This reverts commit 7504dd5e00f514628614db8ee07514c73220e597.
In newer review feedback it was pointed out that there is a better API for this in Process::GetCodeAddressMask().
This patch adds a getter for the process' system architecture. I went
with Process::GetSystemArchitecture to match
Platform::GetSystemArchitecture.
Differential revision: https://reviews.llvm.org/D121443
Don't overwrite the host architecture (obtained from qHostInfo) with the
process info (obtained from qProcessInfo).
Differential revision: https://reviews.llvm.org/D121442
This workaround is the source of an awkwared Process->Platform
dependency. While this could be solved in various ways (the only thing
we really use is the plugin name), it may be better to just remove it --
the workaround was added 10 years ago (43c555dfc), and the affected
debugservers were "old" even then, so hopefully they are not in use
anymore.
Differential Revision: https://reviews.llvm.org/D121305
This patch changes the return value of Platform::GetName() to a
StringRef, and uses the opportunity (compile errors) to change some
callsites to use GetPluginName() instead. The two methods still remain
hardwired to return the same thing, but this will change once the ideas
in
<https://discourse.llvm.org/t/multiple-platforms-with-the-same-name/59594>
are implemented.
Differential Revision: https://reviews.llvm.org/D119146
All current callers set the argument to false. monitor_signals=true used
to be used in the Process plugins (which needed to know when the
debugged process gets a signal), but this implementation has several
serious issues, which means that individual process plugins now
orchestrate the monitoring of debugged processes themselves.
This allows us to simplify the implementation (no need to play with
process groups), and the interface (we only catch fatal events, so the
callback is always called just once).
Differential Revision: https://reviews.llvm.org/D120425
Accept a function object instead of a raw pointer. This avoids a bunch
of boilerplate typically needed to pass arguments to the thread
functions.
Differential Revision: https://reviews.llvm.org/D120321
This reverts commit 0df522969a7a0128052bd79182c8d58e00556e2f.
Additional checks are added to fix the detection of the last memory region
in GetMemoryRegions or repeating the "memory region" command when the
target has non-address bits.
Normally you keep reading from address 0, looking up each region's end
address until you get LLDB_INVALID_ADDR as the region end address.
(0xffffffffffffffff)
This is what the remote will return once you go beyond the last mapped region:
[0x0000fffffffdf000-0x0001000000000000) rw- [stack]
[0x0001000000000000-0xffffffffffffffff) ---
Problem is that when we "fix" the lookup address, we remove some bits
from it. On an AArch64 system we have 48 bit virtual addresses, so when
we fix the end address of the [stack] region the result is 0.
So we loop back to the start.
[0x0000fffffffdf000-0x0001000000000000) rw- [stack]
[0x0000000000000000-0x0000000000400000) ---
To fix this I added an additional check for the last range.
If the end address of the region is different once you apply
FixDataAddress, we are at the last region.
Since the end of the last region will be the last valid mappable
address, plus 1. That 1 will be removed by the ABI plugin.
The only side effect is that on systems with non-address bits, you
won't get that last catch all unmapped region from the max virtual
address up to 0xf...f.
[0x0000fffff8000000-0x0000fffffffdf000) ---
[0x0000fffffffdf000-0x0001000000000000) rw- [stack]
<ends here>
Though in some way this is more correct because that region is not
just unmapped, it's not mappable at all.
No extra testing is needed because this is already covered by
TestMemoryRegion.py, I simply forgot to run it on system that had
both top byte ignore and pointer authentication.
This change has been tested on a qemu VM with top byte ignore,
memory tagging and pointer authentication enabled.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D115508
When LLVM_ENABLE_ZLIB is ON gdb-remote should link against ZLIB::ZLIB.
This fixes
```
/mnt/b/yoe/master/build/tmp/hosttools/ld: lib/liblldbPluginProcessGDBRemote.a(GDBRemoteCommunication.cpp.o): in function `lldb_private::process_gdb_remote::GDBRemoteCommunication::DecompressPacket() [clone .localalias]':
GDBRemoteCommunication.cpp:(.text._ZN12lldb_private18process_gdb_remote22GDBRemoteCommunication16DecompressPacketEv+0x59a): undefined reference to `inflateInit2_'
/mnt/b/yoe/master/build/tmp/hosttools/ld: GDBRemoteCommunication.cpp:(.text._ZN12lldb_private18process_gdb_remote22GDBRemoteCommunication16DecompressPacketEv+0x5af): undefined reference to `inflate'
```
Reviewed By: JDevlieghere, MaskRay
Differential Revision: https://reviews.llvm.org/D119186
Most of our code was including Log.h even though that is not where the
"lldb" log channel is defined (Log.h defines the generic logging
infrastructure). This worked because Log.h included Logging.h, even
though it should.
After the recent refactor, it became impossible the two files include
each other in this direction (the opposite inclusion is needed), so this
patch removes the workaround that was put in place and cleans up all
files to include the right thing. It also renames the file to LLDBLog to
better reflect its purpose.
