I have no idea what's going on here. This code was moved
around/introduced in change cb26b01d57f5 and starts crashing with a NULL
dereference once I apply https://reviews.llvm.org/D123090. I assume that
I've unwittingly taught the attributor enough that it's able to do more
clever things than in the past, and it's able to trip on this case. I
make no claims about the correctness of this patch, but it passes tests
and seems to fix all the crashes I've been seeing.
Differential Revision: https://reviews.llvm.org/D129589
It is illegal to merge two `llvm.coro.save` calls unless their
`llvm.coro.suspend` users are also merged. Marks it "nomerge" for
the moment.
This reverts D129025.
Alternative to D129025, which affects other token type users like WinEH.
Reviewed By: ChuanqiXu
Differential Revision: https://reviews.llvm.org/D129530
When calculating the cost of Instruction::Br in getInstructionCost
we query PredicatedBBsAfterVectorization to see if there is a
scalar predicated block. However, this meant that the decisions
being made for a given fixed-width VF were affecting the cost for a
scalable VF. As a result we were returning InstructionCost::Invalid
pointlessly for a scalable VF that should have a low cost. I
encountered this for some loops when enabling tail-folding for
scalable VFs.
Test added here:
Transforms/LoopVectorize/AArch64/sve-tail-folding-cost.ll
Differential Revision: https://reviews.llvm.org/D128272
When performing a !nonnull load from uninitialized memory, we
should preserve the nonnull assume just like in all other cases.
We already do this correctly in the generic mem2reg code, but
don't handle this case when using the optimized single-block
implementation.
Make sure that the optimized implementation exhibits the same
behavior as the generic implementation.
Currently, for vectorised loops that use the get.active.lane.mask
intrinsic we only use the mask for predicated vector operations,
such as masked loads and stores, etc. The loop itself is still
controlled by comparing the canonical induction variable with the
trip count. However, for some targets this is inefficient when it's
cheap to use the mask itself to control the loop.
This patch adds support for using the active lane mask for control
flow by:
1. Generating the active lane mask for the next iteration of the
vector loop, rather than the current one. If there are still any
remaining iterations then at least the first bit of the mask will
be set.
2. Extract the first bit of this mask and use this bit for the
conditional branch.
I did this by creating a new VPActiveLaneMaskPHIRecipe that sets
up the initial PHI values in the vector loop pre-header. I've also
made use of the new BranchOnCond VPInstruction for the final
instruction in the loop region.
Differential Revision: https://reviews.llvm.org/D125301
This patch is a simple piece of refactoring that now permits users
to create VPInstructions and specify the name of the value being
generated. This is useful for creating more readable/meaningful
names in IR.
Differential Revision: https://reviews.llvm.org/D128982
Since the backend's codegen is capable to expand powi into fmul's, it
is not needed anymore to do so in the ::optimizePow() function of
SimplifyLibCalls.cpp. What is sufficient is to always turn pow(x, n)
into powi(x, n) for the cases where n is a constant integer value.
Dropping the current expansion code allowed relaxation of the folding
conditions and now this can also happen at optimization levels below
Ofast.
The added CodeGen/AArch64/powi.ll test case ensures that powi is
actually expanded into fmul's, confirming that this refactor did not
cause any performance degradation.
Following an idea proposed by David Sherwood <david.sherwood@arm.com>.
Differential Revision: https://reviews.llvm.org/D128591
Avoid calling ConstantExpr::get() for associative/commutative
binops, call ConstantFoldBinaryOpOperands() instead. We only
want to perform the reassociation of the constants actually fold.
Replace ConstantExpr:getFAdd etc with call to
ConstantFoldBinaryOpOperands(). I'm using the constant folding API
rather than IRBuilder here to ensure that this does actually
constant fold. These transforms don't use m_ImmConstant(), so this
would not otherwise be guaranteed (and apparently, they can't use
m_ImmConstant because they want to handle scalable vector splats).
There is an opportunity here to further migrate these to the
ConstantFoldFPInstOperands() API, which would respect the denormal
mode. I've held off on doing so here, because some of this code
explicitly checks for denormal results, and I don't want to touch
it in a mostly NFC change.
Since we can't change the destination of indirectbr, so when
encounter indirectbr as PredPredBB terminator, we should pass it.
Differential Revision: https://reviews.llvm.org/D129193
After D129205, we support SplitBlockPredecessors() for predecessors
with callbr terminators. This means that it is now also safe to
invoke critical edge splitting for an edge coming from a callbr
terminator. Remove checks in various passes that were protecting
against that.
Differential Revision: https://reviews.llvm.org/D129256
This reverts commit f17639ea0cd30f52ac853ba2eb25518426cc3bb8 as three
AMDGPU tests haven't been updated. Will need to verify the changes are
not regressions we should avoid.
For the longest time we used `AAValueSimplify` and
`genericValueTraversal` to determine "potential values". This was
problematic for many reasons:
- We recomputed the result a lot as there was no caching for the 9
locations calling `genericValueTraversal`.
- We added the idea of "intra" vs. "inter" procedural simplification
only as an afterthought. `genericValueTraversal` did offer an option
but `AAValueSimplify` did not. Thus, we might end up with "too much"
simplification in certain situations and then gave up on it.
- Because `genericValueTraversal` was not a real `AA` we ended up with
problems like the infinite recursion bug (#54981) as well as code
duplication.
This patch introduces `AAPotentialValues` and replaces the
`AAValueSimplify` uses with it. `genericValueTraversal` is folded into
`AAPotentialValues` as are the instruction simplifications performed in
`AAValueSimplify` before. We further distinguish "intra" and "inter"
procedural simplification now.
