If `__attribute__((flatten))` is used on a function, or
`[[clang::always_inline]]` on a statement, don't inline any callees with
incompatible streaming attributes. Without this check, clang may produce
incorrect code when these attributes are used in code with streaming
functions.
Note: The docs for flatten say it can be ignored when inlining is
impossible: "causes calls within the attributed function to be inlined
unless it is impossible to do so".
Similarly, the (clang-only) `[[clang::always_inline]]` statement
attribute is more relaxed than the GNU `__attribute__((always_inline))`
(which says it should error it if it can't inline), saying only "If a
statement is marked [[clang::always_inline]] and contains calls, the
compiler attempts to inline those calls.". The docs also go on to show
an example of where `[[clang::always_inline]]` has no effect.
Adds target codegen info class for DirectX. For now it always translates
`__hlsl_resource_t` handle to `target("dx.TypedBuffer", i32, 1, 0, 1)`
(`RWBuffer<int>`). More work is needed to determine the actual target
exp type and parameters based on the resource handle attributes.
Part 1/2 of #95952
Default attributes assigned to all functions according to the command
line parameters. Some functions might have their own attributes and we
need to set or remove attributes accordingly.
Tests are updated to test this scenarios too.
HLSL has a set of intangible types which are described in in the
[draft HLSL Specification
(**[Basic.types]**)](https://microsoft.github.io/hlsl-specs/specs/hlsl.pdf):
There are special implementation-defined types such as handle types,
which fall into a category of standard intangible types. Intangible
types are types that have no defined object representation or value
representation, as such the size is unknown at compile time.
A class type T is an intangible class type if it contains an base
classes or members of intangible class type, standard intangible type,
or arrays of such types. Standard intangible types and intangible class
types are collectively called intangible
types([9](https://microsoft.github.io/hlsl-specs/specs/hlsl.html#Intangible)).
This PR implements one standard intangible type `__hlsl_resource_t`
and sets up the infrastructure that will make it easier to add more
in the future, such as samplers or raytracing payload handles. The
HLSL intangible types are declared in
`clang/include/clang/Basic/HLSLIntangibleTypes.def` and this file is
included with related macro definition in most places that require edits
when a new type is added.
The new types are added as keywords and not typedefs to make sure they
cannot be redeclared, and they can only be declared in builtin implicit
headers. The `__hlsl_resource_t` type represents a handle to a memory
resource and it is going to be used in builtin HLSL buffer types like this:
template <typename T>
class RWBuffer {
[[hlsl::contained_type(T)]]
[[hlsl::is_rov(false)]]
[[hlsl::resource_class(uav)]]
__hlsl_resource_t Handle;
};
Part 1/3 of llvm/llvm-project#90631.
---------
Co-authored-by: Justin Bogner <mail@justinbogner.com>
Use this to replace the emission of the amdgpu-unsafe-fp-atomics
attribute in favor of per-instruction metadata. In the future
new fine grained controls should be introduced that also cover
the integer cases.
Add a wrapper around CreateAtomicRMW that appends the metadata,
and update a few use contexts to use it.
When `pauthtest` is either passed as environment part of AArch64 Linux
triple
or passed via `-mabi=`, enable the following ptrauth flags:
- `intrinsics`;
- `calls`;
- `returns`;
- `auth-traps`;
- `vtable-pointer-address-discrimination`;
- `vtable-pointer-type-discrimination`;
- `init-fini`.
Some related stuff is still subject to change, and the ABI itself might
be changed, so end users are not expected to use this and the ABI name
has 'test' suffix.
If `-mabi=pauthtest` option is used, it's normalized to effective
triple.
When the environment part of the effective triple is `pauthtest`, try
to use `aarch64-linux-pauthtest` as multilib directory.
The following is not supported:
- combination of `pauthtest` ABI with any branch protection scheme
except BTI;
- explicit set of environment part of the triple to a value different
from `pauthtest` in combination with `-mabi=pauthtest`;
- usage on non-Linux OS.
---------
Co-authored-by: Anatoly Trosinenko <atrosinenko@accesssoftek.com>
When using a hard-float ABI for a target without FP registers, it's not
possible to correctly generate code for functions with arguments which
must be passed in floating-point registers. This is diagnosed in CodeGen
instead of Sema, to more closely match GCC's behaviour around inline
functions, which is relied on by the Linux kernel.
Previously, this only checked function signatures as they were
code-generated, but this missed some cases:
* Calls to functions not defined in this translation unit.
