Nowdays we have a generic constant folding API to load a type from
an offset. It should be able to do anything that VNCoercion can do.
This avoids the weird templating between IRBuilder and ConstantFolder
in one function, which is will stop working as the IRBuilderFolder
moves from CreateXYZ to FoldXYZ APIs.
Unfortunately, this doesn't eliminate this pattern from VNCoercion
entirely yet.
At the moment LoopVersioning is only created for inner-loop
vectorization. This patch moves it to LVP::execute, which means it will
also be added for epilogue vectorization. As a consequence, the proper
noalias metadata is now also added to epilogue vector loops.
LVer will be moved to VPTransformState as follow-up.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D127966
The assert was added with 0399473de886595d and is correct for that
pattern, but it is off-by-1 with the enhancement in d4f39d833332.
The transforms are still correct with the new pre-condition:
https://alive2.llvm.org/ce/z/6_6ghmhttps://alive2.llvm.org/ce/z/_GTBUt
And as shown in the new test, the transform is expected with
'ult' - in that case, the icmp reduces to test if the shift
amount is 0.
For instructions that don't need any special handling, use
ConstantFoldInstOperands(), rather than re-implementing individual
cases.
This is probably not NFC because it can handle cases the previous
code missed (e.g. vector operations).
Support compares in ConstantFoldInstOperands(), instead of
forcing the use of ConstantFoldCompareInstOperands(). Also handle
insertvalue (extractvalue was already handled).
This removes a footgun, where many uses of ConstantFoldInstOperands()
need a separate check for compares beforehand. It's particularly
insidious if called on a constant expression, because it doesn't
fail in that case, but will just not do DL-dependent folding.
In some cases, there may be widened users of inductions even though the
plan includes the scalar VF. In those cases, make sure we still replace
the VPWidenIntOrFpInductionRecipe with scalar steps, as otherwise we may
try to execute a VPWidenIntOrFpInductionRecipe with a scalar VF.
Alternatively the patch could also split the range if needed.
This fixes a crash exposed by D123720.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D128755
Currently, we only remove dead blocks and non-feasible edges in
IPSCCP, but not in SCCP. I'm not aware of any strong reason for
that difference, so this patch updates SCCP to perform the CFG
cleanup as well.
Compile-time impact seems to be pretty minimal, in the 0.05%
geomean range on CTMark.
For the test case from https://reviews.llvm.org/D126962#3611579
the result after -sccp now looks like this:
define void @test(i1 %c) {
entry:
br i1 %c, label %unreachable, label %next
next:
unreachable
unreachable:
call void @bar()
unreachable
}
-jump-threading does nothing on this, but -simplifycfg will produce
the optimal result.
Differential Revision: https://reviews.llvm.org/D128796
enabled
The C++20 Coroutines couldn't be compiled to WebAssembly due to an
optimization named symmetric transfer requires the support for musttail
calls but WebAssembly doesn't support it yet.
This patch tries to fix the problem by adding a supportsTailCalls
method to TargetTransformImpl to skip the symmetric transfer when
tail-call feature is not supported.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D128794
ConnectProlog adds new incoming values to exit phi nodes which can
change the SCEV for the phi after 20d798bd47ec51.
Fix is analog to cfc741bc0e029.
Fixes#56286.
ConnectEpilog adds new incoming values to exit phi nodes which can
change the SCEV for the phi after 20d798bd47ec51.
Fix is analog to cfc741bc0e029.
Fixes#56282.
This is the 'ugt' sibling to:
0399473de886595d
Decrement the input compare constant (and implicitly
decrement the new compare constant):
https://alive2.llvm.org/ce/z/iELmct
This code requires the result to be an UndefValue/ConstantInt
anyway (checked by getKnownConstant), so we are only interested
in the case where this folds.
AARGetter is an abstraction over a source of the `AAResults` introduced
to support the legacy pass manager as well as the modern one. Since the
Argument Promotion pass doesn't support the legacy pass manager anymore,
the abstraction is not required and `AAResults` may be used directly.
The instance of the `FunctionAnalysisManager` is passed through the
functions to get all the required analyses just wherever they are
required and do not use the awkward getter callbacks.
The `ReplaceCallSite` parameter was required for the legacy pass manager
only and isn't used anymore, so the parameter has been eliminated.
Differential Revision: https://reviews.llvm.org/D128727
The `isDenselyPacked` static member of the `ArgumentPromotionPass` class
is not used in the class itself anymore. The single known user of the
function is in the `AttributorAttributes.cpp` file, so the function has
been moved into the file.
Differential Revision: https://reviews.llvm.org/D128725
Extend the solution accepted in D127766 to strncmp and simplify
strncmp(A, B, N) calls with constant A and B and variable N to
the equivalent of
N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0)
where Pos is the offset of either the first mismatch between A
and B or the terminating null character if both A and B are equal
strings.
