Currently, it is not possible to find back which fun.func is the host
procedure of some internal procedure because the mangling of the
internal procedure does not contain info about the BIND(C) name of the
host.
This info may be useful to ensure dwarf DW_TAG_subprogram of internal
procedures are nested under DW_TAG_subprogram of host procedures for
instance.
These hardcoded attribute name are a leftover from the upstreaming
period when there was no way to get the attribute name without an
instance of the operation. It is since possible to do without them and
they should be removed to avoid duplication.
This PR cleanup the fir.global op of these hardcoded attribute name and
use their generated getters. Some other PRs will follow to cleanup other
operations.
Currently lowering sets the extents of assumed-size array to "undef"
which was OK as long as the value was not expected to be read.
But when interfacing with the runtime and when passing assumed-size to
assumed-rank, this last extent may be read and must be -1 as specified
in the BIND(C) case in 18.5.3 point 5.
Set this value to -1, and update all the lowering code that was looking
for an undef defining op to identify assumed-size: much safer to
propagate and use semantic info here, the previous check actually did
not work if the array was used in an internal procedure (defining op not
visible anymore).
@clementval and @agozillon, I left assumed-size extent to zero in the
acc/omp bounds op as it was, please double check that is what you want
(I can imagine -1 may create troubles here, and 0 makes some sense as it
would lead to no data transfer).
This also allows removing special cases in UBOUND/LBOUND lowering.
Also disable allocation of cray pointee. This was never intended and
would now lead to crashes with the -1 value for assumed-size cray
pointee.
Previously only a constant reference was stored in the FirOpBuilder.
However, a lot of code was merged using
FirOpBuilder builder{rewriter, getKindMapping(mod)};
This is incorrect because the KindMapping returned will go out of scope
as soon as FirOpBuilder's constructor had run. This led to an infinite
loop running some tests using HLFIR (because the stack space containing
the kind mapping was re-used and corrupted).
One solution would have just been to fix the incorrect call sites,
however, as a large number of these had already made it past review, I
decided to instead change FirOpBuilder to store its own copy of the
KindMapping. This is not costly because nearly every time we construct a
KindMapping is exclusively to construct a FirOpBuilder. To make this
common pattern simpler, I added a new constructor to FirOpBuilder which
calls getKindMapping().
Differential Revision: https://reviews.llvm.org/D151881
Assume no conflict between pointer arrays and arrays without the target
attribute, if the fact of an array not having the target attribute
can be reliably computed.
This change speeds up SPEC CPU2017/527.cam from 2.5k seconds to 880 seconds
on Icelake, and makes further performance investigation easier.
Differential Revision: https://reviews.llvm.org/D142273
Addresses and properties (bounds, length parameters) of host
variables associated in an internal procedure were all passed via
an extra tuple argument of the internal procedure.
This extra tuple is in general an overhead: it must be created and
passed, and require creating thunks when taking the address of the
internal procedure.
This patch allows not using the tuple for host global variables
(from modules, common block, or local saved variables) since they can
be instantiated from the fir.global symbol in the internal procedure
instead.
Add a fir.internal_proc attribute to mlir::FuncOp for internal procedures
so that ArrayValueCopy can still detect internal procedures even if they
do not have a tuple argument.
Differential Revision: https://reviews.llvm.org/D140288
In some cases, the base type is already a fir.box type. This patch updates
the code to set the result box type to fir.box<T>, where T is the type
of the allocated temp.
This was reported in https://github.com/llvm/llvm-project/issues/59342
Reviewed By: jeanPerier, tblah
Differential Revision: https://reviews.llvm.org/D139401
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838
The patch introduces the required changes to update the pass declarations and definitions to use the new autogenerated files and allow dropping the old infrastructure.
Reviewed By: mehdi_amini, rriddle
Differential Review: https://reviews.llvm.org/D132838
FirOpBuilder takes a fir::KindMapping reference. When the getKindMapping()
call is made inside the ctor call, the lifetime of this reference may
be as short as the ctor call (at least with when building flang in
release mode with clang 8). This can cause segfaults when later using
the FirOpBuilder.
Ensure the kindMap passed to the FirOpBuilder ctor is the same as the
FirOpBuilder.
Differential Revision: https://reviews.llvm.org/D129494
Array-value-copy fails to generate a temporary array for case like this:
subroutine bug(b)
real, allocatable :: b(:)
b = b(2:1:-1)
end subroutine
Since LHS may need to be reallocated, lowering produces the following FIR:
%rhs_load = fir.array_load %b %slice
%lhs_mem = fir.if %b_is_allocated_with_right_shape {
fir.result %b
} else {
%new_storage = fir.allocmem %rhs_shape
fir.result %new_storage
}
%lhs = fir.array_load %lhs_mem
%loop = fir.do_loop {
....
}
fir.array_merge_store %lhs, %loop to %lhs_mem
// deallocate old storage if reallocation occured,
// and update b descriptor if needed.
Since %b in array_load and %lhs_mem in array_merge_store are not the same SSA
values, array-value-copy does not detect the conflict and does not produce
a temporary array. This causes incorrect result in runtime.
The suggested change in lowering is to generate this:
%rhs_load = fir.array_load %b %slice
%lhs_mem = fir.if %b_is_allocated_with_right_shape {
%lhs = fir.array_load %b
%loop = fir.do_loop {
....