Add Thread::GetSiginfo() and SBThread::GetSiginfo() methods to retrieve
the siginfo value from server.
Differential Revision: https://reviews.llvm.org/D118055
Add Thread::GetSiginfo() and SBThread::GetSiginfo() methods to retrieve
the siginfo value from server.
Differential Revision: https://reviews.llvm.org/D118055
This patch makes use of c++ type checking and scoped enums to make
logging statements shorter and harder to misuse.
Defines like LIBLLDB_LOG_PROCESS are replaces with LLDBLog::Process.
Because it now carries type information we do not need to worry about
matching a specific enum value with the right getter function -- the
compiler will now do that for us.
The main entry point for the logging machinery becomes the GetLog
(template) function, which will obtain the correct Log object based on
the enum type. It achieves this through another template function
(LogChannelFor<T>), which must be specialized for each type, and should
return the appropriate channel object.
This patch also removes the ability to log a message if multiple
categories are enabled simultaneously as it was unused and confusing.
This patch does not actually remove any of the existing interfaces. The
defines and log retrieval functions are left around as wrappers around
the new interfaces. They will be removed in follow-up patch.
Differential Revision: https://reviews.llvm.org/D117490
Provide minimal register definition defaults for working with servers
that implement neither target.xml nor qRegisterInfo packets. This is
useful e.g. when interacting with FreeBSD's kernel minimal gdbserver
that does not send target.xml but uses the same layout for its supported
register subset as GDB.
The prerequisite for this is the ability to determine the correct
architecture, e.g. from the target executable.
Differential Revision: https://reviews.llvm.org/D116896
Implement the qXfer:siginfo:read that is used to read the siginfo_t
(extended signal information) for the current thread. This is currently
implemented on FreeBSD and Linux.
Differential Revision: https://reviews.llvm.org/D117113
Support three new keys in the qProcessInfo response from the remote
gdb stub to handle the case of attaching to a core running some type
of standalone/firmware code and the stub knows the UUID and load
address-or-slide for the binary. There will be no proper DynamicLoader
plugin in this scenario, but we can try to locate and load the binary
into lldb at the correct offset.
Differential Revision: https://reviews.llvm.org/D116211
rdar://75191077
This reverts commit fac3f20de55769d028bd92220e74f22fa57dd4b2.
I found this has broken how we detect the last memory region in
GetMemoryRegions/"memory region" command.
When you're debugging an AArch64 system with pointer authentication,
the ABI plugin will remove the top bit from the end address of the last
user mapped area.
(lldb)
[0x0000fffffffdf000-0x0001000000000000) rw- [stack]
ABI plugin removes anything above the 48th bit (48 bit virtual addresses
by default on AArch64, leaving an address of 0.
(lldb)
[0x0000000000000000-0x0000000000400000) ---
You get back a mapping for 0 and get into an infinite loop.
Although I cannot find any mention of this in the specification, both
gdb and lldb agree on sending an initial + packet after establishing the
connection.
OTOH, gdbserver and lldb-server behavior is subtly different. While
lldb-server *expects* the initial ack, and drops the connection if it is
not received, gdbserver will just ignore a spurious ack at _any_ point
in the connection.
This patch changes lldb's behavior to match that of gdb. An ACK packet
is ignored at any point in the connection (except when expecting an ACK
packet, of course). This is inline with the "be strict in what you
generate, and lenient in what you accept" philosophy, and also enables
us to remove some special cases from the server code. I've extended the
same handling to NAK (-) packets, mainly because I don't see a reason to
treat them differently here.
(The background here is that we had a stub which was sending spurious
+ packets. This bug has since been fixed, but I think this change makes
sense nonetheless.)
Differential Revision: https://reviews.llvm.org/D114520
This code, added in rL197579 (Dec 2013) is supposed to work around what
was presumably a qemu bug, where it would send unsolicited stop-reply
packets after the initial connection.
At present, qemu does not exhibit such behavior. Also, the 10ms delay
introduced by this code is sufficient to mask bugs in other stubs, but
it is not sufficient to *reliably* mask those bugs. This resulted in
flakyness in one of our stubs, which was (incorrectly) sending a +
packet at the start of the connection, resulting in a small-but-annoying
number of dropped connections.
Differential Revision: https://reviews.llvm.org/D114529
The reworking of the gdb client tests into the PlatformClientTestBase broke
the test for this. I did the mutatis mutandis for the move, but the test
still fails. Reverting till I have time to figure out why.
This reverts commit b715b79d54d5ca2d4e8c91089b8f6a9389d9dc48.
We don't actually need a local copy of the main executable to debug
a remote process. So instead of treating "no local module" as an error,
see if the LaunchInfo has an executable it wants lldb to use, and if so
use it. Then report whatever error the remote server returns.
Differential Revision: https://reviews.llvm.org/D113521
[NFC] This patch replaces master and slave with primary and secondary
respectively when referring to pseudoterminals/file descriptors.