* Calls through function pointers.
* Calls to variadic functions, where the variadic arguments have a
floating-point type.
This adds checks to function calls, as well as definitions, so that
these cases are correctly diagnosed.
To authenticate pointers, CodeGen needs access to the key and
discriminators that were used to sign the pointer. That information is
sometimes known from the context, but not always, which is why `Address`
needs to hold that information.
This patch adds methods and data members to `Address`, which will be
needed in subsequent patches to authenticate signed pointers, and uses
the newly added methods throughout CodeGen. Although this patch isn't
strictly NFC as it causes CodeGen to use different code paths in some
cases (e.g., `mergeAddressesInConditionalExpr`), it doesn't cause any
changes in functionality as it doesn't add any information needed for
authentication.
In addition to the changes mentioned above, this patch introduces class
`RawAddress`, which contains a pointer that we know is unsigned, and
adds several new functions for creating `Address` and `LValue` objects.
This reapplies d9a685a9dd589486e882b722e513ee7b8c84870c, which was
reverted because it broke ubsan bots. There seems to be a bug in
coroutine code-gen, which is causing EmitTypeCheck to use the wrong
alignment. For now, pass alignment zero to EmitTypeCheck so that it can
compute the correct alignment based on the passed type (see function
EmitCXXMemberOrOperatorMemberCallExpr).
To authenticate pointers, CodeGen needs access to the key and
discriminators that were used to sign the pointer. That information is
sometimes known from the context, but not always, which is why `Address`
needs to hold that information.
This patch adds methods and data members to `Address`, which will be
needed in subsequent patches to authenticate signed pointers, and uses
the newly added methods throughout CodeGen. Although this patch isn't
strictly NFC as it causes CodeGen to use different code paths in some
cases (e.g., `mergeAddressesInConditionalExpr`), it doesn't cause any
changes in functionality as it doesn't add any information needed for
authentication.
In addition to the changes mentioned above, this patch introduces class
`RawAddress`, which contains a pointer that we know is unsigned, and
adds several new functions for creating `Address` and `LValue` objects.
This reapplies 8bd1f9116aab879183f34707e6d21c7051d083b6. The commit
broke msan bots because LValue::IsKnownNonNull was uninitialized.
To authenticate pointers, CodeGen needs access to the key and
discriminators that were used to sign the pointer. That information is
sometimes known from the context, but not always, which is why `Address`
needs to hold that information.
This patch adds methods and data members to `Address`, which will be
needed in subsequent patches to authenticate signed pointers, and uses
the newly added methods throughout CodeGen. Although this patch isn't
strictly NFC as it causes CodeGen to use different code paths in some
cases (e.g., `mergeAddressesInConditionalExpr`), it doesn't cause any
changes in functionality as it doesn't add any information needed for
authentication.
In addition to the changes mentioned above, this patch introduces class
`RawAddress`, which contains a pointer that we know is unsigned, and
adds several new functions for creating `Address` and `LValue` objects.
This is re-working of #74460, which adds a soft-float ABI for AArch64.
That was reverted because it causes errors when building the linux and
fuchsia kernels.
The problem is that GCC's implementation of the ABI compatibility checks
when using the hard-float ABI on a target without FP registers does it's
checks after optimisation. The previous version of this patch reported
errors for all uses of floating-point types, which is stricter than what
GCC does in practice.
This changes two things compared to the first version:
* Only check the types of function arguments and returns, not the types
of other values. This is more relaxed than GCC, while still guaranteeing
ABI compatibility.
* Move the check from Sema to CodeGen, so that inline functions are only
checked if they are actually used. There are some cases in the linux
kernel which depend on this behaviour of GCC.
This adds support for the AArch64 soft-float ABI. The specification for
this ABI was added by https://github.com/ARM-software/abi-aa/pull/232.
Because all existing AArch64 hardware has floating-point hardware, we
expect this to be a niche option, only used for embedded systems on
R-profile systems. We are going to document that SysV-like systems
should only ever use the base (hard-float) PCS variant:
https://github.com/ARM-software/abi-aa/pull/233. For that reason, I've
not added an option to select the ABI independently of the FPU hardware,
instead the new ABI is enabled iff the target architecture does not have
an FPU.
For testing, I have run this through an ABI fuzzer, but since this is
the first implementation it can only test for internal consistency
(callers and callees agree on the PCS), not for conformance to the ABI
spec.