}
fir.array_merge_store %lhs, %loop to %b
fir.result %b
} else {
%new_storage = fir.allocmem %rhs_shape
%lhs = fir.array_load %new_storage
%loop = fir.do_loop {
....
}
fir.array_merge_store %lhs, %loop to %new_storage
fir.result %new_storage
}
// deallocate old storage if reallocation occured,
// and update b descriptor if needed.
Note that there are actually 3 branches in FIR, so the assignment loops
are currently produced in three copies, which is a code-size issue.
It is possible to generate just two branches with two copies of the loops,
but it is not addressed in this change-set.
Differential Revision: https://reviews.llvm.org/D129314
- Add verifiers that determine if an Op requires type parameters or
not and checks that the correct number of parameters is specified.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D128828
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
This aligns the SCF dialect file layout with the majority of the dialects.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D128049
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D127738
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Remove a backwards dependence from Optimizer -> Lower by moving Todo.h
to the optimizer and out of lowering.
This patch is part of the upstreaming effort from fir-dev branch.
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D127292
This commit restructures how TypeID is implemented to ideally avoid
the current problems related to shared libraries. This is done by changing
the "implicit" fallback path to use the name of the type, instead of using
a static template variable (which breaks shared libraries). The major downside to this
is that it adds some additional initialization costs for the implicit path. Given the
use of type names for uniqueness in the fallback, we also no longer allow types
defined in anonymous namespaces to have an implicit TypeID. To simplify defining
an ID for these classes, a new `MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID` macro
was added to allow for explicitly defining a TypeID directly on an internal class.
To help identify when types are using the fallback, `-debug-only=typeid` can be
used to log which types are using implicit ids.
This change generally only requires changes to the test passes, which are all defined
in anonymous namespaces, and thus can't use the fallback any longer.
Differential Revision: https://reviews.llvm.org/D122775
When creating an array temporary in the array copy pass, care must be
taken with allocatable components. The element components needs to be
given a clean unallocated status before being used in the assignments.
This is because assignment of allocatable components makes deep copy,
and may cause deallocation of the previous value if it was allocated.
Hence the previous allocation status cannot be let undefined.
On top of that, when cleaning-up the temp, all allocatable components
that may have been allocated must be deallocated.
This patch implements this by centralizing the code making and cleaning
array temps in ArrayValueCopy.cpp, and by calling Initialize and Destroy
runtime entry points when they are allocatable components.
Differential Revision: https://reviews.llvm.org/D121892
This patch update the array value copy pass to support fir-array_amend
and fir.array_access.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: PeteSteinfeld, schweitz
Differential Revision: https://reviews.llvm.org/D121300
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Currently, CGOps.h and FIROps.h contain `using namespace mlir;`. Every
file that includes one of these header files (directly and transitively)
will have the MLIR namespace enabled. With name-clashes within
sub-projects (LLVM and MLIR, MLIR and Flang), this is not desired. Also,
it is not possible to "un-use" a namespace once it is "used". Instead,
we should try to limit `using namespace` to implementation files (i.e.
*.cpp).
This patch removes `using namespace mlir;` from header files and adjusts
other files accordingly. In header and TableGen files, extra namespace
qualifier is added when referring to symbols defined in MLIR. Similar
approach is adopted in source files that didn't require many changes. In
files that would require a lot of changes, `using namespace mlir;` is
added instead.
Differential Revision: https://reviews.llvm.org/D120897
The last remaining operations in the standard dialect all revolve around
FuncOp/function related constructs. This patch simply handles the initial
renaming (which by itself is already huge), but there are a large number
of cleanups unlocked/necessary afterwards:
* Removing a bunch of unnecessary dependencies on Func
* Cleaning up the From/ToStandard conversion passes
* Preparing for the move of FuncOp to the Func dialect
See the discussion at https://discourse.llvm.org/t/standard-dialect-the-final-chapter/6061
Differential Revision: https://reviews.llvm.org/D120624
`kEmitAccessorPrefix_Raw ` is being removed, and so updating the
accessors to `kEmitAccessorPrefix_Prefixed`.
Reviewed By: clementval
Differential Revision: https://reviews.llvm.org/D119812
OwningRewritePatternList has been deprecated for ~10 months now, we can remove
the leftover using directives at this point.
Differential Revision: https://reviews.llvm.org/D118287
Move the Factory.h header file to flang/Optimizer/Builder.
This patch is part of the upstreaming effort from fir-dev branch.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D115801
Change dialect (and remove now redundant accessors) to generate both
form of accessors of being generated. Tried to keep this change
reasonably minimal (this also includes keeping note about not generating
getType accessor to avoid shadowing).
Differential Revision: https://reviews.llvm.org/D115420
This patch upstream the array value copy pass.
Transform the set of array value primitives to a memory-based array
representation.
The Ops `array_load`, `array_store`, `array_fetch`, and `array_update` are
used to manage abstract aggregate array values. A simple analysis is done
to determine if there are potential dependences between these operations.
If not, these array operations can be lowered to work directly on the memory
representation. If there is a potential conflict, a temporary is created
along with appropriate copy-in/copy-out operations. Here, a more refined
analysis might be deployed, such as using the affine framework.
This pass is required before code gen to the LLVM IR dialect.
This patch is part of the upstreaming effort from fir-dev branch. The
pass is bringing quite a lot of file with it.
Reviewed By: kiranchandramohan, schweitz
Differential Revision: https://reviews.llvm.org/D111337
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: V Donaldson <vdonaldson@nvidia.com>