ideal world a "FileSpec" and a "FileSpec pattern" would be two
different types, but given how widespread FileSpec is, it is unlikely
we'll get there in one go. This at least provides a good starting point
by centralizing all matching behavior.]
Reviewers: teemperor, JDevlieghere, jdoerfert
Subscribers: emaste, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70851
Summary:
CompileUnit is a complicated class. Having it be implicitly convertible
to a FileSpec makes reasoning about it even harder.
This patch replaces the inheritance by a simple member and an accessor
function. This avoid the need for casting in places where one needed to
force a CompileUnit to be treated as a FileSpec, and does not add much
verbosity elsewhere.
It also fixes a bug where we were wrongly comparing CompileUnit& and a
CompileUnit*, which compiled due to a combination of this inheritance
and the FileSpec*->FileSpec implicit constructor.
Reviewers: teemperor, JDevlieghere, jdoerfert
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70827
Summary:
I found the above named method hard to read because it had
a) many nested blocks,
b) one return statement at the end with some logic involved,
c) a duplicated while-loop with just small differences in it.
I decided to refactor this function by employing an early exit strategy.
In order to capture the logic in the return statement and to not have it
repeated more than once I chose to implement a very small lamda function
that captures all the variables it needs.
I also replaced the two while-loops with just one.
This is a non-functional change (NFC).
Reviewers: jdoerfert, teemperor
Reviewed By: teemperor
Subscribers: labath, teemperor, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70774
Summary:
I found the above named method hard to read because it had
a) many nested blocks and
b) one return statement at the end with some logic involved.
I decided to refactor this function by employing an early exit strategy.
In order to capture the logic in the return statement and to not have it
repeated more than once I chose to implement a very small lamda function
that captures all the variables it needs.
This is a non-functional change (NFC).
Reviewers: jdoerfert
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70774
I wanted to further simplify ParseTypeFromClangModule by replacing the
hand-rolled loop with ForEachExternalModule, and then realized that
ForEachExternalModule also had the problem of visiting the same leaf
node an exponential number of times in the worst-case. This adds a set
of searched_symbol_files set to the function as well as the ability to
early-exit from it.
Differential Revision: https://reviews.llvm.org/D70215
Performance issues lead to the libc++ std::function formatter to be disabled. We addressed some of those performance issues by adding caching see D67111
This PR fixes the first lookup performance by not using FindSymbolsMatchingRegExAndType(...) and instead finding the compilation unit the std::function wrapped callable should be in and then searching for the callable directly in the CU.
Differential Revision: https://reviews.llvm.org/D69913
Summary:
At the moment, when trying to import the `std` module in LLDB, we look at the imported modules used in the compiled program
and try to infer the Clang configuration we need from the DWARF module-import. That was the initial idea but turned out to
cause a few problems or inconveniences:
* It requires that users compile their programs with C++ modules. Given how experimental C++ modules are makes this feature inaccessible
for many users. Also it means that people can't just get the benefits of this feature for free when we activate it by default
(and we can't just close all the associated bug reports).
* Relying on DWARF's imported module tags (that are only emitted by default on macOS) means this can only be used when using DWARF (and with -glldb on Linux).
* We essentially hardcoded the C standard library paths on some platforms (Linux) or just couldn't support this feature on other platforms (macOS).
This patch drops the whole idea of looking at the imported module DWARF tags and instead just uses the support files of the compilation unit.
If we look at the support files and see file paths that indicate where the C standard library and libc++ are, we can just create the module
configuration this information. This fixes all the problems above which means we can enable all the tests now on Linux, macOS and with other debug information
than what we currently had. The only debug information specific code is now the iteration over external type module when -gmodules is used (as `std` and also the
`Darwin` module are their own external type module with their own files).
The meat of this patch is the CppModuleConfiguration which looks at the file paths from the compilation unit and then figures out the include paths
based on those paths. It's quite conservative in that it only enables modules if we find a single C library and single libc++ library. It's still missing some
test mode where we try to compile an expression before we actually activate the config for the user (which probably also needs some caching mechanism),
but for now it works and makes the feature usable.
Reviewers: aprantl, shafik, jdoerfert
Reviewed By: aprantl
Subscribers: mgorny, abidh, JDevlieghere, lldb-commits
Tags: #c_modules_in_lldb, #lldb
Differential Revision: https://reviews.llvm.org/D67760
llvm-svn: 372716
The line number table header was substantially revised in DWARF 5 and is
not fully supported by LLDB's current debug line implementation.
This patch replaces the LLDB debug line parser with its counterpart in
LLVM. This was possible because of the limited contact surface between
the code to parse the DWARF debug line section and the rest of LLDB.
We pay a small cost in terms of performance and memory usage. This is
something we plan to address in the near future.
Differential revision: https://reviews.llvm.org/D62570
llvm-svn: 368742
After the recent refactorings the SymbolVendor passthrough no longer
serve any purpose. This patch removes those methods, and updates all
callsites to go to the symbol file directly -- in most cases that just
means calling GetSymbolFile()->foo() instead of
GetSymbolVendor()->foo().
llvm-svn: 368001
There's no reason for anyone to modify a list from outside of a symbol
file (as that would break a lot of invariants that symbol files depend
on).
Make the function return a const FileSpecList and fix up a couple of
places that were needlessly binding non-const references to the result
of this function.
llvm-svn: 362069
A lot of comments in LLDB are surrounded by an ASCII line to delimit the
begging and end of the comment.
Its use is not really consistent across the code base, sometimes the
lines are longer, sometimes they are shorter and sometimes they are
omitted. Furthermore, it looks kind of weird with the 80 column limit,
where the comment actually extends past the line, but not by much.
Furthermore, when /// is used for Doxygen comments, it looks
particularly odd. And when // is used, it incorrectly gives the
impression that it's actually a Doxygen comment.
I assume these lines were added to improve distinguishing between
comments and code. However, given that todays editors and IDEs do a
great job at highlighting comments, I think it's worth to drop this for
the sake of consistency. The alternative is fixing all the
inconsistencies, which would create a lot more churn.
Differential revision: https://reviews.llvm.org/D60508
llvm-svn: 358135
This patch properly extracts the full submodule path as well as its
search paths from DWARF import decls and passes it on to the
ClangModulesDeclVendor.
rdar://problem/47970144
Differential Revision: https://reviews.llvm.org/D58090
llvm-svn: 353961
The `ap` suffix is a remnant of lldb's former use of auto pointers,
before they got deprecated. Although all their uses were replaced by
unique pointers, some variables still carried the suffix.
In r353795 I removed another auto_ptr remnant, namely redundant calls to
::get for unique_pointers. Jim justly noted that this is a good
opportunity to clean up the variable names as well.
I went over all the changes to ensure my find-and-replace didn't have
any undesired side-effects. I hope I didn't miss any, but if you end up
at this commit doing a git blame on a weirdly named variable, please
know that the change was unintentional.
llvm-svn: 353912
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636