This commit includes the necessary changes to clang and LLVM to support
codegen of `RVE` and the `ilp32e`/`lp64e` ABIs.
The differences between `RVE` and `RVI` are:
* `RVE` reduces the integer register count to 16(x0-x16).
* The ABI should be `ilp32e` for 32 bits and `lp64e` for 64 bits.
`RVE` can be combined with all current standard extensions.
The central changes in ilp32e/lp64e ABI, compared to ilp32/lp64 are:
* Only 6 integer argument registers (rather than 8).
* Only 2 callee-saved registers (rather than 12).
* A Stack Alignment of 32bits (rather than 128bits).
* ilp32e isn't compatible with D ISA extension.
If `ilp32e` or `lp64` is used with an ISA that has any of the registers
x16-x31 and f0-f31, then these registers are considered temporaries.
To be compatible with the implementation of ilp32e in GCC, we don't use
aligned registers to pass variadic arguments and set stack alignment\
to 4-bytes for types with length of 2*XLEN.
FastCC is also supported on RVE, while GHC isn't since there is only one
avaiable register.
Differential Revision: https://reviews.llvm.org/D70401
Update DeviceRTL and the AMDGPU plugin to support code
object version 5. Default is code object version 4.
CodeGen for __builtin_amdgpu_workgroup_size generates code
for cov4 as well as cov5 if -mcode-object-version=none
is specified. DeviceRTL compilation passes this argument
via Xclang option to generate abi-agnostic code.
Generated code for the above builtin uses a clang
control constant "llvm.amdgcn.abi.version" to branch on
the abi version, which is available during linking of
user's OpenMP code. Load of this constant gets eliminated
during linking.
AMDGPU plugin queries the ELF for code object version
and then prepares various implicitargs accordingly.
Differential Revision: https://reviews.llvm.org/D139730
Reviewed By: jhuber6, yaxunl
Wrap calls to XXXTargetCodeGenInfo constructors into factory functions.
This allows moving implementations of TargetCodeGenInfo to dedicated cpp
files without a change.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D150215
Make `qualifyWindowsLibrary` and `addStackProbeTargetAttributes`
protected members of `TargetCodeGenInfo`.
These are helper functions used by `getDependentLibraryOption` and
`setTargetAttributes` methods when targeting Windows. The change will
allow these functions to be reused after splitting `TargetInfo.cpp`.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D150178
Remove `getABIInfo` overrides returning references to target-specific
implementations of `ABIInfo`.
The methods may be convenient, but they are only used in one place and
prevent from `ABIInfo` implementations from being put into anonymous
namespaces in different cpp files.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D148092
The current implementation of -fsanitize=function places two words (the prolog
signature and the RTTI proxy) at the function entry, which makes the feature
incompatible with Intel Indirect Branch Tracking (IBT) that needs an ENDBR instruction
at the function entry. To allow the combination, move the two words before the
function entry, similar to -fsanitize=kcfi.
Armv8.5 Branch Target Identification (BTI) has a similar requirement.
Note: for IBT and BTI, whether a function gets a marker instruction at the entry
generally cannot be assumed (it can be disabled by a function attribute or
stronger LTO optimizations).
It is extremely unlikely for two words preceding a function entry to be
inaccessible. One way to achieve this is by ensuring that a function is
aligned at a page boundary and making the preceding page unmapped or
unreadable. This is not reasonable for application or library code.
(Think: the first text section has crt* code not instrumented by
-fsanitize=function.)
We use 0xc105cafe for all targets. .long 0xc105cafe disassembles to invalid
instructions on all architectures I have tested, except Power where it is
`lfs 8, -13570(5)` (Load Floating-Point with a weird offset, unlikely to be used in real code).
---
For the removed function in AsmPrinter.cpp, remove an assert: `mdconst::extract`
already asserts non-nullness.
For compiler-rt/test/ubsan/TestCases/TypeCheck/Function/function.cpp,
when the function doesn't have prolog/epilog (-O1 and above), after moving the two words,
the address of the function equals the address of ret instruction,
so symbolizing the function will additionally get a non-zero column number.
Adjust the test to allow an optional column number.
```
.long 3238382334
.long .L__llvm_rtti_proxy-_Z1fv
_Z1fv: // symbolizing here retrieves the line table entry from the second .loc
.file 0 ...