`AAValueSimplify` was not deleted as we haven't ported the
re-materialization of instructions yet. There are other differences over
the former handling, e.g., we may not fold trivially foldable
instructions right now, e.g., `add i32 1, 1` is not folded to `i32 2`
but if an operand would be simplified to `i32 1` we would fold it still.
We are also even more aware of function/SCC boundaries in CGSCC passes,
which is good even if some tests look like they regress.
Fixes: https://github.com/llvm/llvm-project/issues/54981
Note: A previous version was flawed and consequently reverted in
6555558a80589d1c5a1154b92cc3af9495f8f86c.
We recently learned to place the alloca during the heap2stack
transformation in the entry block but we did not account for other
concurrent modifications. We need to record our decision rather than
checking (then outdated) passes during the manifest stage. This will
also allow us to use a custom (=optimistic) "loop info" in the future.
This way it can be reused easily in D128387.
Note this changes the IR slightly. Before The steps for calculating and storing the frame record info were:
1. getPC
2. getSP
3. inttoptr
4. or SP, PC
5. store
Now the steps are:
1. getPC
2. getSP
3. or SP, PC
4. inttoptr
5. store
Differential Revision: https://reviews.llvm.org/D129315
Enhance memchr and strchr handling to simplify calls to the functions
used in equality expressions with the first argument to at most two
integer comparisons:
- memchr(A, C, N) == A to N && *A == C for either a dereferenceable
A or a nonzero N,
- strchr(S, C) == S to *S == C for any S and C, and
- strchr(S, '\0') == 0 to true for any S
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D128939
Fix bug exposed by https://reviews.llvm.org/D125990
rewriteLoopExitValues calls InductionDescriptor::isInductionPHI which requires
the PHI node to have an incoming edge from the loop preheader. This adds checks
before calling InductionDescriptor::isInductionPHI to see that the loop has a
preheader. Also did some refactoring.
Differential Revision: https://reviews.llvm.org/D129297
The 'and (sext (ashr X, ShiftC)), C' --> 'lshr (sext X), ShiftC'
transformation would access out of bounds bits in APInt::getLowBitsSet
if the shift count was larger than X's bit width or if it was negative.
Fixes#56424
This patchs adds a new metadata kind `exclude` which implies that the
global variable should be given the necessary flags during code
generation to not be included in the final executable. This is done
using the ``SHF_EXCLUDE`` flag on ELF for example. This should make it
easier to specify this flag on a variable without needing to explicitly
check the section name in the target backend.
Depends on D129053 D129052
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D129151
Currently we use the `embedBufferInModule` function to store binary
strings containing device offloading data inside the host object to
create a fatbinary. In the case of LTO, we need to extract this object
from the LLVM-IR. This patch adds a metadata node for the embedded
objects containing the embedded pointers and the sections they were
stored at. This should create a cleaner interface for identifying these
values.
In the future it may be worthwhile to also encode an `ID` in the
metadata corresponding to the object's special section type if relevant.
This would allow us to extract the data from an object file and LLVM-IR
using the same ID.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D129033
Now that removeDeadRecipes can remove most dead recipes across a whole
VPlan, there is no need to first collect some dead instructions.
Instead removeDeadRecipes can simply clean them up.
Depends D127580.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D128408
SplitBlockPredecessors currently asserts if one of the predecessor
terminators is a callbr. This limitation was originally necessary,
because just like with indirectbr, it was not possible to replace
successors of a callbr. However, this is no longer the case since
D67252. As the requirement nowadays is that callbr must reference
all blockaddrs directly in the call arguments, and these get
automatically updated when setSuccessor() is called, we no longer
need this limitation.
The only thing we need to do here is use replaceSuccessorWith()
instead of replaceUsesOfWith(), because only the former does the
necessary blockaddr updating magic.
I believe there's other similar limitations that can be removed,
e.g. related to critical edge splitting.
Differential Revision: https://reviews.llvm.org/D129205
This can enable additional region merging, while not losing
opportunities as region merging does not produce dead recipes.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D128831
Previously the scope of debug type of __coro_frame is limited in the
current function. It looked good at the first sight. But it prevent us
to print the type in splitted functions and other functions. Also the
debug type is different for different coroutine functions. So it makes
sense to rename the debug type to make it related to the function name.
After this patch, we could access the coroutine frame type in a function
by `function_name.coro_frame_ty`.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D127623
Debugify in OriginalDebugInfo mode, introduced with D82545,
runs only with legacy PassManager.
This patch enables this utility for the NewPM.
Differential Revision: https://reviews.llvm.org/D115351
This patch adds the support for `fmax` and `fmin` operations in `atomicrmw`
instruction. For now (at least in this patch), the instruction will be expanded
to CAS loop. There are already a couple of targets supporting the feature. I'll
create another patch(es) to enable them accordingly.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D127041
This addresses the assertion failure reported in
https://reviews.llvm.org/D124159#3631240.
I believe that this limitation in SplitBlockPredecessors is not
actually necessary (because unlike with indirectbr, callbr is
restricted in a way that does allow updating successors), but for
now fix the assertion failure the same way we do everywhere else,
by also skipping callbr.
Currently, LLVM doesn't have the correct shadow offset
mapping for the n32 ABI.
This patch introduces the correct shadow offset value
for the n32 ABI - 1ULL << 29.
Differential Revision: https://reviews.llvm.org/D127096
As constant expressions can no longer trap, it only makes sense to
call isSafeToSpeculativelyExecute on Instructions, so limit the
API to accept only them, rather than general Operators or Values.
As integer div/rem constant expressions are no longer supported,
constants can no longer trap and are always safe to speculate.
Remove the Constant::canTrap() method and its usages.