Reviewed By: courbet
Differential Revision: https://reviews.llvm.org/D128089
Enhance getConstantDataArrayInfo to let the memchr and memcmp library
call folders look through arbitrarily long sequences of bitcast and
GEP instructions.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D128364
If the root order itself does not require reordering, we can just
remove its reorder mask safely (e.g., if the root node is a vector of
phis). But if this node is used as an operand in the graph, we cannot
delete the reordering, need to keep it. Otherwise the graph nodes are
not synchronized with the operands. It may cause an extra gather
instruction(s) or a compiler crash.
Also, need to be very careful when selecting the gather nodes for
reordering since there might several gather nodes with the same scalars
and we can try to reorder just the same node many times instead of
different nodes.
Differential Revision: https://reviews.llvm.org/D128680
This moves some code for getting PC and SP into their own functions. Since SP
is also retrieved in the prologue and getting the stack tag, we can cache the
SP if we get it once in the prologue. This caching will really only be relevant
in D128387 where StackBaseTag may not be set in the prologue if __hwasan_tls
is not used.
Differential Revision: https://reviews.llvm.org/D128551
It makes sense to handle byval promotion in the same way as non-byval
but also allowing `store` instructions. However, these should
use the same checks as the `load` instructions do, i.e. be part of the
`ArgsToPromote` collection. For these instructions, the check for
interfering modifications can be disabled, though. The promotion
algorithm itself has been modified a lot: all the accesses (i.e. loads
and stores) are rewritten to the emitted `alloca` instructions. To
optimize these new `alloca`s out, the `PromoteMemToReg` function from
`Transforms/Utils/PromoteMemoryToRegister.cpp` file is invoked after
promotion.
In order to let the `PromoteMemToReg` promote as many `alloca`s as it
is possible, there should be no `GEP`s from the `alloca`s. To
eliminate the `GEP`s, its own `alloca` is generated for every argument
part because a single `alloca` for the whole argument (that
significantly simplifies the code of the pass though) unfortunately
cannot be used.
The idea comes from the following discussion:
https://reviews.llvm.org/D124514#3479676
Differential Revision: https://reviews.llvm.org/D125485
This patch moves the code for recipe implementations to a separate file.
The benefits are:
* Keep VPlan.cpp smaller => faster compile-time during parallel builds.
* Keep code for logical units together
As a follow-up I am also planning on moving all ::execute
implemetnations from LoopVectorize.cpp over to the new file, which
should help to reduce the size of the file a bit.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D127965
This removes the extractvalue constant expression, as part of
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179.
extractvalue is already not supported in bitcode, so we do not need
to worry about bitcode auto-upgrade.
Uses of ConstantExpr::getExtractValue() should be replaced with
IRBuilder::CreateExtractValue() (if the fact that the result is
constant is not important) or ConstantFoldExtractValueInstruction()
(if it is). Though for this particular case, it is also possible
and usually preferable to use getAggregateElement() instead.
The C API function LLVMConstExtractValue() is removed, as the
underlying constant expression no longer exists. Instead,
LLVMBuildExtractValue() should be used (which will constant fold
or create an instruction). Depending on the use-case,
LLVMGetAggregateElement() may also be used instead.
Differential Revision: https://reviews.llvm.org/D125795
`commonAlignment` is a shortcut to pick the smallest of two `Align`
objects. As-is it doesn't bring much value compared to `std::min`.
Differential Revision: https://reviews.llvm.org/D128345
This is the followup patch to https://reviews.llvm.org/D125246 for the `SampleContextTracker` part. Before the promotion and merging of the context is based on the SampleContext(the array of frame), this causes a lot of cost to the memory. This patch detaches the tracker from using the array ref instead to use the context trie itself. This can save a lot of memory usage and benefit both the compiler's CS inliner and llvm-profgen's pre-inliner.
One structure needs to be specially treated is the `FuncToCtxtProfiles`, this is used to get all the functionSamples for one function to do the merging and promoting. Before it search each functions' context and traverse the trie to get the node of the context. Now we don't have the context inside the profile, instead we directly use an auxiliary map `ProfileToNodeMap` for profile , it initialize to create the FunctionSamples to TrieNode relations and keep updating it during promoting and merging the node.
Moreover, I was expecting the results before and after remain the same, but I found that the order of FuncToCtxtProfiles matter and affect the results. This can happen on recursive context case, but the difference should be small. Now we don't have the context, so I just used a vector for the order, the result is still deterministic.
Measured on one huge size(12GB) profile from one of our internal service. The profile similarity difference is 99.999%, and the running time is improved by 3X(debug mode) and the memory is reduced from 170GB to 90GB.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D127031
This is another attempt to land this patch.
The patch proposed to use a new cost model for loop interchange,
which is obtained from loop cache analysis.