.loc 0 1 0
.cfi_startproc
.loc 0 2 1 prologue_end
retq
```
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D148665
Consider the following sturctures when targetting:
struct foo {
int space[4];
char a : 8;
char b : 8;
char x : 8;
char y : 8;
};
struct bar {
int space[4];
char a : 8;
char b : 8;
char : 0;
char x : 8;
char y : 8;
};
Even if both structs have the same layout in memory, they are handled
differenlty by the AMDGPU ABI.
With the following code:
// clang --target=amdgcn-amd-amdhsa -g -O1 example.c -S
char use_foo(struct foo f) { return f.y; }
char use_bar(struct bar b) { return b.y; }
For use_foo, the 'y' field is passed in v4
; v_ashrrev_i32_e32 v0, 24, v4
; s_setpc_b64 s[30:31]
For use_bar, the 'y' field is passed in v5
; v_bfe_i32 v0, v5, 8, 8
; s_setpc_b64 s[30:31]
To make this distinction, we record a single 0-size bitfield for every member that is preceded
by it.
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D144870
This is the funcref counterpart to 890146b. We introduce a new attribute
that marks a function pointer as a funcref. It also implements builtin
__builtin_wasm_ref_null_func(), that returns a null funcref value.
Differential Revision: https://reviews.llvm.org/D128440
This patch introduces a new type __externref_t that denotes a WebAssembly opaque
reference type. It also implements builtin __builtin_wasm_ref_null_extern(),
that returns a null value of __externref_t. This lays the ground work
for further builtins and reference types.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D122215
This patch introduces a new type __externref_t that denotes a WebAssembly opaque
reference type. It also implements builtin __builtin_wasm_ref_null_extern(),
that returns a null value of __externref_t. This lays the ground work
for further builtins and reference types.
Differential Revision: https://reviews.llvm.org/D122215
Swift calling conventions stands out in the way that they are lowered in
mostly target-independent manner, with very few customization points.
As such, swift-related methods of ABIInfo do not reference the rest of
ABIInfo and vice versa.
This change follows interface segregation principle; it removes
dependency of SwiftABIInfo on ABIInfo. Targets must now implement
SwiftABIInfo separately if they support Swift calling conventions.
Almost all targets implemented `shouldPassIndirectly` the same way. This
de-facto default implementation has been moved into the base class.
`isSwiftErrorInRegister` used to be virtual, now it is not. It didn't
accept any arguments which could have an effect on the returned value.
This is now a static property of the target ABI.
Reviewed By: rusyaev-roman, inclyc
Differential Revision: https://reviews.llvm.org/D130394
In LLVM IR terms the ACLE type 'data512_t' is essentially an aggregate
type { [8 x i64] }. When emitting code for inline assembly operands,
clang tries to scalarize aggregate types to an integer of the equivalent
length, otherwise it passes them by-reference. This patch adds a target
hook to tell whether a given inline assembly operand is scalarizable
so that clang can emit code to pass/return it by-value.
Differential Revision: https://reviews.llvm.org/D94098
The recent commit 00a6254 "Stop traping on sNaN in builtin_isnan" changed the
lowering in constrained FP mode of builtin_isnan from an FP comparison to
integer operations to avoid trapping.
SystemZ has a special instruction "Test Data Class" which is the preferred
way to do this check. This patch adds a new target hook "testFPKind()" that
lets SystemZ emit the s390_tdc intrinsic instead.
testFPKind() takes the BuiltinID as an argument and is expected to soon
handle more opcodes than just 'builtin_isnan'.
Review: Thomas Preud'homme, Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D96568
notail on x86-64
This is needed because the epilogue code inserted before tail calls on
x86-64 breaks the handshake between the caller and callee.
Calls to objc_retainAutoreleasedReturnValue used to have the same
problem, which was fixed in https://reviews.llvm.org/D59656.
rdar://problem/66029552
Differential Revision: https://reviews.llvm.org/D84540
The x86-64 "avx" feature changes how >128 bit vector types are passed,
instead of being passed in separate 128 bit registers, they can be
passed in 256 bit registers.
"avx512f" does the same thing, except it switches from 256 bit registers
to 512 bit registers.
The result of both of these is an ABI incompatibility between functions
compiled with and without these features.
This patch implements a warning/error pair upon an attempt to call a
function that would run afoul of this. First, if a function is called
that would have its ABI changed, we issue a warning.
Second, if said call is made in a situation where the caller and callee
are known to have different calling conventions (such as the case of
'target'), we instead issue an error.