Reviewed By: clayborg, teemperor
Differential Revision: https://reviews.llvm.org/D113687
Fix the fill_clamp() function to handle signed source types. Make sure
that the source value is always non-negative, and cast it to unsigned
when verifying the upper bound. This fixes compiler warnings about
comparing unsigned and signed types.
Differential Revision: https://reviews.llvm.org/D113519
GDB and LLDB use different signal models. GDB uses a predefined set
of signal codes, and maps platform's signos to them. On the other hand,
LLDB has historically simply passed native signos.
In order to improve compatibility between LLDB and gdbserver, the GDB
signal model should be used. However, GDB does not provide a mapping
for all existing signals on Linux and unsupported signals are passed
as 'unknown'. Limiting LLDB to this behavior could be considered
a regression.
To get the best of both worlds, use the LLDB signal model when talking
to lldb-server, and the GDB signal model otherwise. For this purpose,
new versions of lldb-server indicate "native-signals+" via qSupported.
At the same time, we also detect older versions of lldb-server
via QThreadSuffixSupported for backwards compatibility. If neither test
succeeds, we assume gdbserver or another implementation using GDB model.
Differential Revision: https://reviews.llvm.org/D108078
From the documentation:
A Twine is not intended for use directly and should not be stored, its
implementation relies on the ability to store pointers to temporary
stack objects which may be deallocated at the end of a statement.
Twines should only be used accepted as const references in arguments,
when an API wishes to accept possibly-concatenated strings.
rdar://84799118
Differential revision: https://reviews.llvm.org/D113314
This reverts commit 5fbcf677347e38718461496d9e9e184a7a30c3fb.
ProcessDebugger is used in ProcessWindows and NativeProcessWindows.
I thought I was simplifying things by renaming to DoGetMemoryRegionInfo
in ProcessDebugger but the Native process side expects "GetMemoryRegionInfo".
Follow the pattern that WriteMemory uses. So:
* ProcessWindows::DoGetMemoryRegioninfo calls ProcessDebugger::GetMemoryRegionInfo
* NativeProcessWindows::GetMemoryRegionInfo does the same
On AArch64 we have various things using the non address bits
of pointers. This means when you lookup their containing region
you won't find it if you don't remove them.
This changes Process GetMemoryRegionInfo to a non virtual method
that uses the current ABI plugin to remove those bits. Then it
calls DoGetMemoryRegionInfo.
That function does the actual work and is virtual to be overriden
by Process implementations.
A test case is added that runs on AArch64 Linux using the top
byte ignore feature.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D102757
Fix regression in processing generic regnums that was introduced
in fa456505b80b0cf83647a1b26713e4d3b38eccc2 ("[lldb] [gdb-remote]
Refactor getting remote regs to use local vector"). Since then,
the "generic" field was wrongly interpreted as integer rather than
string constant.
Thanks to Ted Woodward for noticing and providing the correct code.
Remove the port predicate from Socket and ConnectionFileDescriptor,
and move it to gdb-remote. It is specifically relevant to the threading
used inside gdb-remote and with the new port callback API, we can
reliably move it there. While at it, switch from the custom Predicate
to std::promise/std::future.
Differential Revision: https://reviews.llvm.org/D112357
Unify the listen and connect code inside lldb-server to use
ConnectionFileDescriptor uniformly rather than a mix of it and Acceptor.
This involves:
- adding a function to map legacy values of host:port parameter
(including legacy server URLs) into CFD-style URLs
- adding a callback to return "local socket id" (i.e. UNIX socket path
or TCP port number) between listen() and accept() calls in CFD
- adding a "unix-abstract-accept" scheme to CFD
As an additional advantage, this permits lldb-server to accept any URL
known to CFD including the new serial:// scheme. Effectively,
lldb-server can now listen on the serial port. Tests for connecting
over a pty are added to test that.
Differential Revision: https://reviews.llvm.org/D111964
Add a Communication::WriteAll() that resumes Write() if the initial call
did not write all data. Use it in GDBRemoteCommunication when sending
packets in order to fix handling partial writes (i.e. just resume/retry
them rather than erring out). This fixes LLDB failures when writing
large packets to a pty.
Differential Revision: https://reviews.llvm.org/D112169
Replace bool+by-ref argument with llvm::Optional, and move the common
implementation into HostInfoPOSIX. Based on my (simple) experiment,
the uname and the sysctl approach return the same value on MacOS, so
there's no need for a mac-specific implementation of this functionality.
Differential Revision: https://reviews.llvm.org/D112457
HardcodeARMRegisters() is a hack that was supposed to be used "until
we can get an updated debugserver down on the devices". Since it was
introduced back in 2012, there is a good chance that the debugserver
has been updated at least once since then. Removing this code makes
transition to the new DynamicRegisterInfo API easier.
Differential Revision: https://reviews.llvm.org/D111491