Given a loopnest, what loop cache analysis returns is a vector of
loops [loop0, loop1, loop2, ...] where loop0 should be replaced as
the outermost loop, loop1 should be placed one more level inside, and
loop2 one more level inside, etc. What loop cache analysis does is not
only more comprehensive than the current cost model, it is also a "one-shot"
query which means that we only need to query it once during the entire
loop interchange pass, which is better than the current cost model where
we query it every time we check whether it is profitable to interchange
two loops. Thus complexity is reduced, especially after D120386 where we
do more interchanges to get the globally optimal loop access pattern.
Updates made to test cases are mostly minor changes and some
corrections. One change that applies to all tests is that we added an option
`-cache-line-size=64` to the RUN lines. This is ensure that loop
cache analysis receives a valid number of cache line size for correct
analysis. Test coverage for loop interchange is not reduced.
Currently we did not completely remove the legacy cost model, but
keep it as fall-back in case the new cost model did not run successfully.
This is because currently we have some limitations in delinearization, which
sometimes makes loop cache analysis bail out. The longer term goal is to
enhance delinearization and eventually remove the legacy cost model
compeletely.
Reviewed By: bmahjour, #loopoptwg
Differential Revision: https://reviews.llvm.org/D124926
Now that we have the sanitizer metadata that is actually on the global
variable, and now that we use debuginfo in order to do symbolization of
globals, we can delete the 'llvm.asan.globals' IR synthesis.
This patch deletes the 'location' part of the __asan_global that's
embedded in the binary as well, because it's unnecessary. This saves
about ~1.7% of the optimised non-debug with-asserts clang binary.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D127911
This change is a bit subtle. If we have a type like <vscale x 1 x i64>, the vectorizer will currently reject vectorization. The reason is that a type like <1 x i64> is likely to get simply rescalarized, and the vectorizer doesn't want to be in the game of simple unrolling.
(I've given the example in terms of 1 x types which use a single register, but the same issue exists for any N x types which use N registers. e.g. RISCV LMULs.)
This change distinguishes scalable types from fixed types under the reasoning that converting to a scalable type isn't unrolling. Because the actual vscale isn't known until runtime, using a vscale type is potentially very profitable.
This makes an important, but unchecked, assumption. Specifically, the scalable type is assumed to only be legal per the cost model if there's actually a scalable register class which is distinct from the scalar domain. This is, to my knowledge, true for all targets which return non-invalid costs for scalable vector ops today, but in theory, we could have a target decide to lower scalable to fixed length vector or even scalar registers. If that ever happens, we'd need to revisit this code.
In practice, this patch unblocks scalable vectorization for ELEN types on RISCV.
Let me sketch one alternate implementation I considered. We could have restricted this to when we know a minimum value for vscale. Specifically, for the default +v extension for RISCV, we actually know that vscale >= 2 for ELEN types. However, doing it this way means we can't generate scalable vectors when using the various embedded vector extensions which have a minimum vscale of 1.
Differential Revision: https://reviews.llvm.org/D128542
Information in the function `Prologue Data` is intentionally opaque.
When a function with `Prologue Data` is duplicated. The self (global
value) references inside `Prologue Data` is still pointing to the
original function. This may cause errors like `fatal error: error in backend: Cannot represent a difference across sections`.
This patch detaches the information from function `Prologue Data`
and attaches it to a function metadata node.
This and D116130 fix https://github.com/llvm/llvm-project/issues/49689.
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D115844
Summary:
Currently in OpenMPOpt we strip `noinline` attributes from runtime
functions. This is here because the device bitcode library that we link
has problems with needed definitions getting prematurely optimized out.
This is only necessary for OpenMP offloading to GPUs so we should narrow
the scope for where we spend time doing this. In the future this
shouldn't be necessary as we move to using a linked library rather than
pulling in a bitcode library in Clang.
The global ctor evaluator currently handles by checking whether the
memset memory is already zero, and skips it in that case. However,
it only actually checks the first byte of the memory being set.
This patch extends the code to check all bytes being set. This is
done byte-by-byte to avoid converting undef values to zeros in
larger reads. However, the handling is still not completely correct,
because there might still be padding bytes (though probably this
doesn't matter much in practice, as I'd expect global variable
padding to be zero-initialized in practice).
Mostly fixes https://github.com/llvm/llvm-project/issues/55859.
Differential Revision: https://reviews.llvm.org/D128532
These intrinsics are now fundemental for SVE code generation and have been
present for a year and a half, hence move them out of the experimental
namespace.
Differential Revision: https://reviews.llvm.org/D127976
Support for the legacy pass manager in ArgPromotion causes
complications in D125485. As the legacy pass manager for middle-end
optimizations is unsupported, drop ArgPromotion from the legacy
pipeline, rather than introducing additional complexity to deal
with it.
Differential Revision: https://reviews.llvm.org/D128536