Differential Revision: https://reviews.llvm.org/D82562
EmitTargetMetadata passed to emitTargetMD a null pointer as returned
from GetGlobalValue, for an unused inline function which has been
removed from the module at that point.
A FIXME in CodeGenModule.cpp commented that the calling code in
EmitTargetMetadata should be moved into the one target that needs it
(XCore). A review comment agreed. So the calling loop has been moved
into the XCore subclass. The check for null is done in that loop.
Differential Revision: https://reviews.llvm.org/D77068
Use unique_ptr to manage the lifetime of ABIInfo member inside TargetCodeGenInfo.
Reviewed By: hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D79033
This reverts commit 6a9ad5f3f4ac66f0cae592e911f4baeb6ee5eca6.
The patch breaks CUDA copmilation.
Differential Revision: https://reviews.llvm.org/D76365
Summary:
- Even though the bindless surface/texture interfaces are promoted,
there are still code using surface/texture references. For example,
[PR#26400](https://bugs.llvm.org/show_bug.cgi?id=26400) reports the
compilation issue for code using `tex2D` with texture references. For
better compatibility, this patch proposes the support of
surface/texture references.
- Due to the absent documentation and magic headers, it's believed that
`nvcc` does use builtins for texture support. From the limited NVVM
documentation[^nvvm] and NVPTX backend texture/surface related
tests[^test], it's believed that surface/texture references are
supported by replacing their reference types, which are annotated with
`device_builtin_surface_type`/`device_builtin_texture_type`, with the
corresponding handle-like object types, `cudaSurfaceObject_t` or
`cudaTextureObject_t`, in the device-side compilation. On the host
side, that global handle variables are registered and will be
established and updated later when corresponding binding/unbinding
APIs are called[^bind]. Surface/texture references are most like
device global variables but represented in different types on the host
and device sides.
- In this patch, the following changes are proposed to support that
behavior:
+ Refine `device_builtin_surface_type` and
`device_builtin_texture_type` attributes to be applied on `Type`
decl only to check whether a variable is of the surface/texture
reference type.
+ Add hooks in code generation to replace that reference types with
the correponding object types as well as all accesses to them. In
particular, `nvvm.texsurf.handle.internal` should be used to load
object handles from global reference variables[^texsurf] as well as
metadata annotations.
+ Generate host-side registration with proper template argument
parsing.
---
[^nvvm]: https://docs.nvidia.com/cuda/pdf/NVVM_IR_Specification.pdf
[^test]: https://raw.githubusercontent.com/llvm/llvm-project/master/llvm/test/CodeGen/NVPTX/tex-read-cuda.ll
[^bind]: See section 3.2.11.1.2 ``Texture reference API` in [CUDA C Programming Guide](https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf).
[^texsurf]: According to NVVM IR, `nvvm.texsurf.handle` should be used. But, the current backend doesn't have that supported. We may revise that later.
Reviewers: tra, rjmccall, yaxunl, a.sidorin
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76365
Pass NULL to pointer arg of __cxa_atexit if addr space
is not matching with its param. This doesn't align yet
with how dtors are generated that should be changed too.
Differential Revision: https://reviews.llvm.org/D62413
llvm-svn: 366059
with notail on x86-64.
On x86-64, the epilogue code inserted before the tail jump blocks the
autoreleased return optimization.
rdar://problem/38675807
Differential Revision: https://reviews.llvm.org/D59656
llvm-svn: 356705
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Currently clang set kernel calling convention for CUDA/HIP after
arranging function, which causes incorrect kernel function type since
it depends on calling convention.
This patch moves setting kernel convention before arranging
function.
Differential Revision: https://reviews.llvm.org/D47733
llvm-svn: 334457
Some targets need special LLVM calling convention for CUDA kernel.
This patch does that through a TargetCodeGenInfo hook.
It only affects amdgcn target.
Patch by Greg Rodgers.
Revised and lit tests added by Yaxun Liu.
Differential Revision: https://reviews.llvm.org/D45223
llvm-svn: 330447
Found via codespell -q 3 -I ../clang-whitelist.txt
Where whitelist consists of:
archtype
cas
classs
checkk
compres
definit
frome
iff
inteval
ith
lod
methode
nd
optin
ot
pres
statics
te
thru
Patch by luzpaz! (This is a subset of D44188 that applies cleanly with a few
files that have dubious fixes reverted.)
Differential revision: https://reviews.llvm.org/D44188
llvm-svn: 329399